AER/AGS Special Report 118

In Situ Stresses Adjacent to Salt Formations of the Elk Point Group, Eastern Alberta and Western Saskatchewan

In Situ Stresses Adjacent to Salt Formations of the Elk Point Group, Eastern Alberta and Western Saskatchewan

Advanced Geotechnology Inc.¹

¹ Former company (see page iii for current contact information)

April 2024

©His Majesty the King in Right of Alberta, 2024 ISBN 978-1-4601-5718-3

The Alberta Energy Regulator / Alberta Geological Survey (AER/AGS), its employees and contractors make no warranty, guarantee, or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness, or reliability of this publication. Any references to proprietary software and/or any use of proprietary data formats do not constitute endorsement by the AER/AGS of any manufacturer's product.

If you use information from this publication in other publications or presentations, please acknowledge the AER/AGS. We recommend the following reference format:

Advanced Technology Inc. (2024): In situ stresses adjacent to salt formations of the Elk Point Group, eastern Alberta and western Saskatchewan; Alberta Energy Regulator / Alberta Geological Survey, AER/AGS Special Report 118, 319 p.

Publications in this series have undergone only limited review and are released essentially as submitted by the author.

Author address:

P. McLellan (formerly of Advanced Geotechnology Inc.)
McLellan Energy Advisors Inc.
1611 Senlac Street SW
Calgary, AB T3C 2J8
Canada

Tel:403.807.9123Email:pat.mclellan@mclellanenergy.com

Published April 2024 by:

Alberta Energy Regulator Alberta Geological Survey Suite 205 4999 – 98 Avenue NW Edmonton, AB T6B 2X3 Canada

Tel:780.638.4491Email:AGS-Info@aer.caWebsite:ags.aer.ca

Foreword

This Special Report is the public release of a consultant report by Advanced Geotechnology Inc. submitted to the Alberta Geological Survey in 2001. The report describes a three-phase investigation of in situ stresses in and adjacent to salt formations of the Devonian Elk Point Group in eastern Alberta and western Saskatchewan carried out in 2000 and 2001, with a focus on salt cavern design considerations for the potential storage of greenhouse gases.

The report contains a comprehensive literature review of salt rock mechanics, with a particular focus on storage caverns, provides an analysis of relevant data in the study area to determine the orientation and magnitudes of in situ stresses in and adjacent to the Lotsberg, Cold Lake, and Prairie Evaporite formations, and includes recommendations for further studies to quantify in situ stress and rock mechanical properties in salt formations, which could potentially host greenhouse gas storage caverns.

IN-SITU STRESSES ADJACENT TO SALT FORMATIONS OF THE ELK POINT GROUP

ALBERTA GEOLOGICAL SURVEY

ALBERTA ENERGY AND UTILITIES BOARD

AGI FILE 10-122

August, 2001

Submitted to:

Alberta Geological Survey 4th Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, Alberta T6B 2X3

Distribution:

2 copiesAlberta Geological Survey, Edmonton, Alberta1 copyAdvanced Geotechnology Inc., Calgary, Alberta

Prepared by:

Steve Thomas, M.Sc., P.Eng. Project Engineer

Rodney Read, Ph.D., P.Eng. Senior Geomechanics Engineer

Patrick McLellan, M.Sc., P.Eng. Principal Consultant

PERMIT TO PRACTICI ADVANCED GEOTECHNOLOGY	E INC
Signature	
Date PERMIT NUMBER: P 46 The Association of Professional Engine Geologists and Geophysicists of Albe	54 eers erta

(Original Version of the Report Signed, August 2001

NOTE: This confidential report was prepared by Advanced Geotechnology Inc. (AGI) for the Alberta Geological Survey and is not to be distributed or used by other organizations without notice to AGI. AGI accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report. This report is largely based upon data and related observations provided by the client or its agents and/or service companies. The conclusions, recommendations, inferences, deductions and opinions rendered herein reflect the examination, study, analysis and testing of these items and represent the current opinion of AGI. Any reliance on the information contained herein concerning the stability, productivity, or injectivity of any well or formation is at the sole risk of the client, and AGI neither extends nor makes any warranty or representation whatsoever with respect to same.

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	. vi
SU	MMARY	vii
CC	ONCLUSIONS	X
RE	COMMENDATIONS	. xi
1.	INTRODUCTION	1
	1.1 Background	1
	1.2 Objectives	2
	1.5 Scope of this Final Report	2
	1.5 Sources of Information	4
2.	SALT FORMATIONS OF THE ELK POINT GROUP	6
	21 Drainia Evanantia Formation	6
	2.1 Frame Evaporite Formation	0 8
	2.3 Lotsberg Formation	0
3.	LITERATURE REVIEW	.10
	3.1 Geomechanical Behaviour of Salt	10
	3.2 Rock Mechanical Properties of Salts	.15
	3.3 In-situ Stress Measurements in Salt	.19
	3.4 Waste Disposal and Hydrocarbon Storage Caverns	.20
4.	IN-SITU STRESS DETERMINATION METHODOLOGY	.24
	4.1 Vertical Stress Magnitude	.24
	4.2 Horizontal Stress Magnitudes	.24
	4.3 Horizontal Stress Orientations	.25
	4.3.1 Borehole Breakouts	.25
	4.3.2 Coring-Induced Fractures	.26
5.	DATA REVIEW AND ANALYSIS	.28
	5.1 Relevant Wells in the Study Area	.28
	5.1.1 Original Study Area	.28
	5.1.2 Expanded Study Area	.29
	5.2 Bulk Density Log Data for Vertical Stress	.37
	5.2.1 Log Quality Analysis	.37
	5.2.2 Estimation of Near-surface Bulk Density	.41
	5.2.5 Calculation of Vertical Stress.	.45
	5.5 HORIZONTAL STRESS URIENTATION	.54
	5.4 Horizontal Stress Magnitudes	.69

	5.4.1 Forma 5.4.2 Back-A	tion Leak-off Test and Hydraulic Fracture Data69 Analysis of Horizontal Stress Ratios from Borehole Breakouts70
6.	DISCUSSION	OF RESULTS72
	6.1 Literature6.2 Data Revie6.3 Analysis of6.4 Analysis of	Review
7.	CITED REFER	RENCES
AI	PPENDIX A:	Bibliography on Salt Geomechanics (March 1, 2001)1
	1. In-Situ Stres	s1
	2. Mechanical I	Properties
	3. Creep Respo	nse of Tunnels, Caverns and Boreholes in Salt
	4. Geology of Sa	alt Deposits in Western Canada7
	5. Waste Storag	ge and Disposal in Salt7
	6. Casing Failu	res in Salt
	7. Hydrocarbor	1 Storage in Salt8
	8. Sandia Natio	nal Laboratory Publications (Restricted and Public)11
	9. EUB Applica	tions Related to Salt Caverns (Source: EUB Library)
AF	PPENDIX B Dat	a Summary Tables – Original Study AreaB-1
	Table B.1	Bulk density log data available in the original study area for the Elk Point Group
	Table B.2	Dipmeter log data available in the original study area for the Elk Point and Beaverhill Lake Groups
	Table B.3	Core available in the original study area for the Elk Point Group
	Table B.4	DST data available in original study area for the Elk Point Group in the bulk density log data
AF	PPENDIX C Dat	ta Summary Tables – Expanded Study AreaC-1
	Table C.1	Bulk density log data available in expanded Alberta study area for the Elk Point Group
	Table C.2	Dipmeter log data available in expanded Alberta study area for the Elk Point Group
	Table C.3	Bulk density log data available in expanded Saskatchewan study area for the Elk Point Group
	Table C.4	Dipmeter log data available in expanded Saskatchewan study area for the Paleozoic-age Formations

APPENDIX D Data Analysis Results for Original Study Area.....D-1

- Table D.1Summary of vertical stresses for the Elk Point Group
determined from bulk density data
- Fig. D.1.1 Bulk density profile, calculated vertical stress,
- to D.1.92 local vertical stress gradient for analyzed bulk density wells
- Table D.2Detailed summary of breakout data in the Beaverhill Lake and
Elk Point Groups
- Fig. D.2.1 Roseplots of breakout data in the Beaverhill Lake and Elk
- to D.2.6 PointGroups
- Table D.3Summary of breakout analysis data in the original study area
for the Elk Point and Beaverhill Lake Groups

APPENDIX E	Data Analysis Results f	or Expanded Study	^v AreaE-1

- Table E.1Summary of vertical stresses for the Elk Point Group
determined from bulk density data in the expanded study area
- Table E.2Detailed summary of breakout data in the Saskatchewan,
Beaverhill Lake, and Elk Point Groups
- Fig. E.2.1 Roseplots of breakout data in the Saskatchewan, Beaverhill
- to E.2.14 Lake, and Elk Point Groups
- APPENDIX F CD of Report Contents and Data

v

EXECUTIVE SUMMARY

This report describes a three-phase investigation of in-situ stresses in and adjacent to salt formations of the Elk Point Group in eastern Alberta and western Saskatchewan. In-situ stresses will be required to design underground caverns in salt strata for the potential storage of greenhouse gases.

Phase 1 was conducted for an original study area in the Fort McMurray – Lloydminster corridor in Alberta. Published literature and public domain data on in-situ stresses in and adjacent to salt formations of the Elk Point Group were identified, reviewed, and analyzed. The assumption of isotropic stresses in the salt formations may be adequate for future preliminary cavern design studies, but the possibility of anisotropic stresses in these salts cannot be ruled out. Relevant rock mechanical properties were identified for similar salts from other basins, but no such data for the Elk Point Group salts were located. A comprehensive literature review of salt rock mechanics, particularly as applied to storage caverns was also conducted in Phase 1 and is included as part of this report

Phases 2 and 3 identified and analyzed stress magnitude and orientation data within a wider study area including the part of Alberta and a limited part of western Saskatchewan underlain by the Prairie Evaporite Formation. Bulk density logs were used to produce vertical stress and vertical stress gradient contour maps of the entire study area. Analysis of stress-induced borehole breakouts recorded on dipmeter logs determined that the average minimum horizontal stress in the Paleozoic-age formations above the Basal Red Beds, including strata in the Elk Point and Beaverhill Lake Groups, was 129° with a 95% confidence interval of 13°.

There were no horizontal in-situ stress magnitude data identified in the public domain for strata of the Elk Point Group over the expanded study area. It may be possible to invert insitu stress magnitude data by back-analyzing borehole breakouts. An example of this stress prediction technique is provided, demonstrating the existence of horizontal stress anisotropy in the Elk Point Group for one well.

Recommendations are given for further studies to quantify in-situ stress and rock mechanical properties in salt formations which could potentially host greenhouse gas storage caverns.

vi

SUMMARY

Literature Review on Salt Geomechanics

- 1. The geomechanical behaviour of salt is dominated by creep deformation, which is affected by stress and temperature conditions, and the physical properties of salt.
- 2. Deformation responses around underground openings can vary widely depending upon in-situ conditions and salt properties, therefore creep testing of samples from the location of interest is required to assess the expected response of a particular salt formation.
- 3. Elastic mechanical deformation properties of salt are relatively consistent for salts of similar composition, but strength properties can vary considerably. These elastic deformation and strength properties are required along with creep parameters for the design of stable caverns in salt.
- 4. No published data on the relevant mechanical properties of the Elk Point Group salts were identified in the literature review conducted for this study.
- 5. The in-situ stress state in salt formations is generally assumed to be isotropic in its virgin condition prior to the introduction of an underground opening.
- 6. Stress measurements in salt formations are difficult to perform, but, in some parts of the world, in-situ tests have shown that anisotropic stress conditions can exist.
- 7. Proprietary site-specific engineering reports for oilfield waste disposal or hydrocarbon storage caverns in salt may provide a source of measured or calculated in-situ stresses within the study area. Salt cavern development in Alberta is concentrated in the Fort Saskatchewan area within the Lotsberg Formation.
- 8. No publicly-available data from which to confidently estimate the magnitude of the minimum horizontal stress were identified. The assumption of isotropic stresses in the salt formations is considered a reasonable first approximation in the absence of hard data from hydraulic fracture tests or similar in-situ tests.

In-Situ Stress Data

- 1. In the original Phase 1 study area, 65 wells were used to determine the vertical stress at the top of the Prairie Evaporite Formation and 49 wells were used to determine the vertical stress at the top of the Basal Red Beds Formation. In the expanded study area, an additional 112 wells were used to determine the vertical stress at the top of the Prairie Evaporite Formation (90 from the expanded Alberta study area and 22 from the expanded Saskatchewan study area).
- 2. In total, there were 24 minimum horizontal stress orientations available in the entire study area for Paleozoic-age formations (8 from the Geological Atlas of the Western Canadian Sedimentary Basin and 16 from breakout analyses described in this report). This includes minimum horizontal stress orientations determined in: 9 wells in formations above the Beaverhill Lake Group, 10 wells within the Beaverhill Lake Group, and 9 wells within the Elk Point Group.
- 3. Numerous cores have been taken in and adjacent to the salt formations of the Elk Point Group in the study area. Stress relief petal or disking fractures may be present in stiff carbonate and evaporite rocks in these cores, and could be oriented with paleomagnetics to provide additional estimates of horizontal stress orientations.
- 4. Colour contour maps were prepared for displaying vertical stress magnitudes and gradients at the top of the Basal Red Beds Formation in the original study area. The vertical stress ranges from 13.5 to 39.1 MPa at the top of the Basal Red Beds in the original study area. The vertical stress gradient at the top of the Basal Red Beds in the original study area ranges from 21.3 to 23.6 kPa/m. A region in the central part of the original study area possesses vertical stress gradients less than 22 kPa/m. This anomaly is associated with thicker occurrences of the relatively low-density Lotsberg and Cold Lake salt formations.
- 5. Contour plots show that the vertical stress at the top of the Prairie Evaporite Formation ranges from 7.4 to 31.7 MPa in the original study area and from 10.2 to 54.0 MPa in the expanded area. The vertical stress gradient at the top of the Prairie Evaporite Formation ranges from 21.3 to 23.9 kPa/m in the original study area, decreasing towards the eastern boundary of the Prairie Evaporite Formation. The vertical stress gradient at the top of the top of the Prairie Evaporite Formation in the expanded

study area ranges from 21.5 to 24.7 kPa/m, with the lower vertical stress gradients being in the northeast and the higher vertical stress gradients being in the southwest. This trend is likely a result of northeastward-thickening Quaternary or Cretaceous deposits of relatively low density and the increase in density of formations above the Prairie Evaporite towards the southwest. Despite sparse data coverage in some parts of the study area such as Wood Buffalo National Park, the contour plots for the vertical stress and the vertical stress gradient are considered representative of in-situ conditions.

- 6. The dataset of 8 wells from the Geological Atlas of the Western Canadian Sedimentary Basin has an average minimum horizontal stress orientation of 137° with a 95% confidence interval of 16°, and a range from 118° to 148°. The average minimum horizontal stress orientation determined from the 16 wells analyzed in this report (weighted by breakout length) is 120°, with a 95% confidence interval of 16°, and a range from 101° to 152°, similar to the atlas measurements in the Paleozoic-age formations. It is important to note that the dataset from the atlas was from Paleozoic-age formations above the Beaverhill Lake Group whereas 15 of the 16 wells analyzed in this report had breakouts from the Beaverhill Lake Group and/or Elk Point Groups. The average minimum horizontal stress orientation (not weighted by breakout length) for all 24 wells is 129°, with a 95% confidence interval of 13°.
- 7. The occurrence of breakouts adjacent to salt formations of the Elk Point Group indicates that the horizontal stresses are likely slightly anisotropic in the salt strata. An example of inverse modelling based on a borehole breakout analysis in the Elk Point Group demonstrated that it is possible to estimate the ratio of maximum to minimum horizontal stress. A horizontal stress ratio of 1.24 to 1.37 was calculated using AGI's STABView borehole stability software and rock strengths estimated from log data.

CONCLUSIONS

- 1. No published data on minimum horizontal stress magnitudes or rock mechanical properties of the Elk Point Group salts were identified in the literature review conducted for this study.
- Vertical stress magnitudes ranged from 13.5 to 39.1 MPa at the top of the Basal Red Beds in the original study area. Vertical stress gradients ranged from 21.3 to 23.6 kPa/m in this same area.
- 3. The vertical stress magnitude ranged from 7.4 to 54.0 MPa at the top of the Prairie Evaporite Formation in the entire study area. Vertical stress gradients ranged from 21.3 to 24.7 kPa/m in this area, increasing from the northeast to the southwest.
- 4. There was no significant difference between the vertical stress gradient at the top of the Prairie Evaporite Formation and the top of the Basal Reds Beds in the original study area. Therefore, it is reasonable to assume that the vertical stress at the bottom of the Lotsberg Formation within the expanded study area can be estimated using the vertical stress gradient determined at the top of the Prairie Evaporite Formation.
- 5. The average minimum horizontal stress orientation for all 24 wells examined in the entire study area is 129° with a 95% confidence interval of 13°.
- 6. A slight rotation of the minimum horizontal stress to a more NNW SSE orientation in the upper Paleozoic-age strata could be seen in the dataset. The average minimum horizontal stress orientation was 116° in the Elk Point Group, 124° in the Beaverhill Lake Group, and 139° above the Beaverhill Lake Group.

Х

RECOMMENDATIONS

- 1. Rock creep, deformability and permeability properties should be determined from laboratory tests on good quality salt core. These properties are required to assess the expected response of the salt surrounding potential underground storage caverns. (High priority)
- 2. Micro-frac tests should also be conducted as part of any salt cavern development program to determine site-specific values of the maximum and minimum horizontal stress magnitudes. Although expensive, micro-frac tests are the only reliable means to determine whether the in-situ stresses are anisotropic. (Medium priority)
- 3. There are cores available from the original and expanded study areas that could provide additional information on horizontal stress orientations and magnitudes. Examination of a select group of cores would indicate whether or not stress relief fractures occur in strata adjacent to, or perhaps within, salt formations of the Elk Point Group. These stress relief fractures would provide a complementary method of determining horizontal stress orientations and help verify the hypothesis that horizontal stresses are anisotropic. (Medium-low priority)
- 4. Hydraulic fracturing data, which can be used to estimate the minimum horizontal stress magnitude, could be obtained or perhaps purchased from operators and/or service companies. Considerable effort would be required to collect, review and analyze such data because of the low data quality expected. Furthermore, it is not expected that any data will be available for the salt formations of primary interest. (Low priority)

xi

1. INTRODUCTION

1.1 Background

The Alberta Geological Survey (AGS) is involved in studies related to carbon dioxide (CO_2) sequestration in Alberta. The options being considered for CO_2 disposal are:

- injection into coal beds,
- injection into depleted reservoirs,
- injection into saline aquifers, and
- injection into salt caverns.

There are several major CO_2 producers in the Ft. McMurray-Lloydminster area in northeastern Alberta. In this area, the Western Canada Sedimentary Basin thins, and there are very few coal beds, saline aquifers or depleted aquifers suitable for CO_2 sequestration. Therefore, salt¹ beds are considered a potentially viable target for disposal in this area.

Within the Western Canadian Sedimentary Basin, there are several salt-bearing units within the Elk Point Group. To assess the viability of disposal of CO_2 into caverns in one or more of these salt units, an understanding of the magnitudes and orientations of the insitu stresses is required.

A multi-phase investigation has been undertaken to examine in-situ stresses in and adjacent to salt formations. Three study areas were identified by AGS for investigation: Phase 1 – the original study area bounded by latitude $53 - 58^{\circ}$ N and longitude $110 - 112^{\circ}$ W, which includes Ft. McMurray and Lloydminster, Phase 2 - an expanded Alberta study area covering the areal extent of the Prairie Evaporite Formation within Alberta, and Phase 3 - an expanded Saskatchewan study area bounded by latitude 49.5 - 56^{\circ} N and longitude 109 - 110^{\circ} W (Figure 1.1). Phase 1 of the study also included a literature review on rock salt behaviour and in-situ stress measurements in salt, and a review of data availability within the original study area. Phase 2 involved detailed analyses and interpretation of the data in the original study area and the preparation of a report for the

¹ Note on Nomenclature: For the purpose of this report "salt" or "salt formation" refers to halite salt, not other evaporite salts such as sylvite or carnallite.

original study area. In addition, data availability in the expanded Alberta study area was assessed. Phase 3 involved compiling additional data for a portion of western Saskatchewan. In this final phase the data in both the expanded Alberta and Saskatchewan study areas were analyzed and combined with the data from the original Phase 1 study area. This final report covers the study Phases 1 to 3.

1.2 Objectives

The main objectives of the investigation were to:

- 1. Review literature pertaining to the geomechanical response of salt to applied differential stress, salt mechanical properties and their variability within the Elk Point Group in the Western Canada Sedimentary Basin, in-situ stress measurements in and adjacent to salt and other evaporite formations (particularly as applied in Western Canada), and other regional in-situ stress studies for bedded salt and other evaporite rocks.
- 2. Identify well data and other publicly-available information relevant to the study area such as regional stress data, 4-arm dipmeter logs suitable for borehole breakout analysis and bulk density logs. Also, cored intervals and formation pressure measurements were reviewed in the original study area.
- 3. Analyze relevant data in the study area to determine the orientation and magnitudes of in-situ stresses in and adjacent to the salt formations of interest.

1.3 Scope of this Final Report

This report incorporates the findings from:

- 1. An interim report on Phase 1 which was delivered to the AGS in December, 2000,
- 2. A report on Phase 2 delivered to AGS in March, 2001, and
- 3. The data analysis and interpretation from Phase 3, ending August, 2001.

2

Figure 1.1: Map showing location of the original study area bounded by 53° to 58° latitude N and 110° to 112° longitude W outlined in black. The expanded study area is outlined in red including the Saskatchewan study area bounded by 49.5° to 56° latitude N and 109° to 110° longitude W. The areal extent of the salt bearing units as provided by the Alberta Geological Survey are also shown on the map.

1.4 Authorization and Chronology

Background information and a request for a proposal were received from Dr. Stefan Bachu of the AGS at a meeting with Advanced Geotechnology Inc. (AGI) on June 22, 2000. Preliminary maps showing the areal extent, depths and thicknesses of the various saltbearing units in the study area were provided to AGI at that meeting. AGI proposal 20-175, dated August 1, 2000, was accepted by AGS, and a contract to conduct Phase 1 of the proposal was signed on August 3, 2000. Dr. Matt Grobe of the AGS acted as a resource to the project to access well information available from the AEUB. A draft version of an interim report for Phase 1 of the study was reviewed at a meeting between AGS and AGI in Calgary on December 1, 2000. A copy of the interim report for Phase 1 was sent to AGS on December 7, 2000 and further revisions were discussed at a meeting between AGI and AGS on December 20, 2000. Two copies of the revised interim report for Phase 1 were sent to AGS on January 5, 2001.

A proposal to conduct Phase 2 of the study was submitted to AGS on December 18, 2000. The proposal was discussed with Dr. Stephan Bachu at a meeting on December 20, 2000. A contract covering Phase 2 of the study was signed at that meeting. A draft report on Phases 1 and 2 of the study was discussed at a meeting with Dr. Stephan Bachu on February 14, 2001. The final report for Phases 1 and 2 was submitted to AGS on March 7, 2001.

A proposal to conduct Phase 3 of the study was submitted to AGS on March 28, 2001. The proposal was accepted and a contract was signed on April 10, 2001. On May 10, 2001, at the request of Dr. Bachu the Phase 3 study area was further expanded into western Saskatchewan and a contract amendment was agreed to by AGI on June 8, 2001. A draft version of the final report for Phases 1, 2, and 3 was reviewed with Dr. Bachu on August 30, 2001. Two copies of the final report and data were delivered to the AGS in September, 2001.

1.5 Sources of Information

The sources of information on in-situ stresses that were evaluated for this study included the following:

• AEUB well database and library,

- University of Calgary library,
- AGI library, rock mechanics journals and published paper collection
- personal contact with University and industry representatives including:
 - Prof. Doug Milne (University of Saskatchewan),
 - Prof. Emery Lajtai (University of Manitoba),
 - Prof. Brian Stimpson (University of Manitoba),
 - Prof. Robert Corthesy (Ecole Polytechnique),
 - Dr. Neil Chandler (AECL),
 - Dr. Frank Hansen (Sandia National Laboratories),
 - Dr. Alan Coode (IMC Colonsay),
 - Dr. Douglas Bingham (Alberta Environment),
 - Dr. J.C. Roegiers (University of Oklahoma),
 - Mr. Edward Dancsok (Saskatchewan Energy and Mines), and
 - Mr. Myron Sereda (Saskatchewan Energy and Mines).

Relevant well data were reviewed by AGI staff using the publicly available Alberta and Saskatwchewan well data purchased from CDPubco and viewed in AGI's GEOVISTA software. Maps of the study area showing the various salt formations of the Elk Point Group were provided to AGI by AGS as hardcopies, and in digital form in CANVAS format. AGI acquired the CANVAS software to view and manipulate these maps for Phases 2 and 3 of the study.

2. SALT FORMATIONS OF THE ELK POINT GROUP

The Elk Point Group in the Western Canada Sedimentary Basin includes the following three evaporite formations:

- Prairie Evaporite Formation,
- Cold Lake Formation, and
- Lotsberg Formation (Upper and Lower).

These Middle Devonian formations are shown in the stratigraphic table of formations Figure 2.1. The Lotsberg is near the base of the Devonian sequence of the Elk Point Group. The Cold Lake Formation is slightly higher in the section, and the Prairie Evaporite lies close to the top of the group. The Elk Point Group is overlain by the Beaverhill Lake Group, also of Middle Devonian age. The type localities and lithologic descriptions which follow are abstracted from the Lexicon of Canadian Stratigraphy (CSPG, 1997).

2.1 Prairie Evaporite Formation

Type Locality: Imperial Davidson No. 1, in 16-8-27-1W3M, Saskatchewan, between 1326.5 and 1524m (4352 and 5000 ft). Typical development of the Prairie Evaporite occurs in the White Rose et al. Drake 4-29-32-22 well (LSD. 4-29-32-22W2) between 993.3 and 1186.9 m (3259 and 3894 ft).

Lithology: Halite, carnallite (KMgCl₃•6H₂O) and sylvite (KCl) of various hues and degrees of crystallinity, but predominantly red and moderately coarsely crystalline. Locally blue halite is present. Seams of red or grey dolomitic mudstone and some anhydrite beds are present.

Thickness and Distribution: Maximum of 218 m (715 ft), with the thickest part occupying a belt from west of Saskatoon east to Melville and south to North Dakota. Extensive solutioning of salts has given rise to an irregular thickness to the formation and local absence of salt. Areas of major salt solutioning occur in south-central Saskatchewan. The Prairie Evaporite extends from north-central Alberta southeastward into Manitoba, and southward into North Dakota and Montana.

Relationship to Other Units: The basal contact is conformable with carbonates or anhydrite of the Winnipegosis Formation. The Prairie Evaporite is correlated with the Muskeg and Presqu'ile Formations in northern Alberta.

7

The Prairie Evaporite contains three main potash members: Esterhazy (17 m), Belle Plaine (14 m) and Patience Lake (18 m) members (Fuzesy, 1983). The White Bear member is 4 m thick. In Saskatchewan, these members consist primarily of variable proportions of halite, sylvite, and carnallite, and occur within the upper 70 m of the Prairie Evaporite Formation. It is inferred that most of the sylvite and a small proportion of the halite have been altered to carnallite by fluids rich in magnesium.

2.2 Cold Lake Formation

Type Locality: Canadian Seaboard 10-13-60-4W4M, in Alberta, between 982.1 and 1037.8 m (3222 and 3405 ft). Name derived from White Rose C & E Cold Lake 7-22-66-1W4M, between 811.7 and 863.2 m (2663 and 2832 ft).

Lithology: Halite, with thin basal red calcareous to dolomitic shale, 6 m (20 ft) thick in type well.

Thickness and Distribution: The Cold Lake Formation extends from the vicinity of the Meadow Lake escarpment (approx. 54°31'N. 105°40'W) through northwestern Saskatchewan and eastern Alberta to the south flank of the Peace River-Athabasca arch. It is present north of the arch, where it extends across northern Alberta into northeastern British Columbia east of the Fort Nelson arch, and into southern District of Mackenzie, east and north of the Tathlina Arch. In the District of Mackenzie it is considered a member of the Mirage Point Formation. It is up to 56 m (184 ft) thick in the eastern Alberta Basin, 79 m (259 ft) in northern Alberta, and 117 m (389 ft) in southern District of Mackenzie.

Relationship to Other Units: The Cold Lake Formation overlies the Ernestina Lake Formation and is overlain by the Contact Rapids Formation in western Saskatchewan and eastern Alberta, and by the Chinchaga Formation in northern Alberta, northeastern British Columbia and the southern District of Mackenzie. In general, the unit grades into Basal Red Beds of the Elk Point Group around the margins of the basin and across the Peace River-Athabasca arch. It grades into coarse clastics on the flank of the Peace River and Tathlina arches that are referred to as Elk Point Sands or Granite Wash. In central Alberta it grades westward into red, dolomitic shales overlying the Ernestina Lake Formation which are included in the Contact Rapids Formation.

2.3 Lotsberg Formation

Type Locality: Canadian Seaboard Ernestina Lake 10-13-60-4W4M, in Alberta, between 1057.7 m (3470 ft) and 1225.8 m (4020 ft).

Lithology: The type section is almost pure halite. More commonly thin beds of red and green calcareous shale occur and, in the centre of the basin, a red shale unit ranging from 30 to 60 m (100 to 200 ft) separates the salt sequence into two units.

Thickness and Distribution: The Lotsberg Formation ranges up to 229 m (750 ft) thick. It extends from the Meadow Lake Escarpment from approximately 53° to 53°45'N and 109°30' to 112°W northwards through western Saskatchewan and eastern Alberta to approximately 56°15'N.

Relationship to Other Units: In western Saskatchewan and eastern Alberta, the Lotsberg Formation rests on red sandstones and dolomites at the base of the Devonian. Where salt is not present, the Lotsberg Formation becomes part of the basal Devonian red bed unit in northern Alberta and southern District of Mackenzie, the Meadow Lake Formation of Saskatchewan and the La Loche Formation of the outcrop area in northeastern Alberta. The unit is overlain by the Ernestina Lake Formation.

3. LITERATURE REVIEW

3.1 Geomechanical Behaviour of Salt

The geomechanical behaviour of salt is complex. Under applied deviatoric stress conditions, salt deformation is typically dominated by creep (i.e., time-dependent deformation). The creep behaviour of salt under load is known to be affected by the deviatoric stress magnitude (stress difference), temperature, mean stress, degree of fluid saturation, mineralogical composition, and microstructure (including pore and crack porosity, grain size, and stress history). Rapid loading or unloading can also result in semi-brittle behaviour and the development of fractures near an underground opening or free surface (Jeremic 1994).

Following the application of a deviatoric stress to a test sample, the axial strain increases rapidly from the initial elastic strain during a primary or transient stage of creep, and then reaches a slower, longer-term secondary or steady-state stage of creep (Figure 3.1). Steady-state creep can be sustained for a long period of time, particularly under low deviatoric stresses. With continued deformation, the sample reaches a tertiary, accelerated stage of creep, and failure follows. The behaviour of the large mass of salt surrounding an opening in salt such as a tunnel or borehole is generally assumed to be in or near steady-state creep (Dusseault et al., 1987).

The mechanism by which salt creeps is not the same for all stress and temperature conditions (Senseny et al, 1992; Munson, 1997). Results from laboratory creep studies indicate that two deformation mechanisms tend to dominate under the temperature and stress conditions encountered in many underground excavations. These mechanisms are:

- dislocation glide with diffusion- or cross-slip-controlled climb, and
- pressure solution.

The mechanical deformation of salt grains is dominated by dislocation glide at high deviatoric stresses and temperatures. Under low deviatoric stresses, pressure solution is the dominant mechanism. The implication of multiple deformation mechanisms is that creep rates can be dramatically affected by changes in stress and temperature conditions if

Footnote: See Appendix A: Bibliography for the references cited in this section of the report.

Figure 3.1: Schematic of strain-time curve showing the various stages of creep in a typical laboratory test on salt (modified after Jeremic, 1994).

these changes result in a shift from one dominant mechanism to the other (Dusseault 1989). Increased temperature generally increases the creep rate for a given set of conditions, and reduces the tendency for cracking at higher deviatoric stresses and lower confining stress (Wawersik, 1988; Dusseault, 1989; Senseny et al., 1992).

Dusseault et al. (1987) describe the shift in deformation mechanism from dislocation glide to pressure solution by defining the Prandtl limit (K). The Prandtl limit is defined as the shear stress above which crack growth and healing will control the creep of salt. Immediately adjacent to an opening, the salt rock mass will most likely be damaged by elastic-plastic processes if stresses around the hole exceed the salt strength. In-situ permeability and ultrasonic velocity measurements indicate that damage to salt in the form of microcracks is typically restricted to within about one excavation radius from the wall (Stormont and Daemen, 1992; Munson et al., 1995; Stormont, 1997). Within the disturbed zone around an excavation, Dusseault et al. (1987) propose that the deviatoric stresses are below this limit, and the dominant deformation mechanism shifts to dislocation glide and then to pressure solution with decreasing stress (Figure 3.2). Reeves et al. (1988) report that the Prandtl limit K is 8.8 MPa for New Brunswick potash, and ranges from 6.5 to 9.5 MPa for Saskatchewan potash, depending on the carnallite content.

The focus of much of the published experimental work has been to delineate the conditions under which different mechanisms are acting, and derive general equations which describe the dependence of salt creep rate on the most critical factors. These constitutive equations generally relate the creep rate to the deviatoric stress, temperature, and the activation energy associated with the dominant creep mechanism. For example, several authors (e.g. Dusseault 1989; Weertman 1968) describe secondary creep using a power law of the form:

$$\dot{\varepsilon} = \mathbf{A} \left(\frac{\sigma}{G}\right)^n \exp\left[\frac{-Q}{RT}\right]$$
(3.1)

where: $\dot{\varepsilon}$ = steady-state creep rate, n = stress exponent, σ = deviatoric stress, Q = activation energy, T = temperature, A = material constant, R = universal gas constant, and G = shear modulus. Wawersik (1988) provides background on creep model alternatives and parameters for rock salt at temperatures below 160°C. He quotes values of effective activation energy between 50 and 90 kJ/mole for the rock salts considered.

Figure 3.2: Schematic figure showing the distribution of radial (σ_r) and tangential (σ_{θ}) stresses with distance away from a borehole or excavation in salt. Inside the damaged zone, the deviatoric stress (σ) equilibrate at twice the Prandtl limit (2K). With increasing radial distance and decreasing σ , pressure solution dominates over dislocation glide (after Dusseault, 1989).

In this form the steady-state creep rate is proportional to the deviatoric stress raised to an exponent n, where n ranges from 3 to 9 assuming dislocation glide dominates (Hansen and Carter, 1981; Vouille et al., 1981; Blum and Fleischman, 1988; DeVries, 1988; Wawersik, 1988; Senseny et al., 1992). Several researchers have found that under relatively low deviatoric stress, creep behaviour is better described by a power-law with a lower stress exponent n, approximately equal to 1. This is interpreted as reflecting a dominance of pressure solution, rather than dislocation glide, as the mechanism of deformation under these conditions (Dusseault and Mraz, 1983; Hambley et al., 1988; Spiers et al., 1988; Dusseault, 1989; Campos de Orellana, 1996).

The parameters in Equation 3.1 are usually determined experimentally, measuring creep rate as a function of temperature and deviatoric stress. Wawersik (1988) found that the effective activation energy used in the power law is typically less than measured values for the dislocation core diffusion of chlorine (Q = 146 kJ/mole). Other more complex equations have also been developed for implementation in numerical modelling simulations of the closure of openings in salt (e.g., DeVries, 1988; Munson, 1997). Wawersik (1988) provides typical parameter values for three creep equations, and compares the fit of each to a data set based on five rock salts.

Mean stress or confining stress (σ_c) conditions also affect geomechanical behaviour. A high confining stress or mean stress acts to suppress the formation of microcracks (Dusseault et al., 1987), resulting in a lower creep rate when other factors are constant. The effect of confining stress is most significant for $0 < \sigma_3 < 3.4$ MPa, where microcracks would otherwise dramatically increase the creep rate under a given deviatoric stress (Senseny et al., 1992). Internal pressure in cavities in salt is therefore an important controlling factor on creep rate.

The effect of increasing moisture content is to generally increase creep rates (Spiers et al., 1988; Horseman, 1988; Dusseault, 1989; Senseny et al., 1992). The specific cause of this effect is not well understood, however, it is most prominent if the porosity is caused by a pervasive, connected network of microcracks, such as would be found within the disturbed zone adjacent to a borehole or opening. Further from the excavation, fluids are typically found within isolated pores as brine or as films along grain boundaries, which may play a role in creep by pressure solution at lower deviatoric stresses (Spiers et al.,

1988). The effect of moisture is less prominent when samples are confined, as this reduces both the crack porosity and permeability.

Creep studies of various salts from the southern USA show that impure bedded salts are slightly more creep resistant than pure salts (Hansen, 1988). His impure samples ranged from 86 to 98% halite with an average grain size on the order of 5 to 10 mm. The pure sample was 99.1% halite. An additional study by Hansen et al. (1988) suggests that the fraction of anhydrite present has a stronger correlation with creep behaviour than the fraction of halite. In general there is significant variation among presumably identical samples which reflects variability in testing conditions and other factors, thus obscuring a clear correlation with mineral composition (Senseny, 1988).

Grain size acts in combination with deviatoric stress and temperature to affect the creep rate of salt. Under relatively low deviatoric stress, creep behaviour by pressure solution is facilitated by a fine grain size, whereas creep resulting from the mechanical deformation of grains by dislocation glide is more prevalent in rocks with a larger grain size (Hambley et al., 1988; Spiers et al., 1988; Dusseault, 1989; Campos de Orellana, 1996). Fuzesy (1983) reports that halite found within the potash beds of the Prairie Evaporite Formation can have salt crystals as large as 5 to 15 mm. A fine grain size (1-2 mm) has been linked with enhanced creep rates in potash under conditions where pressure solution is dominant.

3.2 Rock Mechanical Properties of Salts

Rock mechanical properties typically measured in standard laboratory tests for noncreeping rock include Young's modulus, Poisson's ratio, and strength parameters that define peak and residual strength envelopes (e.g., cohesion and friction angle), and postpeak deformation behaviour (e.g., dilation angle). Young's modulus and Poisson's ratio are often cast in terms of a bulk and shear modulus. Given the highly non-linear and timedependent behaviour of salt, these parameters are of less importance in predicting deformation response around underground openings in relatively deep settings where stresses and temperature conditions are conducive to creep (A. Coode, IMC Colonsay, pers. com.). Nonetheless, these parameters are required as input for numerical models simulating creep behaviour.

Hansen et al. (1988) summarize results from triaxial compression tests conducted on samples from ten different locations in the USA to obtain elastic deformation and strength properties. Their findings showed that elastic moduli do not vary significantly among sites, but the strength parameters do vary considerably, with no apparent correlation to petrographic analysis. Lajtai and Duncan (1988) showed that the compressive strength of potash depends upon the deviatoric stress, the confining stress and loading rate. Reeves and Stead (1991) describe a proprietary database, called SALTDATA, which contains data on the physical properties of rocks commonly associated with the mining of salt and potash in Saskatchewan. The reference tables in this proprietary database contain details of more than one thousand technical documents, from both European and North American sources. Typical rock mechanical properties for salt are given in Tables 3.1 and 3.2. Figure 3.3 shows typical failure criteria for potash and halite from Saskatchewan (Reeves et al., 1988).

Parameter	Value or Range
Young's modulus, E	30 GPa
Shear modulus, G	12 GPa
Poisson's ratio, <i>v</i>	0.25
Unconfined compressive strength, UCS	15-18 MPa
Prandtl limit	6.5 – 9.5 MPa

Table 3.1: Typical mechanical properties for salt

Table 3.2: Elastic properties at room temperature for natural rock salts (after Senseny et al., 1992)

	Young's modulus (GPa)		Poisson's ratio	
Site	Mean	Range	Mean	Range
WIPP	N/A	29.6-36.5	N/A	0.17-0.26
Permian	26.6	19.0-33.4	0.33	0.04-0.41
Paradox	31.0	25.2-36.3	0.36	0.09-0.50
Jefferson Island	29.5	25.0-34.4	0.29	0.17-0.39
Week's Island	30.5	21.5-42.3	N/A	N/A
Cote Blance	24.1	N/A	0.41	N/A
Avery Island	30.6	21.0-38.2	0.38	0.31-0.47
Richton	31.5	26.7-36.4	0.36	0.21-0.55
Vacherie	31.1	26.7-37.6	0.34	0.29-0.39

Figure 3.3: Typical failure criteria for potash and halite. (Source: Reeves et al., 1988).

Holter (1969) provides an extensive overview of the Prairie Evaporite Formation in Saskatchewan. This report includes depositional history, mineralogy, geochemistry and a summary of wild cat, non-confidential and confidential wells intersecting one or more members of the Prairie Evaporite Formation. Additional information on potash in Saskatchewan is contained in a report by Fuzesy (1982).

There are only a few references in the literature to the mechanical properties of evaporites of the Western Canada Sedimentary Basin. In general, the focus is on the economically significant potash deposits in Saskatchewan. Lajtai and Duncan (1988) report results of uniaxial tests on Rocanville potash. Uniaxial strengths ranged from 15 to 18 MPa. King and Acar (1970) report results of uniaxial creep tests on 'model pillars' of Saskatchewan potash, under axial stresses between 34 and 48 MPa and temperatures of 80°C and 110°C. Samples were tested for periods of 1000 hours. At times greater than 200 hours, the creep strain could be related to time by a simple power law. The rate of creep in all cases decreased with time.

High temperatures can have a significant effect on the mechanical properties of salt. The average geothermal gradient in the study area is generally between 20-30°C/km, with the mean annual surface temperature varying between 5 and 7°C (Bachu and Burwash, 1994). The evaporite beds of the Elk Point Group are typically found between 300 and 1700 m below surface, hence the expected in-situ temperature range is between 11°C and 60°C. Senseny et al. (1992) provided data to show that the unconfined compressive strength of Lower San Andres Unit 4 salt is not significantly affected by an increase in temperature from 20 to 50°C.

At the temperatures expected within potential CO_2 disposal sites in the salt formations of the study area, there is considerable variability among creep rates measured in the samples from the different salt formations outside of Alberta. No doubt this variability relates to the specific characteristics of the suite of samples tested. In general, for deviatoric stresses within the expected range of failure strengths (from 10 to 25 MPa), the creep rates are consistently on the order of 10^{-10} to 10^{-9} s⁻¹. Creep rates of 10^{-10} s⁻¹ are typically observed in deep potash mines of Western Canada (Dusseault, 1989). In some Saskatchewan mines, creep rates in potash are 5 to 8 times larger than those in the adjacent salt beds (A. Coode, IMC Colonsay, pers. com.).

18

Obtaining reliable laboratory creep data for extrapolation to long-term in-situ behaviour requires creep tests to be sustained for days or weeks (Reeves et al., 1988). Special apparatus is required which can carefully control test parameters and monitor very small deformations over these periods of time. Given the complexities of the geomechanical behaviour of salt, and the wide variability in possible creep behaviour, creep tests on fresh, preserved 4" diameter core samples under representative applied stress and temperature conditions are recommended for calibration of predictive models (A. Coode, IMC Colonsay, pers. com.).

Microcrack damage to cores during recovery affects the mechanical properties of specimens. This has led some researchers to anneal salt samples under high hydrostatic pressure prior to creep testing in order to better reproduce the in-situ condition of the salt (Dusseault and Mraz, 1983; Allemandou and Dusseault, 1993). Istvan et al. (1997) describe a case where such recovery-induced damage to laboratory specimens may have led to conservative estimates of salt strength, causing mine designers to believe that the salt was too weak to support an excavation, whereas in fact, the excavation was quite stable. Hence, in order to obtain valid properties, rock mechanical testing should be conducted on representative samples unaffected by sample disturbance.

3.3 In-situ Stress Measurements in Salt

Because of the complexity of salt behaviour, a knowledge of the expected in-situ stress conditions is important for understanding how salt may respond to an excavation. The stress state within an undisturbed pure salt formation is typically (and perhaps conveniently) assumed to be isotropic, on the assumption that creep has occurred over geologic time, thus reducing deviatoric stresses (Jeremic, 1994). There are data to support this assumption in some salt settings. For example, Wawersik and Stone (1986) used hydraulic fracturing to show that the stress state in the Salado salt formation near Carlsbad, New Mexico was isotropic.

Stress measurements taken in a potash mine in Brazil have shown that anisotropic stress states can be sustained by some salts (R. Corthesy, Ecole Polytechnique, pers. com.). Anisotropic stresses in salt have also been reported in German salt mines (J.C. Roeigers, University of Oklahoma, pers. com.). Eriksson and Michalski (1986) present a compilation of results on deviatoric stresses in salt domes and bedded salts. They conclude

that the maximum virgin in-situ deviatoric stress in normal rock salt (halite) appears to be on the order of 1 to 2 MPa. However, they also conclude that a higher deviatoric stress may occur in association with the presence of impure rock salt, foreign non-salt materials, and geologic structures. Therefore naturally-occurring in-situ stress differences in salt formations cannot be ruled out, although the assumption of isotropic stresses may be sufficient for some purposes. Assuming an average vertical stress gradient of 24 kPa/m (Bell et al., 1994), the range of isotropic stresses for the depths of the Elk Point Group salt formations would be 7 to 40 MPa.

Drilling a borehole introduces a decrease in the radial confining stress, an increase in the tangential stress, and hence an increase in deviatoric stress in the zone surrounding the hole. Furthermore, the excavation of the borehole usually creates a damaged zone adjacent to the hole, and the potential for exposure to fluids which would not otherwise contact the salt. The damaged zone typically extends less than one borehole radius from an excavation. For example, Munson et al. (1995) describe this extent of damage for a shaft bored through salt. All these factors will influence the near-field stress regime, possibly the mechanism by which the salt deforms, and therefore the rate at which creep occurs near a borehole or excavation.

The creep behaviour of salt in the Elk Point Group is expected to have a non-linear dependence on the deviatoric stress over much of the stress range that would be encountered around a deep borehole or cavity in the heavy oil areas of Alberta and Saskatchewan. The internal pressure in a cavity excavated in salt will determine to a large extent the total amount of creep closure expected.

3.4 Waste Disposal and Hydrocarbon Storage Caverns

Previous investigations of salt formations have been conducted to assess the feasibility of long term storage of hydrocarbons or waste materials in evaporite deposits (Lentz, 1992; Crossley, 1997; Davidson et al., 1994; Gomm and Quast, 1989). Lentz (1992) described the process by which waste sand produced with heavy oil by Amoco Canada (later Ranger Oil) was disposed of into a salt cavern in the Elk Point area. The Lotsberg Formation was chosen for this purpose due to its purity and thickness, allowing for a cavern size up to 300,000 m³. Shale stringers in the Prairie Evaporite Formation were thought to have the

potential to disrupt the integrity of the cavern and the Cold Lake Formation was not sufficiently thick.

Site specific engineering reports from Alberta and Saskatchewan for waste disposal or hydrocarbon storage caverns in salt may provide a source of measured or calculated in-situ stresses in or close to the study area. These types of reports cannot be readily purchased for Saskatchewan, however, selected extracts may be viewed at the Saskatchewan Department of Energy and Mines office in Saskatoon.

A copy of Husky Oil Operations Limited's application dated December 12, 1995 to construct and operate a salt cavern facility in the Lloydminster area for oily waste disposal was obtained from the Saskatchewan Department of Energy and Mines. The application was reviewed for details on salt cavern geotechnical design parameters and stress measurements. This salt cavern application targets the Prairie Evaporite Formation which in this area has the following characteristics:

- it is relatively pure, coarse grained halite;
- it is relatively free of shale interbeds and other insolubles with the exception of the White Bear Marker which is a regional 0.5 m argillaceous dolomite stringer that occurs midway through the Prairie Evaporite;
- it is sufficiently thick (approximately 143 m) at the proposed site for the development of a large cavern; and
- it is directly overlain by the impermeable Second Red Beds of the Dawson Bay Formation and underlain by the Shell Lake Member of the Prairie Evaporites.

The proposed design capacity of the initial salt cavern is 330,000 m³. Proposed cavern development involves solution mining using normal circulation to create an initial 18 m high, 60 m diameter cavern, then progressive washing as the hanging string is raised to increase the cavern height to 133 m. Sonar surveys are proposed to confirm cavern size and shape. No mention is made of stress conditions expected in the Prairie Evaporite Formation or their impact on the cavern design.

A total of sixteen applications related to salt caverns and salt water disposal wells in Alberta were identified from the AEUB library database. Copies of these applications are available on microfiche from AEUB Information Services in Calgary. A listing of these applications is contained in Section 9 of Appendix A. Based on discussions with AEUB

Information Services staff, geological and geotechnical reports associated with such applications may be proprietary.

Of the AEUB applications reviewed, nine were related specifically to salt storage caverns in Alberta. The details of these applications are summarized in Table 5.4. Between 1971 and 1983, eight applications were made to the AEUB for development of salt caverns in the Lotsberg Formation in the Fort Saskatchewan area. A 1966 application for cavern development in the Hardisty area targeted the Elk Point Salt for storage of propane/butane. These caverns were all excavated using solution mining, and were designed to store hydrocarbon liquids or natural gas. With the exception of application 820504 which contains some information on operating and pressure testing criteria, and salt shear strength (21 MPa), the other applications contain no information on in situ stresses or relevant cavern geotechnical design parameters.

Alberta Geological Survey March, 2001

Table 3.3: Summary of AEUB Applications Related to Salt Caverns

No.	Year	Company	Location	Details of Application		
830529	1983	Northwestern Utilities Ltd.	Fort Saskatchewan (Redwater)	Amends approval 3673 for four storage caverns in Upper Lotsberg Formation (1784 m depth, 91 m thick) to include an additional 150,000 m ³ storage cavern for sweet natural gas. Cavern to be 80 m diameter at base, and developed using two hanging string solution mining. No stress values or design parameters. Approval 3673A.		
820504	1982	Northwestern Utilities Ltd.	Fort Saskatchewan (Redwater)	Application for four storage caverns in Upper Lotsberg Formation (1791 m depth, 80 m thick), each with minimum capacity of 120,000 m ³ for natural gas storage. Salt described as clear, very coarse crystalline halite with some red shale inclusions and some shale interbeds. Caverns 73 m diameter, spaced 162.5 m. Pressure testing at 18 kPa/m gradient. Maximum wellhead pressure 9.6 MPa during cavern development. Operating pressure 28.5 MPa (15.84 kPa/m gradient). Fracture pressure in excess of 40.7 MPa (22.6 kPa/m gradient). Caverns to be developed using single and two hanging string solution mining. Shear strength of 20.685 MPa for salt provided by Gabriel Fernandez (Consultant). Provides a table of seven gas storage facilities in salt formations in Canada and the USA. No stress values. Approval 3673.		
790326	1979	Dome Petroleum Ltd.	Fort Saskatchewan	Amends approval 2358 for the development of two salt caverns in the Lotsberg Formation (1862 m depth, 67 m thick). Capacity 79,490 m ³ . Caverns 45 to 60 m diameter spaced 183 m on centre. Sonar logs used to check size and shape. No stress values or design parameters. Approval 2358A.		
009520	1976	Dome Petroleum Ltd.	Fort Saskatchewan	Application for development of six storage caverns (500 MB each) in the Lotsberg Formation (6074' – 6311') for light hydrocarbon liquids. Solution mining using standard techniques. No stress or geotechnical design parameters. Approval 2358.		
008154	1974	M-P Petroleum Ltd.	Fort Saskatchewan	Application for four underground caverns for LPG storage in the Upper Lotsberg Formation (5900' depth, 245' thick). Cavern capacity 500 MB (150' diameter spaced 667') measured using regular brine volume monitoring and sonar surveys. Salt clear, very coarse crystalline halite with some red shale inclusions and some shale interbeds. Anhydrite and carbonate interbeds not present. Core tested for insolubles for cavern design. No stress values or design parameters. Approval 2101.		
007578	1974	Imperial Pipeline Company Ltd.	Redwater	Application to construct and operate a salt cavern storage facility for butane in the Upper Lotsberg Formation (235' thick at 5820' depth). Cavern capacity 350 MB. Cavern stability a function of cavern diameter, purity and thickness of salt. Spans of 140 to 165' stable by experience. Two hanging string method used. RM Hardy report on brine pond design included. No stress values or design parameters. Approval 2039.		
007325	1973	Dome Petroleum Ltd.	Fort Saskatchewan	Application for construction and operation of an underground salt cavern storage facility with two caverns (300 MB each) for light hydrocarbon liquids. Caverns 150 to 200' diameter spaced 600' in the Lotsberg Formation (6100' depth, 200' thick). Halite with interbedded marls. Sonar logs used to measure cavern dimensions. No stress values or design parameters. Approval 1932.		
005672	1971	Chevron Standard Ltd.	Fort Saskatchewan	Application to construct and operate six storage caverns for propane/butane (500 MB each) in the Lotsberg Formation (6100' depth, 240' thick). Clear halite with interbedded marls. Core taken in salt for solubility testing. Caverns 140 to 160' diameter spaced 660'. Sonar surveys used to measure cavern dimensions. No stress values or design parameters. Approval 1547.		
003021	1966	Home Oil Company Ltd.	Hardisty	Application for disposal of brine produced during development of storage caverns in Elk Point Salt (4448' depth, 358' thick). Three or four caverns (400 MB each) to store propane/butane. Core taken to measure percent solubility by weight, natural density, solubility rate and residual solubility. No stress values or design parameters. Approval 878, 885.		

4. IN-SITU STRESS DETERMINATION METHODOLOGY

4.1 Vertical Stress Magnitude

The in-situ stress state can be described by the magnitude of the vertical stress and the magnitudes and orientations of the maximum and minimum horizontal stress components. These stresses correspond to principal stress components if the vertical stress is a principal stress. To calculate effective stresses, the formation (or pore) pressure is also required.

The magnitude of the vertical stress (or vertical stress gradient)² at a given depth can be calculated by integrating a bulk density log from the ground surface to the depth of interest. Density logs comprise the standard suite of wireline logs ran in Alberta, and therefore tend to provide good spatial coverage of a study area. Since density logs are not usually run over surface casing sections, the bulk density of strata in these sections must be estimated. Water well records can be used in some cases to obtain lithologic information and water level data to constrain the estimate of bulk density of near-surface units. Alternatively, surficial geology maps can provide approximate thicknesses of near-surface sediments, and representative properties can be estimated from published values. Typical criteria for ranking the quality of bulk density logs are discussed in Section 5.2.1.

4.2 Horizontal Stress Magnitudes

As described by Bell et al (1994), there are numerous techniques that have been used in parts of Western Canada to measure the value of the minimum horizontal principal stress, σ_{Hmin} , the results of which have been compiled to provide regional stress estimates. The most reliable of these techniques are small volume microfracture tests conducted over isolated intervals, preferably done openhole with a low viscosity fluid such as water. Minifrac tests, which are usually done with tens of cubic meters of gelled frac fluid, provide a less reliable measurement of σ_{Hmin} . Because oil and gas operators are not required to release fracture treatment pressure records, these data are not recorded in the AEUB database, and are not publicly available.

 $^{^{2}}$ The vertical stress gradient at a particular depth is defined as the vertical stress magnitude normalized to the depth below surface. The local stress gradient is defined as the tangent to the vertical stress vs. depth curve at a specific depth.

Another type of fracture test that can sometimes provide a rough estimate of the upper bound value of σ_{Hmin} is a casing integrity, or formation leakoff test (CIT, LOT or FLOT). This type of test is required in Alberta after surface casing has been run and cemented in a well. Sometimes a FLOT is run after intermediate casing has been set, however it is not required by regulation. For a standard leakoff test, a short 3 to 5 m section of hole is drilled out through the cement shoe and then pressurized to test the integrity of the casing and cement. If the pressure is taken to a maximum, and the cement and casing remain intact, a small hydraulic fracture can be initiated in the formation with the drilling fluid. Usually the test is terminated at this point; however, if a quantity of mud is pumped into the fracture, and then the well is shut-in, the declining pressure record can give a rough measure of σ_{Hmin} , much like a minifrac test.

A rough estimate of the upper bound for σ_{Hmin} can sometimes also be derived from the calculated bottomhole instantaneous shut-in pressure obtained from propped fracture treatments. However, these data are also not readily available in the public domain. Special arrangements with service companies and operators who possess these data may be possible, but were not pursued as part of this study.

A complementary approach to determine horizontal stress magnitudes is to back analyze measurements of hole enlargement due to breakouts to estimate the ratio of horizontal stresses. If the strength and formation pressure of the strata containing the breakout are known, then the magnitude of the horizontal stress components can be approximated using a borehole stability model, such as STABView (Advanced Geotechnology Inc., 2000). If the stress state in a salt formation is assumed to be isotropic, the horizontal stress magnitudes and their spatial variation can be approximated from the vertical stress data.

4.3 Horizontal Stress Orientations

4.3.1 Borehole Breakouts

Under certain conditions, the azimuth of the long axis of an enlarged borehole crosssection can be used to determine the orientations of the in-situ principal horizontal stresses. Unequal horizontal stress components create compressive stress concentrations at the borehole wall in the direction of σ_{Hmin} , which, if large enough, will cause material to yield

and ultimately detach or "breakout." The long axis caliper of a 4-arm dipmeter tool (or other oriented caliper tools such as Schlumberger's FMS or FMI) will track this hole enlargement and yield the azimuth of σ_{Hmin} and σ_{Hmax} (Bell and Gough, 1979; Plumb and Hickman, 1985). Often in weak rocks such as shales, or in highly stressed areas, the borehole diameter enlarges in all directions. These types of enlargements, sometimes called "washouts" can still yield in-situ stress directions as long as spalling is greater in the direction of σ_{Hmin} . Hole enlargement from key seating of the drill string or from pipe wear must also be filtered from the breakout data. These hole segments can be avoided by eliminating data from intervals where the borehole is inclined more than about 5° from vertical. Typical criteria for ranking breakout quality are described in Section 5.3.2.

The orientation of the horizontal stress components in the original study area were initially estimated on the basis of regional stress data published in the Geological Atlas of Western Canada (Bell et al, 1994). Detailed variations in the horizontal stress orientation were determined from borehole breakouts in units within or adjacent to the Elk Point Group or the overlying Beaverhill Lake Group.

4.3.2 Coring-Induced Fractures

The orientation of certain types of coring-induced fractures can also be used to determine the direction of the principal horizontal stresses (Li and Schmitt, 1997). Figure 4.1 shows three types of coring-induced fractures most commonly used for this purpose. The first is called a "saddle" fracture. The direction of σ_{Hmax} parallels the long axis of the saddle, as indicated in Figure 4.1a. The second is called a "petal" fracture. Petal fractures initiate at the exterior of the core, and generally periodically repeat on opposite sides of the core (Figure 4.1b). The direction of σ_{Hmax} is parallel to the strike of these petal fractures. The third type of fracture is a "centreline" fracture which forms parallel to σ_{Hmax} .

In a typical study of coring-induced or natural fractures, the cores are assembled into continuous segments by fitting adjacent core pieces together. Such segments are typically bounded by mill points, spin-offs, rubble zones, core run connections, saw cuts, or missing pieces. A master orientation line (MOL) is then marked along the length of each segment. The orientations of all coring-induced fractures are measured using a computerized goniometer, which is a device for digitizing 3-dimensional features. A minimum of 3

points on the fracture surface are recorded to define fracture orientation in space relative to the MOL. The data are then restored to in-situ coordinates using either the orientation survey (if the core was oriented), an image log, or paleomagnetics (Gillen et al., 1998).

Figure 4.1: Induced fractures in core. (a) saddles fracture and (b) petal fractures and (c) a centre-line fracture. The orientation of σ_{Hmax} is indicated.

5. DATA REVIEW AND ANALYSIS

5.1 Relevant Wells in the Study Area

5.1.1 Original Study Area

A number of wells were initially identified in the public AEUB database which could provide information on the in-situ stresses in and adjacent to the salt formations of the Elk Point Group. Table 5.1 provides a summary of the relevant wells in the original study area of Phase 1 of this project, and the search criteria used in their review.

Bulk density logs for 92 wells identified in Phase 1 were reviewed for their suitability in determining vertical stress and vertical stress gradient values at the top of the Elk Point Group, Prairie Evaporite Formation, and at the top of the Basal Red Beds Formation. Details on the 92 wells included in the bulk density log review are contained in Table B.1 in Appendix B. In total, 65 and 49 wells were identified for vertical stress analysis to the top of the Prairie Evaporite Formation and Basal Red Beds Formation respectively. The analysis of these results is presented in Section 5.2.

Dipmeter logs from the Elk Point Group or Beaverhill Lake Group for 99 wells were also reviewed in Phase 1 as part of an assessment of horizontal stress orientations in the original study area. Details on the 99 wells are contained in Table B.2 in Appendix B. Only three wells with dipmeter coverage in the Elk Point Group were identified in the original study area, and two of these wells had dipmeter logs from 1956. These latter logs were not four-arm caliper logs and could not be used for breakout analysis. Although a determination of the minimum stress orientation within the Elk Point Group was preferred, the search was expanded to include dipmeter logs with coverage in the overlying Beaverhill Lake Group to increase the data set. A total of 96 additional wells having dipmeter logs with some coverage in the overlying Beaverhill Lake Group were identified, 24 of which were post-1970 with coverage over at least 15 m in the Beaverhill Lake Group. These wells were further reviewed for the availability of breakout data as described in Section 5.3.

In addition to identifying wells with bulk density and dipmeter data, 64 wells with core from the Elk Point Group were identified in Phase 1 for possible future examination and analysis of drilling- or coring-induced fractures. There are also 10 wells that have core

taken from the Beaverhill Lake Group (Table 5.1). Details on the wells with core are contained in Table B.3 in Appendix B. The quality and availability of this core is uncertain, but access to core provides the possibility of identifying saddle, petal and centreline fractures which can be used to estimate horizontal stress orientations. Following the search conducted in Phase 1 of the study, Dr. Bachu of the AGS asked that an examination of core from the original study area not be undertaken in subsequent phases of the study.

AGS supplied data from 10 formation leak-off tests in the original study area. No publicly-available hydraulic fracture tests in Devonian strata in the study area were found. The limitations introduced by the poor quality or paucity of data in terms of the assessment of horizontal stress magnitudes is discussed in Section 5.4.1.

As requested by the AGS, those wells in the study area for which both bulk density logs and DST data in the Elk Point Group are available were identified. A total of 31 DSTs for non-salt rocks of the Elk Point Group in the study area were found in the Geovista database. Details on these DSTs are contained in Table B.4 in Appendix B. The format and quality of these data are uncertain. The value of formation pressure measurements in a study of in-situ stresses in salt is questionable, as pore fluids cannot exist in pure halite salt strata. Following discussion of the Phase 1 search results with AGS, it was decided that DST data would not be examined further in subsequent phases of the study.

Based on the data in Table 5.1, it was determined in Phase 1 of the study that there were sufficient well data to proceed with analysis of the in-situ stress state in the original study area. The location of the wells identified in Phase 1 of the study containing bulk density logs, dipmeter logs, and core within the original study area are shown respectively in Figures 5.1, 5.2 and 5.3.

5.1.2 Expanded Study Area

The availability of relevant dipmeter and bulk density well log data in the expanded study areas in eastern Alberta and western Saskatchewan was investigated in Phase 2 and Phase 3 of this study, respectively. The analysis of these data was performed in Phase 3. The search results of the AEUB and Saskatchewan databases in the expanded study areas are

summarized in Table 5.2 and Table 5.3, respectively. Details on the bulk density and dipmeter wells identified in the search result are given in Appendix C.

The wells with bulk density log data in the expanded Alberta study area were divided into those covering the top of the Elk Point Group (843), and those covering the entire Elk Point Group (406). This last subset was further filtered in the Phase 3 analysis to include wells where the amount of incomplete bulk density data below the surface was minimized. Wells that were outside the Prairie Evaporite Formation area as identified by AGS were also removed from the data set. In addition, for areas with dense clusters of available bulk density data, a limited number of the higher quality wells were selected to reduce total number of wells for further analysis to the more reasonable number of 90.

Search results of the expanded western Saskatchewan area found 32 wells that had data coverage to at least the top of the Prairie Evaporite Formation. However, with further analysis it was determined that 8 of these wells were outside the Prairie Evaporite Formation area as defined by AGS and 2 of the wells had poor quality data. Therefore, 22 wells were used for vertical stress determination in the expanded Saskatchewan study area. A map showing the location of bulk density wells identified in the initial search results and the locations of wells used for analysis is shown in Figure 5.4.

A total of 120 wells with dipmeter log data in the Elk Point Group were identified in the expanded Alberta study area during Phase 2. A total of 61 microfiche supplied by AGS were screened to identify 13 wells that had all the necessary information available to analyze borehole breakouts.

A total of 32 wells with dipmeter log data in the Paleozoic-age formations were identified in the expanded Saskatchewan study area during Phase 3. Only 1 well had dipmeter log coverage over the Elk Point Group but it could not be used for the determination of the minimum stress orientation since it was logged with a three-arm dipmeter in 1967. A total of 25 wells with > 4m coverage in the Paleozoic-age formations were identified (Table 5.3). Microfiche from these 25 wells were used to identify 6 wells that had all the necessary information available to analyze borehole breakouts. The dipmeter wells were further analyzed in Section 5.3.

radie 5.1: Summary of data search results for the original study area		
Total number of wells in study area	45,040	
Density log data for vertical stress determinations		
Total number of wells in study area with bulk density logs	28,810	

Table 5 1. Summary of data search results for the original study area

Total number of wells in study area with bulk density logs	28,810		
Total number of wells in study area with bulk density logs to top of Elk Point Group			
Total number of wells in study area with bulk density logs to top of Prairie Evaporite			
Formation within the Prairie Evaporite Formation area as defined by AGS			
Total number of wells in study area with bulk density logs to top of Basal Red Beds			
Total number of wells in study area with bulk density logs to top of Dasar Red Deus			
and having some coverage over the upper 100 m below ground surface	20		
and having some coverage over the apper 100 m ociow ground burlace			
Dipmeter data for horizontal stress orientation determinations			
Total number of wells in study area with dipmeter logs	1,317		
Total number of wells in study area with dipmeter logs covering all or part of the Elk	3		
Point Group (2 wells in 1956, 1 well in 1976)			
Total number of wells in study area with dipmeter logs covering all or part of the	96		
Beaverhill Lake Group			
Subset of wells having greater than 15 m of log coverage	24		
Subset of wells having greater than 15 m of log coverage and logged after 1970	24		
Cored wells with the potential to assess horizontal stress orientations using	·		
paleomagnetics and coring- / drilling-induced fractures			
Total number of cored wells in the study area	12,052		
Total number of cored wells in the study area that have some core taken from the Elk	64		
Point Group			
Total number of cored wells in the study area that have some core taken from the	10		
Beaverhill Lake Group			
Formation leak-off and hydraulic fracture tests			
Formation Leak-off test results made available to the study by AGS	10		
Number of useful formation leak-off tests below 500m	0		
Number of publicly available hydraulic fracture tests in the Devonian in the study area	0		
Formation pressure measurements			
Drill stem tests in the Elk Point Group for wells with a bulk density log to the top of the	31		
Drill stem tests in the Elk Point Group for wells with a bulk density log to the top of the Elk Point Group	31		

Based on searches using the AEUB well database, provided by CDPubco.

Longitude (degrees)

Figure 5.1: Original Phase 1 study area bounded by 53 - 58° latitude N and 110 - 112° longitude W showing location of available bulk density log data for the Elk Point Group (92 wells, 84 containing relevant information). Data from these wells were evaluated in Phase 2 to determine vertical stress magnitudes.

Salt Bearing Units

Cold Lake Fm Salt

Prairie Evaporite Fm (where halite > 40%)

Upper Lotsberg Fm Salt

Lower Lotsberg Fm Salt

Figure 5.3: Original Phase 1 study area bounded by 53 - 58° latitude N and 110 - 112° longitude W showing location of wells containing core from the Elk Point Group (64 wells). No cores were analyzed in the study.

Total number of wells in the expanded study area in Alberta	98,819
Density log data for vertical stress determinations	
Total number of wells in expanded Alberta study area with bulk density logs	53,403
Total number of wells in expanded Alberta study area with bulk density logs having	843
coverage in the Elk Point Group	
Number of wells that have coverage over entire Elk Point Group	406
Subset of wells selected wells for further analysis	90
Dipmeter data for horizontal stress orientation determinations	
Total number of wells in expanded Alberta study area with dipmeter logs	897
Total number of wells in expanded Alberta study area with dipmeter logs covering all	120
or part of the Elk Point Group or Beaverhill Lake Group	
Total number of wells in expanded Alberta study area with dipmeter logs covering all	84
or part of both the Elk Point Group and Beaverhill Lake Group	
Total number of wells in expanded Alberta study area with dipmeter logs covering	10
only all or part of the Elk Point Group (i.e., no Beaverhill Lake Group coverage)	
Total number of wells in expanded Alberta study area with dipmeter logs covering	26
> 15 m coverage in Beaverhill Lake Group	23
Cored wells with the potential to assess horizontal stress orientations using	
paleomagnetics and coring / drilling induced fractures	
Total number of cored wells in the expanded study area	12,445
Total number of cored wells in the expanded study area that have some core taken	1,109
from the Elk Point Group	
Total number of cored wells in the expanded study area that have some core taken	233
from the Beaverhill Lake Group	

Table 5.2: Search result summary for the Phase 2 expanded study area in Alberta

Based on searches using the AEUB well database, provided by CDPubco.

Table 5.3: Search result summary for the Phase 3 expanded study area inSaskatchewan

Total number of wells in the expanded Saskatchewan study area	40,233
Density log data for vertical stress determinations	
Total number of wells in expanded study area with bulk density logs	14,822
Total number of wells in expanded study area with bulk density logs having coverage	30
in the Prairie Evaporite Formation	
Subset of wells selected for further analysis	22
Dipmeter data for horizontal stress orientation determinations	
Total number of wells in expanded study area with dipmeter logs	71
Total number of wells in expanded Saskatchewan study area with dipmeter logs	1
covering all or part of the Elk Point Group	
Total number of wells in expanded Saskatchewan study area with dipmeter logs with	25
> 4 m coverage in the Paleozoic-age formations	

Based on searches using the AEUB well database, provided by CDPubco.

Figure 5.4: Expanded study area showing (a) location of 883 wells with available bulk density log data covering the Elk Point Group (843 from the expanded Alberta area and 30 from the expanded Saskatchewan area) and (b) location of 145 wells screened for available dipmeter log data (120 from the expanded Alberta area and 25 from expanded Saskatchewan area). The 11 dipmeter wells and 112 bulk density wells used in the final Phase 3 analysis are shown in red.

5.2 Bulk Density Log Data for Vertical Stress

The vertical stress magnitude and average vertical stress gradients were determined from bulk density log data to evaluate the in-situ stress conditions within the Elk Point Group salt formations. In consultation with AGS, the top of the Prairie Evaporite Formation was selected as the top of the Elk Point Group salt formations, and the top of the Basal Red Beds was selected as the bottom of the salt formations in the original study area. The top of the Basal Red Beds was chosen because: (1) the top is easy to identify from logs which makes it accurate and consistent across the study area, and (2) the Basal Reds Beds are generally uniformly located below the lower Lotsberg Formation as opposed to the top of the Cambrian or Precambrian age formations which are often picked as the base of the Elk Point Group. For the expanded study area, the vertical stress was not determined at the bottom of the Elk Point Group because of the difficulty in selecting a formation that is uniformly distributed over the entire study area which could be selected as a base of the Elk Point Group.

Contour maps of the top of the Prairie Evaporite Formation (depth and elevation) and vertical stress (magnitude and gradient) were developed for the areal extent of the Prairie Evaporite Formation in the entire study area. Contour maps of the top of the Basal Red Beds Formations (depth and elevation) and vertical stress (magnitude and gradient) were developed for areal extent of the Elk Point Group salt formations in the original study area. These maps provide the necessary information to estimate in-situ stress conditions in salt formations of the Elk Point Group. Table D.1 of Appendix D and Table E.1 of Appendix E provide a detailed summary of the vertical stress analysis based on bulk density logs for the original and expanded areas, respectively.

5.2.1 Log Quality Analysis

As a first step in the analysis of vertical stresses in the study area, the quality of the bulk density log data was assessed. The log quality for all the wells used for vertical stress analysis in the original and expanded areas are given in summary Tables D.1 and E.1. Due to discrepancies in reported and recorded bulk density data, it was found that 84 of the 92 wells in the original study area had coverage to the top of the Elk Point Group. All 92 wells are included in the analysis summary in Table D.1 for completeness.

The quality of bulk density log data in the original study area was assessed using the criteria listed in Table 5.4. The log quality was classified as poor, fair, good, or very good. Logs run before 1985 were given a poor or fair quality rating because tools prior to this year (when service companies such as Schlumberger launched their improved litho-density tools - LDT) were less accurate due to the lower count rates used and lower vertical resolution. Log quality was also assessed based on hole size since density tools such as the LDT give good values for smooth holes up to 381 mm in diameter (Schlumberger Educational Services, 1989). In addition, when the bulk density correction exceeds 100 kg/m^3 , the measured bulk density is poorly compensated for mudcake and surface borehole effects, which leads to lower quality measurements. Rough holes indicated by spiky data and higher bulk density correction values are also prone to anomalously low densities due to poor pad contact with the formation. Details of the bulk density log quality determined for each well are given in Table D.1 of Appendix D and Table E.1 of Appendix E. Figures showing the bulk density profile, vertical stress, and local vertical stress gradients for each well listed in Table D.1 are given in Appendix D, Figures D.1.1 to D.1.92.

A summary of the quality of bulk density logs used in the vertical stress calculations at the top of the Prairie Evaporite Formation, and top of the Basal Red Beds, is shown in Figure 5.5. The locations of wells used for with vertical stress analysis, and their respective bulk density log quality, are shown in Figure 5.6.

Quality	Criteria				
Poor	Rough hole, spiky and anomalous data present; large washout interval				
	(borehole diameter >380 mm); large intervals with high density correction				
	$(>100 \text{ kg/m}^3)$; logged with older, less accurate density tools prior to 1985.				
Fair	Intermittent intervals with rough borehole, washouts, intervals of high				
	density correction, logged prior to 1985.				
Good	Very short intervals with rough borehole, washout, higher density				
	correction (>100 kg/m ³), logged after 1985.				
Very Good	No anomalous spikes, smooth borehole, hole not washed out (hole				
-	diameter <380 mm), good density correction between 0-100 kg/m ³ , logged				
	after 1985 with more accurate tools.				

Table 5.4: Criteria used to determine bulk density quality in this study

Figure 5.5: Summary of bulk density log quality of the wells used to determine the vertical stress in the original study and expanded study areas.

39

Figure 5.6: Map showing bulk density log quality for wells used to calculate vertical stresses at (a) the top of the Prairie Evaporite Formation (65 wells in the original study area, 112 wells in the expanded study area) and (b) the top of the Basal Red Beds Formation (49 wells in the original study area).

5.2.2 Estimation of Near-surface Bulk Density

The average vertical stress gradient is calculated by integrating the bulk density log curve. For most wells in the database, bulk density data were not recorded over the section covered by surface casing. Bulk density information of fair or better quality within 100 m of surface and above the Prairie Evaporite Formation was available in 8 wells within the original study area (Table 5.5). These latter data were used to calculate an average near-surface bulk density for wells in the original study area. Based on the data in Table 5.5 an average bulk density of 2150 kg/m^3 was used for wells without near-surface data in both the original and expanded study areas.

As shown in Figure 5.7, the possible error in estimated vertical stress or vertical stress gradient increases as the proportion of the well length lacking bulk density measurements increases, and/or the difference between the assumed average value of 2150 kg/m³ and actual bulk density in this zone increases. For example, assuming an uncertainty of 100 kg/m³ in the bulk density estimate in the uphole section behind casing, the majority of the wells have less than a 2% possible error in the determined vertical stress magnitude or gradient. As the relative proportion of well length lacking bulk density data decreases, e.g., vertical stress calculations for the deeper Basal Red Beds, the possible error also decreases. The proportion of well length lacking bulk density data for wells from surface to the top of the Prairie Evaporite and to the top of the Basal Red Beds is given in Table D.1 of Appendix D. The proportion of well length lacking bulk density data for wells from surface to the top of the Prairie Evaporite is given in Table E.1 of Appendix E. These values can be used to estimate the possible error in vertical stress and stress gradient estimates. The proportion of well length lacking bulk density data above the Prairie Evaporite Formation is shown in Figure 5.8.

Table 5.5: Average bulk density for wells with coverage in the upper 100 m from
surface and data of fair or better quality within the area underlain by the
Prairie Evaporite Formation of the original study area

Well Name	UWI	Average Bulk Density (kg/m ³)		
		0-100 m	0-200 m	100-200 m
Esso Marie OV 15-20-64-2	1AA/15-20-064-02W4/00	2101	2113	2122
Esso 79 SWD Coldlk 7-18-64-3	100/07-18-064-03W4/00	2128	2144	2158
Esso 81 SWD Ethellk 3-29-64-3	100/03-29-064-03W4/00	2125	2168	2203
Esso Medley OV 6-8-66-2	1AA/06-08-066-02W4/00	2254	2211	2177
Esso Medley OV 14-28-66-3	1AA/14-28-066-03W4/00	2199	2179	2163
BP PCI Marglk 10-8-66-5	100/10-08-066-05W4/00	2248	2133	2034
Cigol et al Horse 11-10-85-13	100/11-10-085-13W4/00	2063	2111	2113
Suncor Clarke 2-32Prev-89-12	100/02-32-089-12W4/00	2117	2182	2191
	Mean	2154	2155	2145
	Standard Deviation	71	36	55

Proportion of Well Length Above the Top of the Prairie Evaporite Formation with Incomplete Bulk Density Data (%)

Figure 5.7: Possible error in vertical stress and vertical stress gradient determination at the top of the Prairie Evaporite Formation related to proportion of well length lacking bulk density data, and difference between average and actual near-surface bulk density.

Figure 5.8: Complete study area showing location of wells used for the calculation of vertical stress magnitude to the top of the Prairie Evaporite Formation. The proportion of well length above the Prairie Evaporite Formation with an incomplete bulk density data set is shown with different symbols.

44

5.2.3 Calculation of Vertical Stress

In the original study area, a total of 68 bulk density logs in digital format were acquired from International Datashare Corp. (IDC) in Calgary to analyze the vertical stress magnitude at the top of the Prairie Evaporite Formation. A total of 49 bulk density logs were analyzed to calculate the vertical stress to the top of the Basal Red Beds Formation in this area. In the expanded study areas, a total of 112 bulk density logs (90 for the expanded Alberta area and 22 for the expanded Saskatchewan area) were acquired from IDC. The locations of the wells are represented as black dots in a set of colour contour plots which have been prepared to show spatial variations in the parameter. Vertical stress magnitudes and gradients were determined using the methodology outlined in Section 4.1.

A typical bulk density log through the Elk Point Group is shown in Figure 5.9. Contour plots of elevation, depth, vertical stress magnitude, and vertical stress gradient for the top of the Prairie Evaporite Formation in the complete study area are shown in Figures 5.10 and 5.11. The same plots of the Basal Red Beds Formation in the original study area are shown in Figures 5.12 and 5.13

Figure 5.10a and Figure 5.10b show that the top of the Prairie Evaporite Formation dips to the southwest and ranges from 300 to 1400 m depth below ground surface in the original study area and from 400 to 2250 m in the expanded study area. The northeast portion of the original study area is not underlain by this formation. In the expanded study area of western Saskatchewan, the top of the Prairie Evaporite dips generally towards the south. Anomalies in overburden thickness are a result of topography, subsurface salt dissolution on the northeast edge, and varying depositional environments on the southwest edge. As shown in Figure 5.11, the vertical stress at the top of the Prairie Evaporite Formation ranges from 7.4 to 31.7 MPa in the original study area and from 10.2 to 54.0 MPa in the expanded study area. The vertical stress gradient at the top of the Prairie Evaporite Formation ranges from 21.3 to 23.9 kPa/m in the original study area, decreasing towards the eastern boundary of the Prairie Evaporite Formation. The vertical stress gradient at the top of the Prairie Evaporite Formation in the expanded study area ranges from 21.5 to 24.7 kPa/m, with the lower vertical stress gradients in the northeast and the higher vertical stress gradients in the southwest. This trend is mainly a result of northeastward-thickening Quaternary and Cretaceous sediments of relatively lower density, and the increase in density of formations above the Prairie Evaporite towards the southwest.

Figure 5.12 indicates that the top of the Basal Red Beds Formation ranges from about 500 to 1700 m below ground surface in the original study area, increasing in depth towards the southwest. The northeast corner of the study area is not underlain by salt formations of the Elk Point Group and was therefore not contoured. The vertical stress at the top of this formation ranges from 13.5 to 39.1 MPa, increasing to the southwest. The vertical stress gradient at the top of the Basal Red Beds Formation in the original study area ranges from 21.3 to 23.6 kPa/m. A concentric zone of lower vertical stress gradients is evident at the top of this formation. This anomaly is associated with thicker occurrences of the relatively low-density Lotsberg and Cold Lake salt formations in this part of the original study area.

Figure 5.9: Typical digital bulk density log data through the Elk Point Group from Saskoil Sugden 8-1-62-11W4.

Latitude (degrees N)

Figure 5.10 (a): Map of original study and expanded study areas showing elevation (m) of the top of the Prairie Evaporite Formation. Wells used for elevation contours are indicated by a small black circle.

Figure 5.10 (b): Map of original study and expanded study areas showing depth (m KB) of the Prairie Evaporite Formation. Wells used for depth contouring are indicated by a small black circle.

Longitude (degrees W)

Figure 5.11 (a): Map of original study and expanded study areas showing the vertical stress magnitude (MPa) at the top of the Prairie Evaporite Formation. Wells used in vertical stress calculations are indicated by a small black circle.

59.0

58.5

58.0

57.5

57.0

56.5

56.0

55.5

55.0

54.5

54.0

53.5

53.0

52.5

52.0-

51.5

51.0

50.5

Latitude (degrees N)

Longitude (degrees W)

Figure 5.11 (b): Map of original study and expanded study areas showing the vertical stress gradient (kPa/m) at the top of the Prairie Evaporite Formation. Wells used in vertical gradient calculations are indicated by a small black circle.

Figure 5.12: Original study area showing (a) elevation (m) at the top of the Basal Red Beds Formation and (b) depth (m KB) to the top of the Basal Red Beds Formation. Wells used in calculations are indicated by a small black circle.

Figure 5.13: Original study area showing (a) vertical stress magnitude (MPa) at the top of the Basal Red Beds Formation and (b) vertical stress gradient (kPa/m) at the top of the Basal Red Beds Formation. Wells used in calculations are indicated by a small black circle.

5.3 Horizontal Stress Orientation

5.3.1 Regional Stress Data

The work of Bell et al. (1994) in the Geological Atlas of Western Canada shows that the horizontal stress trajectories over much of the Western Canada Sedimentary Basin are regionally consistent. For Paleozoic-age strata in the original and expanded study areas, there are 8 wells in the atlas with measured breakout orientations (Figure 5.14). The original study area, expanded Alberta study area, and expanded Saskatchewan study area have breakout orientations from one, six and one well(s), respectively.

A statistical summary of the borehole breakout data is given below each roseplot figure. The average minimum horizontal stress orientation of the breakout data is reported as the vector mean in the summary. The bi-directional azimuth values (0-360°) in the statistical summary were converted to unidirectional values (0-180°) within the text to simplify comparisons. For example, 330° is the same orientation as 150° since they are 180° apart. The confidence interval in the statistical summary represents the 95% confidence interval, in degrees, around the reported vector mean. In other words, one can say with 95% confidence that the breakout azimuth, and hence the minimum horizontal stress orientation is within the reported confidence interval.

The dataset of 8 atlas wells has an average minimum horizontal stress orientation of 137° with a confidence interval of 16° and with a range from 118° to 156°. Although not found in these 8 wells, some of the wells identified in the atlas also have a second population. This population is classified as subordinate or "minor" by the authors, and is generally orientated NE-SW. A roseplot showing the minimum horizontal stress orientation for these 8 wells is shown in Figure 5.15. These measurements indicate a NW-SE direction for the minimum horizontal stress for Paleozoic-age formations. Similar trends are also shown in the Mesozoic strata of the study area.

During the investigation of breakout data in the original study area, it was determined that two of the wells shown in the atlas and on Figure 5.14 for the Paleozoic-age formations in the study area are mislocated. The southernmost well (SOUTHROY JARVIE 7-4-63-26W4M) is actually located west of the original study area but within the expanded study area. The central well plotted on the map from the Atlas was missing in the summary data

table in the atlas. The northernmost well (GULF RESDELN 7-24-83-7W4M) is located properly.

It is important to note that the breakouts identified in the atlas for the Paleozoic-age strata in the study area are located above the Beaverhill Lake Group, and therefore do not appear in the search results in this study for the original and expanded Alberta study areas (we had elected to look for breakouts only in the Beaverhill Lake and Elk Point Groups). Also, note that since the dipmeter search in the expanded Saskatchewan area included all Paleozoic-age formations, the one well identified in the atlas within the expanded Saskatchewan area having breakout in the Paleozoic-age formations was included in the search. However, this well did not have caliper orientation data presented on the microfiche dipmeter log provided for this study and, therefore, could not be used to determine a stress orientation.

Alberta Geological Survey March, 2001

Figure 5.14: Orientation of the minimum horizontal stress in Mesozoic and Paleozoic-age strata of the original study area (Source: Geological Atlas of the Western Canada Sedimentary Basin, Bell et al., 1994)

56

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 8 Maximum Percentage 37.5 Percent Mean Percentage 20 Percent Standard Deviation ... 10.54 Percent Vector Mean 317.02 Degrees Confidence Interval .. 16.22 Degrees R-mag 0.92

Figure 5.15: Roseplot of the minimum horizontal stress orientation from the 8 wells in the complete study area from the Geological Atlas of Western Canada, Bell et al. (1994).

5.3.2 Borehole Breakout Data

Examination of microfiche logs for the 99 wells from the original study area was undertaken to determine which, if any, dipmeter logs showed borehole breakouts. Details on the dipmeter logs for each well are contained in Table B.2 of Appendix B. Table 5.5 summarizes the results of the dipmeter log review. Of the 99 wells identified, 31 did not have dipmeter logs on microfiche. Of the remaining 68 wells, the dipmeter logs from only five wells in the original study area were found to contain breakout data that could be confidently analyzed for horizontal stress orientations.

Microfiche for the dipmeter wells identified in the expanded Alberta and Saskatchewan study areas were examined to determine which dipmeter logs contained breakouts. Details on the dipmeter logs for each well are contained in Table C.2 and Table C.4 of Appendix C for the expanded Alberta and Sasktachewan study areas, respectively. Tables 5.6 and 5.7 summarize the results of the dipmeter log review for the expanded study areas. A total of 11 wells were identified that had breakouts that could be analyzed for horizontal stresses in the expanded study area.

No. of Wells	Search Results
99	Total number of wells with dipmeter logs with some coverage in the Beaverhill
31	Wells without the dipmeter log recorded on the microfiche
68	Wells with the dipmeter log recorded on the microfiche*
45	Subset of wells without breakout within the Beaverhill Lake or Elk Point Group
16	Subset of wells without all the necessary data for breakout analysis (e.g., missing a caliper curve or caliper orientation information)
2	Subset of wells with apparent breakout caused by pipe wear or drag in a deviated hole (not included in analysis)
5	Subset of wells with breakouts within the Beaverhill Lake or Elk Point Group (2 of which are questionable or poor quality)

 Table 5.5: Summary of the breakout data search results from dipmeter logs in the original study area with coverage in the Elk Point and Beaverhill Lake Groups

*26 dipmeter logs from the 68 wells with dipmeter logs recorded on the microfiche were obtained from MJ Systems in Calgary, as the dipmeter logs for these wells were not recorded on microfiche provided by the AEUB.

Table 5.6: Summary of the breakout data search results from dipmeter logs with coverage in the Elk Point Group in the expanded Alberta study area

No. of Wells	Search Results
120	Total number of wells with dipmeter logs with some coverage in the Elk Point and
	Beaverhill Lake Groups within expanded study area
61	Wells without the dipmeter log recorded on the microfiche
47	Wells with the dipmeter log recorded on the microfiche
44	Subset of wells without all the necessary data for breakout analysis
	21 logs pre-1966 with 3-arm dipmeter caliper that do not show curves for individual calipers
	23 (missing a relevant caliper or pad 1 azimuth curve)
13	Subset of wells with all curves required for breakout analysis available
10	Wells with breakout present

Table 5.7: Summary of the breakout data search results from dipmeter logs with coverage in the Paleozoic-age formations in the expanded Saskatchewan study area

No. of wells	Search Results
25	Total number of wells with dipmeter logs with > 4 m coverage in the Paleozoic- age formations in the expanded Saskatchewan study area
3	Wells without the dipmeter log recorded on the microfiche
22	Wells with the dipmeter log recorded on the microfiche
16	Subset of wells without all the necessary data for breakout analysis; missing a relevant caliper or pad 1 azimuth curve
6	Subset of wells with all curves required for breakout analysis available
1	Wells with breakout present

The quality of breakout data was established using the criteria listed in Table 5.8. Of the 5 dipmeter logs containing breakouts in the original study area, two of these had breakouts of questionable or poor quality. The remaining three dipmeter logs had one good quality breakout in the Elk Point Group, and two good quality breakouts in the Beaverhill Lake

Group. There were more breakout data in the expanded area since log data were available over the thicker Elk Point Group. The details of the breakout quality for the 11 wells analyzed in the expanded area are given Table E.2 of Appendix E.

Table 5.8: Criteria used to determine breakout quality in this study

Quality	Criteria
Poor	Relatively straight azimuth trace, ratty caliper(s), difference in caliper readings <4% (i.e., small enlargement)
Fair	Straight azimuth trace, relatively smooth caliper traces, difference in caliper readings <4%
Good	Straight azimuth trace, smooth calipers, difference in caliper readings >4%, C1-C3 and C2-C4 both >gauge
Very Good	Straight azimuth trace, smooth calipers, difference in caliper readings >4%, smaller caliper reading within 2% of gauge

Analysis of the 16 dipmeter logs containing breakouts involved calculating the breakout azimuth and the amount of hole enlargement on a per metre basis over the length of each breakout interval. As was the case for the original data of Bell et al. (1994), most of the breakouts showed the development of only one breakout population while a few have a second population. The minor second population was filtered out between 0 and 80 degrees (NE-SW orientation) and was not included in the determination of the minimum horizontal stress orientation. The results of the breakout analyses for the original area are contained in Table D.2 with roseplots of the breakout analyses for the expanded area are contained in Table E.2 with roseplots of the breakout data for each well in Figures E.2.1 to E.2.14 of Appendix E. The roseplots use an azimuth class interval of 10° and indicate the mean orientation and confidence interval for each breakout interval.

The results of the analysis of the minimum horizontal stress orientation data are summarized for each well in Figure 5.16. A summary of the minimum stress orientation for each well is also given in Table 5.9. Figure 5.17 is a roseplot for the 16 wells analyzed

in the entire study area weighted by the length of the breakout interval. The average minimum horizontal stress orientation calculated from the 16 wells analyzed varies from azimuth 101° to 152° , similar to the measurements of Bell et al. (1994) in the Paleozoic-age formations. The average minimum horizontal stress orientation is 120° with a confidence interval of 5°. The average orientation of the minor population from 5 wells varies from an azimuth of 40° to 76° . The average minor population of the wells is 58° with a confidence interval of 12° .

All wells exhibiting borehole breakout in the Elk Point Group employed a salt-based mud for drilling except for the 14-9-92-4W5 well which used an oil-based mud. Since none of the wells analyzed for breakout within the Elk Point Group employed a water-based mud during drilling, one can assume that borehole enlargement was not caused by salt dissolution. This leads to confidence that the breakouts seen in the Elk Point Group were caused by stress anisotropy.

An interesting observation is the trend of a more NNW-SSE minimum horizontal stress orientation in the Elk Point Group, Beaverhill Lake Group, and Paleozoic-age formations above the Beaverhill Lake Group. The average minimum horizontal stress orientation determined in the Elk Point Group was 116° with a confidence interval of 5° (Figure 5.18). The average minimum horizontal stress orientation determined in the Beaverhill Lake Group for 114 metres of breakout was 124° with a confidence interval of 8° (Figure 5.19). The average minimum horizontal stress orientation determined from 9 wells in Paleozoicage formations above the Beaverhill Lake Group was 139° with a confidence interval of 16° (Figure 5.20). However, Bell et al. (1993) noted that the minimum stress orientation was similar over various formations and ages. The mean of the average minimum horizontal stress orientation for all 24 wells is 129° with a confidence interval of 13° (Figure 5.21).

Table 5.9: Summary of borehole breakout data for all 24 wells in the complete study area (8 wells from the Geological Atlas of Western Canada, Bell et al., 1994, and 16 new wells analyzed in this study)

No.	Well Name	Com	bined	Av	erage Popul	ation 1
		Average	Average	Elk	Beaverhill	Above
		Population 1	Population 2	Point	Lake	Beaverhill
				Group	Group	Lake Group
		(degrees)	(degrees)	(degrees)	(degrees)	(degrees)
1	Gulf Resdeln 7-24-83-7	118	-	-	-	118
2	Southroy Jarvie 7-4-63-26	124	-	-	-	124
3	Bearspaw et al Fenn West 8-11-36-21	156	-	-	-	156
4	CNRL Erskine 16-24-39-21	142	-	-	-	142
5	Guyer et al Malmo 14-10-44-22	135	-	-	-	135
6	Altex Perl Bittern Lk 11-27-46-21	130	-	-	-	130
7	Baytex et al FBA 14-9-58-24	148	-	-	-	148
8	Saskoil Norcen Plover Lake 9-6-35-26	143	-	-	-	143
9	Voyager et al Bruce 6-14-48-14	-	76	-	-	-
10	AEC D1 Fisher 1-21-70-4	145	-	-	145	-
11	AEC A8 Fisher 8-21-70-4	101	-	-	101	-
12	AEC B3 Fisher 3-22-70-4	115	-	-	115	-
13	AEC Fisher 6-33-70-4	140	-	-	140	-
14	Unocal et al Trout 8-10-89-3	129	49	132	128	-
15	Murphy Trout 9-3-89-3	114	-	114	-	-
16	Unocal et al Kidney 9-5-91-7-4	134	74	109	140	-
17	Unocal Kidney 10-32-90-4	136	-	127	136	-
18	PCI Liege 11-8-95-22	130	-	109	-	-
19	Dorset et al Martenck 11-12-80-5	109	-	117	99	-
20	Suncor Strome 11-16-44-16	101	40		102	-
21	Murphy et al Graham 12-18-87-3	124	73	126	116	-
22	NCE Ener Senex 14-9-92-4	119	-	119	-	-
23	Colin et al Kidney 10-19-91-4	111	-	111	-	-
24	Sceptre Murphy T'Flags A1-26-52-25	152	-	-	-	152
	Mean of Average	129	62	118	122	139

* Wells 1 to 8 from Geological Atlas of Western Canada, Bell et al, 1994

** No population 1 data for well No.9

Figure 5.16: Minimum horizontal stress orientation determined from borehole breakouts using dipmeter logs in the Paleozoic-age formations for the entire study area.

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 80 Degrees Maximum Azimuth ... 180 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 222 Maximum Percentage 25.2 Percent Mean Percentage 12.5 Percent Mean Percentage 12.5 Percent Standard Deviation ... 8.57 Percent Vector Mean 300.76 Degrees Confidence Interval .. 4.71 Degrees R-mag 0.82

Population 2

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 0 Degrees Maximum Azimuth ... 80 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 37 Maximum Percentage 45.9 Percent Mean Percentage 20 Percent Standard Deviation ... 15.87 Percent Vector Mean 58.31 Degrees Confidence Interval .. 11.5 Degrees R-mag 0.82

Figure 5.17: Roseplot data of the combined borehole breakout data for all 16 wells analyzed in the study weighted by the length of the breakout interval.

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 80 Degrees Maximum Azimuth ... 180 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 103 Maximum Percentage 35.9 Percent Mean Percentage 14.3 Percent Standard Deviation ... 12.01 Percent Vector Mean 296.16 Degrees Confidence Interval ... 4.79 Degrees R-mag 0.91

Population 2

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 0 Degrees Maximum Azimuth ... 80 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 28 Maximum Percentage 57.1 Percent Mean Percentage 25 Percent Standard Deviation ... 21.09 Percent Vector Mean 61.57 Degrees Confidence Interval .. 13.23 Degrees R-mag 0.82

Figure 5.18: Roseplot data of the borehole breakout data within the Elk Point Group in the 16 wells analyzed in the study weighted by length of the breakout interval.

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 80 Degrees Maximum Azimuth ... 180 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 114 Maximum Percentage 33.3 Percent Mean Percentage 14.3 Percent Mean Percentage 14.3 Percent Standard Deviation ... 11.79 Percent Vector Mean 304.28 Degrees Confidence Interval ... 7.7 Degrees R-mag 0.76

Population 2

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 0 Degrees Maximum Azimuth ... 80 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 9 Maximum Percentage 33.3 Percent Mean Percentage 20 Percent Standard Deviation ... 8.76 Percent Vector Mean 48.83 Degrees Confidence Interval ... 18.01 Degrees R-mag 0.89

Figure 5.19: Roseplot data of the borehole breakout data within the Beaverhill Lake Group for the 16 wells analyzed in the study weighted by length of the breakout interval.

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 9 Maximum Percentage 33.3 Percent Mean Percentage 20 Percent Standard Deviation ... 8.76 Percent Vector Mean 318.77 Degrees Confidence Interval ... 16.2 Degrees R-mag 0.91

Figure 5.20: Roseplot data of the average minimum horizontal stress orientation in Paleozoic-age formations above the Beaverhill Lake Group (8 wells from the Geological Atlas of Western Canada, Bell et al., 1994 and 1 well from the expanded Saskatchewan study area). Note that these breakout data are not weighted by the length of the breakout interval: A single value of the breakout azimuth irrespective of the length of breakout was assigned to each well.

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 80 Degrees Maximum Azimuth ... 180 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 23 Maximum Percentage 21.7 Percent Mean Percentage 16.7 Percent Mean Percentage 16.7 Percent Standard Deviation ... 5.51 Percent Vector Mean 308.61 Degrees Confidence Interval .. 12.75 Degrees R-mag 0.86

Figure 5.21: Roseplot data of the average minimum horizontal stress orientation determined from population 1 data for all 24 wells (16 from this study and 8 from the Geological Atlas of the Western Canadian Sedimentary Basin).

5.4 Horizontal Stress Magnitudes

5.4.1 Formation Leak-off Test and Hydraulic Fracture Data

Formation leak-off test (FLOT) data in the original Phase 1 study area was provided by Dr. Matt Grobe (AGS) in conjunction with the AEUB in Calgary. Of the 10 tests provided to AGI none are below 500 m depth. As shown in Figure 5.22, there is considerable scatter in the data. We do not believe that these data are of high value for estimating the horizontal stress magnitudes in or adjacent to the Elk Point Group. Following discussion of the Phase 1 search results with AGS, it was decided that formation leak-off test data would not be examined further in subsequent phases of the study.

Figure 5.22: Summary of formation leak-off test data in the original study area that were provided by the AGS.

There were no publicly-available hydraulic fracture data identified in the original study area. Data of this type may be available for purchase from selected service or operating companies, but would require considerable effort and cost to locate, process and analyze. These tasks were beyond the scope of the current study, but could be conducted at some later date.

Without good quality data from either formation leakoff tests or hydraulic fracture tests, there is not enough information available to confidently estimate variations in the magnitude of the minimum horizontal stress in the original or expanded study areas. In the absence of hard data, and given the propensity of salt to creep over geologic time, a first-order estimate of the magnitude of the mean horizontal stress would be a value equal to the vertical stress.

5.4.2 Back-Analysis of Horizontal Stress Ratios from Borehole Breakouts

A back-analysis of borehole breakouts in Voyager et al Bruce 6-14-48-14W4 was conducted using AGI's STABView borehole stability software (Advanced Geotechnology Inc., 2000) to investigate whether the horizontal stress ratio can be estimated from caliper data (Figure 5.23). McLellan et al. (1999) demonstrated how back-analysis procedures can be used to estimate the best-fit horizontal stresses to match enlarged hole ellipticity observed on caliper logs. Caliper measurements in the Voyager 6-14 well indicate an average hole ellipticity (major to minor axis ratio, a/b) of about 1.07 for the interval from 1459 to 1475 m KB. Note that inverse modelling does not determine a unique solution for the horizontal in-situ stress ratio, so a range of results is given.

Estimates of rock mechanical properties were obtained from compressional sonic logs, giving a peak cohesion value of 6 to 7 MPa, and peak friction angle from 30 to 40°. The ratio of maximum to minimum horizontal stress was calculated to fall between 1.24 to 1.37. These values are dependent on the rock strength properties in the interval and assume that the entire yielded zone predicted by STABView detaches to create the breakout. Better stress ratio estimates can be obtained when rock mechanical properties are measured on core samples or determined from logs and minimum horizontal in-situ stresses are interpreted from extended leak-off or minifrac tests. Back-analysis of borehole breakouts was not conducted for Phase 3 of this study.

Figure 5.23: Back-analysis of a borehole breakout to estimate the horizontal stress ratio using Advanced Geotechnology's STABView software. Breakout data are from 1459 to 1475 mKB in the Watt Mountain Formation, Voyager et al. Bruce 6-14-48-14W4.

6. DISCUSSION OF RESULTS

A three phase investigation was undertaken to quantify in-situ stresses in and adjacent to salt formations of the Elk Point Group. Phase 1 included: (1) a literature review on the subject of stresses and rock mechanical properties in salt, (2) data compilation and review for the original study area. Phase 2 included: (1) analysis of data from the original study area, and (2) data compilation and review for an expanded Alberta study area. Phase 3 included: (1) analysis data from the expanded Alberta study area, (2) compilation, review and analysis of data from the expanded Saskatchewan study area and (3) compilation of the results from all three phases.

6.1 Literature Review

The literature review shows that the geomechanical behaviour of salt adjacent to underground openings is complex, often involving brittle fracturing near the opening resulting from elastic deformation, and creep deformation in a zone around the opening. Creep deformation dominates the long-term response under deviatoric stress conditions. Creep rates are a function of many parameters and can vary widely from one setting to the next, or from one salt to the next. Because the factors controlling creep deformation are formation-specific and depth-specific, the relevant creep response parameters of the salt formations of interest are best-determined on well-preserved core samples in controlled laboratory tests. Tests of this type have been undertaken on salt and potash samples at the University of Saskatchewan, the University of Manitoba, and by the mining industry in Saskatchewan. Anecdotal evidence (A. Coode, IMC Colonsay) suggests that creep rates for potash can be 5 to 8 times greater than those for halite in some Saskatchewan settings.

Although there have been numerous rock mechanical tests conducted on potash that are described in published literature, there were no reported rock mechanical properties on halite from the Elk Point Group identified in the literature review. One shear strength value of 21 MPa (believed to be either an unconfined or triaxial compressive strength value) for the Upper Lotsberg Formation is contained in Northwestern Utilities Ltd.'s AEUB application 820504. In general, published values for elastic deformation properties of salt do not vary over a wide range, but strength parameters vary considerably for different salts.

Of the AEUB applications related to salt cavern development that were reviewed, none contained specific cavern geotechnical design parameters. Solution mining is the only reported method employed for cavern development, using either a single or two-hanging string approach to control cavern geometry. Large caverns of this type for gas and liquid petroleum storage or oily waste disposal are common in the Lotsberg Formation in the Fort Saskatchewan area, the Prairie Evaporite Formation near Lloydminster, and the Elk Point Group salt near the Hardisty area. Upper limit operating pressures and cavern spacing are selected to avoid fracturing of the salt formation, and lower limit operating pressures are selected to avoid excessive creep closure during drawdown. Cavern diameters up to 80 m have been approved in Alberta (e.g., Northwestern Utilities Ltd., AEUB application no. 830529).

6.2 Data Review

There were no suitable formation leakoff or hydraulic fracture test data identified in the public domain for analyses of minimum horizontal stress magnitudes in the original study area. Core from the original and expanded study areas is available for analysis using paleomagnetic orientation methods to supplement the information from dipmeter logs on horizontal stress orientation.

In the original study area, 65 wells were used to determine the vertical stress at the top of the Prairie Evaporite Formation and 49 wells were used to determine the vertical stress at the top of the Basal Red Beds Formation. In the expanded study area, 112 wells were used to determine the vertical stress at the top of the Prairie Evaporite Formation (90 from the expanded Alberta study area and 22 from the expanded Saskatchewan study area).

In total, there were 24 minimum stress orientations available in the complete study area for Paleozoic-age formations (8 from the Geological Atlas of the Western Canadian Sedimentary Basin and 16 from this report). This includes 9 wells with minimum stress orientation determined in formations above the Beaverhill Lake Group, 10 wells with minimum stress orientation determined within the Beaverhill Lake Group, and 9 wells with minimum stress orientation determined within the Elk Point Group.

6.3 Analysis of Vertical Stresses

The analysis of bulk density log data provided estimates of the vertical stresses and vertical stress gradients at the top of the Prairie Evaporite Formation in the original and expanded study area. The analysis of bulk density data provided estimates of the vertical stresses and vertical stress gradients at the top of the Basal Red Beds Formation (which were used to define the bottom of the Elk Point Group) in the original area. The vertical stress ranged from 13.5 to 39.1 MPa at the top of the Basal Red Beds in the original study area. The vertical stress gradient at the top of the Basal Red Beds Formation in the original study area. The vertical stress gradient at the top of the Basal Red Beds Formation in the original study area ranges from 21.3 to 23.6 kPa/m. A concentric zone of lower vertical stress gradient is evident at the top of this formation. This anomaly is associated with thicker occurrences of the relatively low-density Lotsberg and Cold Lake Formations in this region of the original study area.

Contour plots indicate that the vertical stress at the top of the Prairie Evaporite Formation ranges from 7.4 to 31.7 MPa in the original study area and from 10.2 to 54.0 MPa in the expanded area. The vertical stress gradient at the top of the Prairie Evaporite Formation ranges from 21.3 to 23.9 kPa/m in the original study area, decreasing towards the eastern boundary of the Prairie Evaporite Formation. The vertical stress gradient at the top of the Prairie Evaporite Formation in the expanded study area ranges from 21.5 to 24.7 kPa/m, with the lower vertical stress gradients being in the NE and the higher vertical stress gradients being in the SW. This trend may be a result of northeastward-thickening Quaternary or Cretaceous deposits of relatively low density, and the increase in density of formations above the Prairie Evaporite towards the SW. Despite sparse data coverage in some parts of the study area such as the Wood Buffalo National Park, the contour plots for the vertical stress gradient are considered representative of in-situ conditions.

6.4 Analysis of Horizontal Stresses

The horizontal stress orientations calculated from breakouts in the study area generally agree with those from the Geological Atlas of Western Canada (Bell et al., 1994), although there were some data inconsistencies noted in the atlas.

The dataset of 8 wells from the Geological Atlas of the Western Canadian Sedimentary Basin has an average minimum stress orientation of 137° (confidence interval 16°) with a range from 118° to 148°. The average minimum horizontal stress orientation determined from the 16 wells analyzed in this report is 120° with a confidence interval of 16° with a range from azimuth 101° to 152°, similar to the atlas measurements in the Paleozoic-age formations. It is important to note that the dataset from the Atlas was from Paleozoic-age formations above the Beaverhill Lake Group whereas 15 of the 16 wells analyzed in this report had breakouts from the Beaverhill Lake Group and/or Elk Point Groups. The average minimum horizontal stress orientation for all 24 wells is 129° with a confidence interval of 13°.

A rotation of the minimum horizontal stress in the upper Paleozoic formations to a more NNW – SSE orientation can be seen in the dataset. The average minimum horizontal stress orientation determined in the Elk Point Group was 116° (confidence interval 5°), the average minimum horizontal stress orientation determined in the Beaverhill Lake Group was 124° (confidence interval 8°), and the average minimum horizontal stress orientation determined in other Paleozoic formations above the Beaverhill Lake Group was 139° (confidence interval 16°). Bell et al. (1993) note, that in general, the minimum stress orientation was similar over most formations of a variety of ages.

Deviatoric horizontal stresses result in a non-uniform distribution of compressive stresses at the periphery of an underground opening. This may in turn effect localized brittle damage and non-uniform creep rates at different locations around the opening. If knowledge of the deviatoric stress magnitude is deemed necessary for cavern design, privately-held hydraulic fracture test data could possibly be accessed. Small volume, controlled micro-fracture tests are recommended prior to cavern development to obtain site-specific design data.

STABView software was used to back analyze the range of horizontal in-situ stress ratios possible for a breakout in one well in the study area. However, because there were no publicly-available data on the magnitude of the minimum horizontal in-situ stress, the absolute magnitudes of the two horizontal stresses in the original study area are not known. To reduce the uncertainty in this type of stress ratio prediction, the mechanical properties of the rock in question should be determined from cores or calculated from sonic logs.

7. CITED REFERENCES

- Advanced Geotechnology Inc., STABView borehole stability, lost circulation and sand production risk analysis software. Users Manual, 2000.
- Bell, J.S. and D.I. Gough, Intra-plate stress orientations from Alberta oil-wells, Evolution of the Earth Geodynamics Series, v. 5, 96-104, 1981.
- Bell, J.S., P.R. Price and P.J. McLellan, In-situ stress in the Western Canada Sedimentary Basin, chapter 29 in the Atlas of the Western Canada Sedimentary Basin, CSPG/ARC/GSC publication, 439-446, 1994.
- Blum, W., and Fleischman, C., On the deformation-mechanism map of rock salt, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 7-22, 1988.
- Campos de Orellana, A. J., Pressure solution creep and non-associated plasticity in the mechanical behavior of potash mine openings, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 33, 347-370, 1996.
- Canadian Society of Petroleum Geologists, Lexicon of Canadian Stratigraphy, (CD ROM Version), Volume 4, Western Canada, October, 1997.
- Crossley, N. G., Downhole probes evaluate cavern integrity, Oil and Gas J., 74-79, March 3, 1997.
- Crossley, N.G., Site tests validate benefits of cavern probes, Oil and Gas J., 69-72, March 10, 1997.
- Davidson, B. C., Dusseault, M. B., and Demers, R. J., Solution cavern disposal of Solvay process waste, Proc. 1st Int. Conf. of Waste Geotechnique, 1994.
- DeVries, K. L., Simulation of field tests in Avery Island dome salt, Proc. 29th U.S. Symp. Rock Mech., 413-421, Minneapolis, Minnestoa, 1988.
- Dusseault, M. B., Saltrock behavior as an analogue to the behavior of rock at great depth, in Rock at Great Depth, Edited by: Maury and Fourmaintroux, Balkema, 11-17, 1989.
- Dusseault, M. B., and Mraz, D. Z., Salt rock constitutive behaviour, Potash Technology (R.M. McKersher, ed.), Pergamon Press: Elmsford NY, 311-319, 1983.
- Dusseault, M.B., Rothenburgh and Mraz, P., The design of openings in salt rock using a multiple mechanism Niscoplastic law, 28th U.S. Symposium on Rock Mechanics, Tuscon, Arizona, June 19, 1987.
- Fuzesy, L. M., Petrology of potash ore in the Middle Devonian Prairie Evaporite, Saskatchewan, Potash Technology (R.M. McKersher, ed.), Pergamon Press: Elmsford New York, 47-57, 1983.

Fuzesy, A., Potash in Saskatchewan, Saskatchewan Energy and Mines Report 181, 1982.

- Gillen, K.G., R. Van der Voo, and J.H. Thiessen, Upper Cretaceous-Early Tertiary remagnetization of the Devonian Swan Hills Formation recorded in carbonate cores from the Caroline gas field, Alberta, Canada., AAPG Bulletin, Vol. 83, No. 8, pages 1223-1235, 1999.
- Gomm, H., and Quast, P., Status of gas storage in salt caverns in West Germany, SPE 19084, Presented at the SPE Gas Tech. Symp., Dallas, TX, 265-278, 1989.
- Hambley, D. F., Dusseault, M. B., and Mraz, D. Z., Characterization of salt rock creep behaviour, Proc. 29th U.S. Symp. Rock Mech., 179-189, Minneapolis, Minnesota, 1988.
- Hansen, F. D., and Carter, N. L., Creep of Avery Island rocksalt, Proc. 1st Conf. Mech. Behavior of Salt, Pennsylvania State College, 53-69, 1981.
- Hansen, F. D., Senseny, P. E., Pfeifle, T. W., and Vogt, T.J., Influence of impurities on the creep of salt from the Palo Duro Basin, Proc. 29th U.S. Symp. Rock Mech., Minneapolis, Minesota, 199-206, 1988.
- Hansen, F. D., Physical and mechanical variability of natural rock salt, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 23-39, 1988.
- Holter, M. E., The Middle Devonian Prairie Evaporite of Saskatchewan, Saskatchewan Dept. of Mineral Resources, Report No. 123, 1969.
- Horseman, S. T., Moisture content A major uncertainty in storage cavity closure prediction, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 53-68, 1988.
- Jeremic, M.L., Rock Mechanics in Salt Mining, Balkema; Rotterdam, 1994.
- Lajtai, E., and Duncan, E. J. S., The mechanism of deformation and fracture in potash rock, Can. Geotech. J., 25, 262-278, 1988.
- Lentz, R. W., The disposal of sand produced with heavy oil into a salt cavern, in Environmental Issues and Waste Management nin Energy and Mineral Production, Edited by Singhal et al, Balkema, Rotterdam, 677-684, 1992.
- Li, Y. and D.R. Schmitt, Wellbore bottom stress concentration and induced core fractures, AAPG Bulletin, 1997.
- McLellan, P., Hawkes, C., Yuan, Y., Minimizing borehole instability risks in build sections through shales, Presented at the 7th one day SPE/CIM conference on Horizontal Well Technology, Calgary, Alberta, November 3, 1999.

- Munson, D. E., Holcomb, D. J., De Vries, K. L., Brodsky, N. S., and Chan, K. S., Correlation of theoretical calculations and experimental measurements of damage around a shaft in salt, Proc. 35th U.S. Symp. Rock Mech., 491-502, 1995.
- Munson, D. E., Constitutive model of creep in rock salt applied to underground room closure, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 34, 233-247, 1997.
- Plumb, R.A., and S.H. Hickman (1985): Stress-induced borehole elongation: a comparison between the four-arm dipmeter and the borehole televiewer in the Auburn Geothermal well, J. of Geophy. Res., v90, B7, 5513-5521.
- Reeves, M. J., and Stead, D., SALTDATA: A graphical database for the physical properties of rocks associated with mining of potash and salt, Proc 32nd U.S. Symp. Rock Mech., 169-177, Norman, Oklahoma, 1991.
- Reeves, M.J., Unrau, J. D., and Jones, J. T., Long-term testing of evaporites at the Saskatchewan Research Council's large-scale triaxial test facility, Proc. 90th Annual General Meeting of CIM, Edmonton, Alberta, Paper No 193, 1988.
- Senseny, P. E., Creep properties of four rock salts, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 431-444, 1988.
- Senseny, P. E., Hansen, F. D., Russell, J. E., Carter, N. E., and Handin, J. W., Mechanical behaviour of rock salt: phenomenology and micromechanisms, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 29, 363-378, 1992.
- Spiers, C. J., Urai, J. L., and Lister, G. S., The effect of brine (inherent or added) on rheology and deformation mechanisms in salt rock, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 89-102, 1988.
- Stormont, J. C., In-situ gas permeability measurement to delineate damage in rock salt, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 34, 1055-1064, 1997.
- Stormont, J. C., and Daemen, J. J. K., Laboratory study of gas permeability changes in rock salt during deformation, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 29, 325-342, 1992.
- Vouille, G., Tijani, S. M., and F. de Grenier, Experimental determination of the rheological behavior of Tersanne rock salt, Proc. 1st Conf. Mech. Behavior of Salt, 407-420, Pennsylvania State College, 1981.
- Wawersik, W., Alternatives to a power-law creep model for rock salt at temperatures below 160°C, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 103-128, 1988.
- Weertman, J. Dislocation Climb Theory of Steady-state Creep. Am. Soc. Met. Trans. Quart., 61:681-694, 1968.

APPENDIX A

BIBLIOGRAPHY ON SALT GEOMECHANICS (MARCH 1, 2001)

APPENDIX A: Bibliography on Salt Geomechanics (March 1, 2001)

- A.1 In-Situ Stress
- A.2 Mechanical Properties
- A.3 Creep Response of Tunnels, Caverns and Boreholes in Salt
- A.4 Geology of Salt Deposits in Western Canada
- A.5 Waste Storage and Disposal in Salt
- A.6 Casing Failures in Salt
- A.7 Hydrocarbon Storage in Salt
- A.8 Sandia National Laboratory Publications (Restricted and Public)
- A.9 EUB Applications Related to Salt Caverns
- 1. In-Situ Stress
- Balthasar, K., Haupt, M., Lempp, CH., Natau, O., Stress relaxation behaviour of rock salt: Comparison of in situ measurements and laboratory test results, Proc. 6th Int. Cong. of the ISRM, Montréal, vol. 1, 1987, pp. 11-14.
- Berniaux, J., Bonte, G., Renie, D., Mesures des contrain tes in situ aux mines de potasse d'Alsace, Industrie Minérale Mines et Carrières Techniques, 1986, pp. 177-183.
- Boyce, G.M., Doe, T.W., Majer, E., Laboratory hydraulic fracturing stress measurements in salt, Proc. 25th U.S. Symp. on Rock Mech., 1984, pp. 95-102.
- Carter, N.L., Hansen, F.D., Senseny, P.E., Stress magnitudes in natural rock salt, J. Geophys. Res., vol. 87, no. B11, 1982, pp. 9289-9300.
- Cornet, F.H., Thomas, A., Mesures de contraintes en terrains salifères, Comtes-rendus Symp. Int. Essais en Place, vol. 2, Paris, 1983, pp. 475-479.
- Corthésy, R., Gill, D.E., A novel approach to stress measurements in rocksalt, Int. J. of Rock Mech. Min. Sci. and Geomech. Abstr, vol. 27, no. 2, 1990, pp. 95-107.
- Eriksson, L.G., Michalski, A., Hydrostatic conditions in salt domes A reality or a modelling simplification, Proc. of the Int. Symp. on Rock Stress and Rock Stress Measurements, Stockholm, 1986, pp. 121-132.
- Flach, D., Frohn, C., Hente, B., Schmidt, M.W., Taubert, E., Hydraulic fracturing experiments in rock salt with seismic frac location, Proc. Int. Symp. on Field Measurements in Geomech., Zurich, 1983, pp. 1331-1341.
- Heusermann, S., Aspects of overcoring stress measurements in rock salt., Proc. 2nd Conference on the Mechanical Behavior of Salt, 1984, pp. 273-289.
- Heusermann, S., Pahl, A., Stress measurements in under ground openings by the overcoring method and by the flatjack method with compensation, Proc. Int. Symp. on Field Measurements in Geomech., Zurich, 1983, pp. 1033-1045.

Merril, R.H., Static stress determination in salt, USBM Report of Investigation 3831, 1960.

- Pahl, A., Gloggler, W., Muller, D., Stress determination in anhydrite and rock salt by in situ overcoring and flat jack test, Comptes-rendus Symp. Int. Essais en Place, vol. 2, Paris, 1983, pp. 555-559.
- Schlumberger Educational Services, Log Interpretation Principles/Applications, Houston, Texas, 1989.
- Serata, S., Development of the Serata stress measuring system for application to both hard brittle and soft ductile grounds, Proc. 24th U.S Symp. on Rock Mecha nics, 1983, pp. 343-358.
- Singhal, R.K., Stress measurements in rocks with particular reference to evaporites, Thèse de doctorat, University of Newcastle Upon Tyne, 1970, 143 p.
- Singhal, R.K., Determination of stress in evaporites, Canadian Min. J., August 1971, pp. 35-47.
- Wawersik, W.R., Stone, C. M., Experience with hydraulic fracturing tests for stress measurements in the WIPP, 27th U.S. Symp. of Rock Mech., 1986, pp. 940-947.

2. Mechanical Properties

- Allemandou, X., and Dusseault, M.B., Procedure for cyclic creep testing of salt rock, results and discussions, Proc. 3rd, Conf. Mech. Behavior of Salt, France, 1993.
- Bakhtar, K., Hardy, H. R., Richardson, A, and Mrugala, M.J., Experimental results and modeling of long-term creep behavior of rock salt, Proc. 29th U.S. Symp. Rock Mech., Minneapolis, Minnesota, 169-178, 1988.
- Blum, W., and Fleischman, C., On the deformation-mechanism map of rock salt, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 7-22, 1988.
- Campos de Orellana, A. J., Pressure solution creep and non-associated plasticity in the mechanical behavior of potash mine openings, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 33, 347-370, 1996.
- Carter, N., and Hansen, F., Creep of rocksalt, Tectonophysics, 92, 275-333, 1983.
- Cristescu, N., A general constitutive equation for transient and stationary creep of rock salt, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., #2, 1993.
- DeVries, K. L., Simulation of field tests in Avery Island dome salt, Proc. 29th U.S. Symp. Rock Mech., Minneapolis, Minnesota, 413-421, 1988.
- Dusseault, M. B., Saltrock behavior as an analogue to the behavior of rock at great depth, in Rock at Great Depth, Edited by: Maury and Fourmaintroux, Balkema, 11-17, 1989.

- Dusseault, M. B., Rothenburg, L. and Mraz, D. Z., The design of openings in salt rock using a multiple mechanism viscoplastic law, Proc. 28th U.S. Symp. Rock Mech., 633-642, 1987.
- Dusseault, M. B., and Mraz, D. Z., Salt rock constitutive behaviour, Potash Technology (R.M. McKersher, ed.), Pergamon Press: Elmsford NY, 311-319, 1983.
- Dusseault, M. B., and Mraz, D. Z., Creep behaviour of salt rocks, 40th Can. Geotech. Conf., 301-311, 1987.
- Gendzwill, D.J., and Stead, D., Rock mass characterization around Saskatchewan potash mine openings using geophysical techniques: A review, Can. Geotech. J., Vol. No 666, 1992.
- Hambley, D. F., Dusseault, M. B., and Mraz, D. Z., Characterization of salt rock creep behaviour, Proc. 29th U.S. Symp. Rock Mech., 179-189, Minneapolis, Minnesota, 1988.
- Hansen, F. D., Physical and mechanical variability of natural rock salt, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 23-39, 1988.
- Hansen, F. D., Senseny, P. E., Pfeifle, T. W., and Vogt, T.J., Influence of impurities on the creep of salt from the Palo Duro Basin, Proc. 29th U.S. Symp. Rock Mech., Minneapolis, Minesota, 199-206, 1988.
- Hansen, F. D., and Carter, N. L., Creep of Avery Island rocksalt, Proc. 1st Conf. Mech. Behavior of Salt, Pennsylvania State College, 53-69, 1981.
- Hardy, H.R., and Langer, M., (Editors), The Mechanical Behaviour of Salt I, Proceedings of the First Conference, Pennsylvania State University, Trans Tech Publications, 1981.
- Hardy, H.R. and Langer, M., (Editors), The Mechanical Behavior of Salt, Proceedings of the Second Conference, Hanover, Germany, Trans Tech Publications, 1984.
- Holder, J., Koelsch, T., Fruth, L., and Donath, F., Laboratory measurement of permeability in rock, Proc. 30th U.S. Symp. Rock Mech., Morgantown, West Virginia, 1988.
- Horseman, S. T., Moisture content A major uncertainty in storage cavity closure prediction, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 53-68, 1988.
- Infante, E. F., and Chenevert, M. E., Stability of boreholes drilled through salt formations displaying plastic behavior, SPE Drilling Eng., 57-65, March, 1989.
- Istvan, J. A., Evans, L. J., Weber, J. H., and Devine, C., Rock mechanics for gas storage in bedded salt caverns, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 34, Paper No. 142, from the U.S. Symposium on Rock Mechanics, New York, 1997.
- Jeremic, M.L., Rock Mechanics in Salt Mining, Balkema; Rotterdam, 1994.
- Lajtai, E., and Duncan, E. J. S., The mechanism of deformation and fracture in potash rock, Can. Geotech. J., 25, 262-278, 1988.

- King, M. S., and Acar, K. Z., Creep properties of Saskatchewan potash as a function of changes in temperature and stress, Proc. 3rd Salt Symp., 226-235, 1970.
- Munson, D. E., Constitutive model of creep in rock salt applied to underground room closure, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 34, 233-247, 1997.
- Munson, D. E., Holcomb, D. J., De Vries, K. L., Brodsky, N. S., and Chan, K. S., Correlation of theoretical calculations and experimental measurements of damage around a shaft in salt, Proc. 35th U.S. Symp. Rock Mech., 491-502, 1995.
- Munson, D. E., Torres, T. M., and Jones, R. L., Results of a large, in-situ, heated axisymmetric pillar test at the waste isolation pilot plant (WIPP), Proc. 29th U.S. Symp. Rock Mech., Minneapolis, Minnesota, 641-651, 1988.
- Reeves, M. J., and Stead, D., SALTDATA: A graphical database for the physical properties of rocks associated with mining of potash and salt, Proc 32nd U.S. Symp. Rock Mech., 169-177, Norman, Oklahoma, 1991.
- Reeves, M.J., Unrau, J. D., and Jones, J. T., Long-term testing of evaporites at the Saskatchewan Research Council's large-scale triaxial test facility, Proc. 90th Annual General Meeting of CIM, Edmonton, Alberta, Paper No 193, 1988.
- Senseny, P. E., Creep properties of four rock salts, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 431-444, 1988.
- Senseny, P. E., Hansen, F. D., Russell, J. E., Carter, N. E., and Handin, J. W., Mechanical behaviour of rock salt: phenomenology and micromechanisms, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 29, 363-378, 1992.
- Spiers, C. J., Urai, J. L., and Lister, G. S., The effect of brine (inherent or added) on rheology and deformation mechanisms in salt rock, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 89-102, 1988.
- Stormont, J. C., In-situ gas permeability measurement to delineate damage in rock salt, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 34, 1055-1064, 1997.
- Stormont, J. C., and Daemen, J. J. K., Laboratory study of gas permeability changes in rock salt during deformation, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 29, 325-342, 1992.
- Van Sambeek, et al., Dilatency of rock salt in lab tests, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 735, 1993.
- Vance, J. B., and Mottahead, P., AE/MS application to potash mining problems, Proc. 4th Conf. on Acoustic Emission/Micro Seismics, 275-286, 1989.
- Vouille, G., Tijani, S. M., and F. de Grenier, Experimental determination of the rheological behavior of Tersanne rock salt, Proc. 1st Conf. Mech. Behavior of Salt, 407-420, Pennsylvania State College, 1981.
- Wawersik, W., Alternatives to a power-law creep model for rock salt at temperatures below 160°C, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 103-128, 1988.

3. Creep Response of Tunnels, Caverns and Boreholes in Salt

- Bakhtar, K., Hardy, H. R., Richardson, A, and Mrugala, M.J., Experimental results and modeling of long-term creep behavior of rock salt, Proc. 29th U.S. Symp. Rock Mech., 169-178, Minneapolis, MN, 1988.
- Barker, J. W., Feland K. W., and Tsao, Y.-H., Drilling long salt sections along the U.S. Gulf Coast, SPE Drilling and Completion, 185-188, September 1994.
- Berest, P., Accidents of underground oil and gas storages Case histories and prevention, In Storage of Gases in Rock Caverns, Nilsen and Olsen (eds.), 289-301, 1989.
- Bogobowicz, A., Rothenburg, L. and Dusseault, M.B., Solutions for non-newtonian flow into elliptical openings, Journal of Applied Mechanics, 1991.
- Cristescu, N.D., and Paraschiv, I., The optimal shape of rectangular-like caverns, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 32, No. 4., 285-300, 1995.
- de Orellana, A. J., C., Pressure solution creep and non-associated plasticity in the mechanical behavior of potash mine openings, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 33, 347-370, 1996.
- DeVries, K. L., Simulation of field tests in Avery Island dome salt, Proc. 29th U.S. Symp. Rock Mech., 413-421, Minneapolis, Minnestoa, 1988.
- Dusseault, M. B., Saltrock behavior as an analogue to the behavior of rock at great depth, in Rock at Great Depth, Edited by: Maury and Fourmaintroux, Balkema, 11-17, 1989.
- Dusseault, M.B., Rothenburgh and Mraz, P., The design of openings in salt rock using a multiple mechanism Niscoplastic law, 28th U.S. Symposium on Rock Mechanics, Tuscon, Arizona, June 19, 1987.
- Fossum, A.F., Senseny, P.E., Thacker, B.H., imput uncertainties and calculated borehole closure, in Rock Mechanics as a Multidisciplinary Science, Proceeding of the 32nd U.S. Symposium on Rock Mechanics, Balkema, Rotterdam, 987-994, 1991.
- Francke, J. L., Carrasco, R. C., and Cherednick, L.L., Case Study: Mining effects on convergence rates, CIM Bulletin (Abstracts of Program for the 1998 Annua, I Meeting, Vancouver), Vol. 91, pp. 160, 1998.
- Fuenkajorn, K., and Daemen, J. J. K., Borehole closure in salt, Proc. 29th U.S. Symp. Rock Mech., 191-206, Minneapolis, MN, 1988.
- Gendzwill, D. and Unraw, J., Ground Control and Seismicity at International Mineral and Chemical (Canada) Global Ltd., CIM Bulletin, Vol. 89., No. 1000, May 1996.
- Gomm, H., and Quast, P., Status of gas storage in salt caverns in West Germany, SPE 19084, Presented at the SPE Gas Tech. Symp., Dallas, TX, 265-278, 1989.
- Hackney, R. M., A new approach to casing design for salt formations, Presented at the SPE/IADC Drilling Conf., New Orleans, LA, 79-89, 1985.

- Hambley, D., and Mraz, D., Behavior of a wide opening in a deep potash mine: A case history, Proc. 28th U.S. Symp. Rock Mech., 883-892, Tucson, AZ, 1987.
- Hardy, H.R., and Langer, M., (Editors), The Mechanical Behaviour of Salt I, Proceedings of the First Conference, Pennsylvania State University, Trans Tech Publications, 1981.
- Hardy, H.R. and langer, M., (Editors), The Mechanical Behavior of Salt, Proceedings of the Second Conference, Hanover, Germany, Trans Tech Publications, 1984.
- Infante, E. F., and Chenevert, M. E., Stability of boreholes drilled through salt formations displaying plastic behavior, SPE Drilling Engineering., 57-65, March 1989.
- Jeremic, M.L., Rock Mechanics in Salt Mining, Balkema; Rotterdam, 1994.
- Lux, K. H., Some results of case history studies with respect to the mechanical behavior of existing caverns, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 581-604, 1988.
- Malek, H., and Chaturvedi, L., Prediction of long-term closure and stability of underground workings in the Waste Isolation Pilot Plant, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 34, 493, 1997.
- Munson, D. E., DeVries, K. L., Schiermeister, D. M., DeYoung, W. F., and Jones, R. L., Measured and calculated closures of open and brine-filled shafts and deep vertical boreholes in salt, Proc. 33rd U.S. Symp. Rock Mech., Santa Fe, New Mexico, 439-448, 1992.
- Munson, D. E., Constitutive model of creep in rock salt applied to underground room closure, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 34, 233-247, 1997.
- Munson, D. E., Holcomb, D. J., Ke Vries, K. L., Brodsky, N. S., and Chan, K. S., Correlation of theoretical calculations and experimental measurements of damage around a shaft in salt, Proc. 35th U.S. Symp. Rock Mech., 491-502, 1995.Reno, NV.
- Munson, D. E., Torres, T. M., and Jones, R. L., Results of a large, in-situ, heated axisymmetric pillar test at the waste isolation pilot plant (WIPP), Proc. 29th U.S. Symp. Rock Mech., Minneapolis, Minnesota, 641-651, 1988.
- Nguyen-Minh, D., Method for evaluation of long-term convergence of underground excavations in salt, Proc 32nd. U.S. Symp. Rock Mech., 1991.
- Staupendahl, G., and Schmidt, M. W., Field investigation of the long-term deformational behavior of a 10,000 m3 cavity at the Asse salt mine, Proc. 1st Conf. Mech. Behavior of Salt, 511-525, State College, PA, 1981.

4. Geology of Salt Deposits in Western Canada

Anderson, N. L., and Knapp, R., An overview of some of the large scale mechanisms of salt dissolution in western Canada, Geophysics, 58, 1375-1387, 1993.

- Bachu, S., and Burwash, R.A., Geothermal regime in the Western Canada Sedimentary Basin, in Geological Atlas of the Western Canada Sedimentary Basin, Edited by Mossop, G., and Shetson, I., CSPG/ARC, 447-454, 1994.
- Bell, J.S., Price, P.R., and McLellan, P.J., In-situ stress in the Western Canada Sedimentary Basin, in Geological Atlas of the Western Canada Sedimentary Basin, Mossop, G., and Shetson, I., eds., CSPG/ARC: Calgary, 439-446, 1994.
- Canadian Society of Petroleum Geologists, Lexicon of Canadian Stratigraphy, (CD ROM Version), Volume 4, Western Canada, October, 1997.
- Fuzesy, L. M., Petrology of potash ore in the Middle Devonian Prairie Evaporite, Saskatchewan, Potash Technology (R.M. McKersher, ed.), Pergamon Press: Elmsford New York, 47-57, 1983.
- Gendzwill, D.J., and Stead, D., Rock mass characterization around Saskatchewan potash mine openings using geophysical techniques: A review, Can. Geotech. J., Vol. No 666, 1992.
- Holter, M. E., The Middle Devonian Prairie Evaporite of Saskatchewan, Saskatchewan Dept. of Mineral Resources, Report No. 123, 1969.
- Mossop, G., and Shetson, I., eds., Geological Atlas of the Western Canada Sedimentary Basin, CSPG/ARC: Calgary, 1994.

5. Waste Storage and Disposal in Salt

- Brassow, C.L., Welsh, S.J., and Stang, D.C., Method and Apparatus for Salt Dome Storage of Hazardous Waste, U.S. Patent 4906135, 1990.
- Canadian Crude Separators, Inc., Information brochure on the CCS Cavern Disposal System, 1997.
- Davidson, B. C., Dusseault, M. B., and Demers, R. J., Solution cavern disposal of Solvay process waste, Proc. 1st Int. Conf. of Waste Geotechnique, 1994.
- Dusseault, M. B., Geological disposal of inert granular wastes, Presentation of the Porous Media Research Inst., Univ. of Waterloo, 1992.
- Lentz, R.W., An Innovative Approach to Sand Disposal, Presented at the 1991 Heavy Oil and Oil Sands Technical Symposium, University of Calgary, Calgary, Alberta, Mar. 14, 1991.
- Lentz, R. W., The disposal of sand produced with heavy oil into a salt cavern, in Environmental Issues and Waste Management nin Energy and Mineral Production, Edited by Singhal et al, Balkema, Rotterdam, 677-684, 1992.
- Van Sambeek, L. L., Solution mining of salts, CIM Bulletin (Abstracts of Program for the 100th Annual Meeting of the CIM, Vancouver, B.C., Vol. 91, p. 160, 1998.

Veil, J.A., Salt Caverns show promise for non-hazardous oil field waste disposal, Oil and Gas J., Nov. 18, 1996.

6. Casing Failures in Salt

- Barker, J.W., Feland, K.W., and Tsao, Y-H., Drilling long salt sections along the US Gulf Coast, SPE Drilling and Completion, 185-198, Sept. 1994.
- Clegg, J.D., Casing Failure Study--Cedar Creek Anticline, J. Petr. Tech., June, 676-684, 1971.
- Gregory, C.E., Explosives for North American Engineers, USA, 314pp, 83 figs, ISBN 087849-051-5, 1983.
- Hackney, R. M., A new approach to casing design for salt formations, SPE/IADC Drilling Conf., 79-89, New Orleans, LA, 1985.
- Rike, E. A., Bryant, G. A., and Williams, S. D., Success in prevention of casing failures opposite salts, Little Knife Field, North Dakota, SPE Drilling Engineering, 131-140, April 1996.
- Stash, S. M., and Jones, M. E., Williston Basin: An analysis of salt drilling techniques for brine-based drilling-fluid systems, SPE Drilling Engineering, 19-32, March 1988.

7. Hydrocarbon Storage in Salt

- Berest, P., Accidents of underground oil and gas storages Case histories and prevention, In Storage of Gases in Rock Caverns, Nilsen and Olsen (eds.), 289-301, 1989.
- Berest, P., Ghoreyshi, M., Fauveau, M., Lebitoux, P., Mechanisms of creep in gas storage caverns. Effect of gravity forces, Proc. 27th U.S. Symposium on Rock Mechanics, Tuscaloosa, Alabama, 789-794, June 23-25, 1986.
- Canadian Standards Association, Storage of Hydrocarbons in Underground Formations, Z341-93, 81 pp., July 1993.
- Crossley, N. G., Downhole probes evaluate cavern integrity, Oil and Gas J., 74-79, March 3, 1997.
- Crossley, N.G., Site tests validate benefits of cavern probes, Oil and Gas J., 69-72, March 10, 1997.
- Crossley, N. G., Gas storage in Saskatchewan bedded salt, Solution Mining Research Institute, Houston, Oct. 18-21, 1992.
- Crotogino, Reference value developed for mechanical integrity of storage caverns, Oil and Gas J., Oct. 28, 1996.

- Dickie, D. E., and Serata, S., Long-term evaluation of underground stress control at the Sifto salt mine, Min. Eng., 45, 54-57, 1993.
- Fischer, F.J., Light, B.D., Salt-cavern closure during and after formation, In 'Mechanical Properties of Salt', edited by H.R. Hardy and M. Langer, Hanover, Germany, Sept 24-28, 1984.
- Gomm, H., and Peters, L., Steerable BHAs drill storage wells with difficult trajectories, Oil & Gas Journal, 44-50, July 19, 1993.
- Gomm, H., and Quast, P., Status of gas storage in salt caverns in West Germany, SPE 19084, Presented at the SPE Gas Tech. Symp., Dallas, TX, 265-278, 1989.
- Hardy, H.R., and Langer, M., (Editors), The Mechanical Behaviour of Salt I, Proceedings of the First Conference, Pennsylvania State University, Trans Tech Publications, 1981.
- Hardy, H.R. and langer, M., (Editors), The Mechanical Behavior of Salt, Proceedings of the Second Conference, Hanover, Germany, Trans Tech Publications, 1984.
- Istvan, J.A., Evans, L.J., Weber, J.H., Devines, C., Rock Mechanics for gas storage in bedded salt caverns, Int. J. Rock Mech. Min. Sci., Vol. 34, p. 647, Paper no. 142, 1997.
- Knott, I., Cross, K.G., Gas storage caverns in east Yorkshire Zechstein Salt: Some geological and engineering aspects of site selection, SPE 24923, Presented at the 67th Annual Technical Conference and Exhibition, Washington, D.C., Oct. 4-7, 1992.
- Langer, M., Use of solution-mined caverns in salt for oil and gas storage and toxic waste disposal in Germany, Engineering Geology, v. 35, 183-190, 1993.
- Lux, K. H., Some results of case history studies with respect to the mechanical behavior of existing caverns, Proc. 2nd Conf. Mech. Behavior of Salt, Hanover, Germany, 581-604, 1988.
- Magtengaard, J., Danish projects reveal characteristics and limits of gas cavern storage, Oil & Gas Journal, 41-44, August 5, 1991.
- Mason, R.G., Gas-storage calculations yield accurate cavern , inventory data, Oil & Gas Journal, 49-53, July 2, 1990.
- Nilsen, B., and Olsen, J., (Editors), Storage of Gases in Rock Caverns, Proc. of the International Conference on Storage of Gases in Rock Caverns, Trondheim, Norway, June 26-28, 1989.
- Ratigan, J.L., DeVries, K.L., Potential geomechanics problems resulting from closely spaced storage wells in dome salt, SPE 19085., Presented at the SPE Gas Technology Symposium, Dallas, Texas, 279-286, 1989.
- Salami, M. R., Design model for petroleum storage in a rock salt dome, in Rock Mechanics as a Multidisciplinary Science, Proceeding o the 32nd US Symposium on Rock Mechanics, Balkema, Rotterdam, 1073-1082, 1991.

- Sears, G.F., Jessen, F.W., Controlled Solution Mining in Massive Salt, Society of Petroleum Engineer Journal, Texas, 115-125, June, 1966.
- Tek, M.R., Natural Gas Underground Storage: Inventory and Deliverability, Pennwell, March 1997.

8. Sandia National Laboratory Publications (Restricted and Public)

Title Author(s)	An in-situ creep experiment using a large rock-salt pillar / Bundesanstalt für Geowissenschaften und Rohstoffe. Hunsche, U.
Pubdate Location	1985.] Nuclear Waste Management Programs Library
Call Number	QE471.15.S2 B86 1983
Title	MeBtechnische Erfassung von Gebrigsbewegungen im Steinsalz im Hinblick auf die Entwicklung eines Abbaufeldes /
Location Call Number	Nuclear Waste Management Programs Library QE604.E73 1962
Title	Hochfrequenz Mikroseismizität im Steinsalz der Asse um den 945-m-Bereich /
Series Author(s)	GSF-Bericht ; GSF - Forschungszentrum für Umwelt und Gesundheit GmbH Varamanci II
Pubdate	c1991.
Location	Nuclear Waste Management Programs Library
Call Number	GSF-Bericht 32/91
Title	Applied salt-rock mechanics : the in-situ behavior of salt rocks /
Series	Developments in geotechnical engineering 16A
Author(s)	Baar, C. A.
Pubdate	1977-
Location Coll Number	Technical Library/NM
Call Number	IA /00 B111 19//
Title	PROCEEDINGS OF A SYMPOSIUM ON SALT, 04TH, 1974, HOUSTON, V 02 Fourth
	Symposium on salt
Author(s)	Coogan, A. H. NORTHERN OHIO GEOLOGICAL SOCIETY
Publiste Location	1974 Nuclear Waste Management Programs Library
Call Number	OE 471.15.S2.S8 1974 v.02
Location	Technical Library/NM
Call Number	QE 471.15 -S2 -S8 -74 2
Titlo	Leached Salt Cavern Design Using a Fracture Criterion for Rock Salt
Author(s)	Preece. Dale S. Sandia National Laboratories.
Pubdate	March 1984
Location	Technical Library/NM
Call Number	SAND83-2345C
Title	EXCAVATION DESIGN IN ROCK SALT - LABORATORY EXPERIMENTS - MATERIAL
	MODELLING AND VALIDATIONS
Author(s) Pubdata	Sandia National Laboratories, Lauson, Herrick S. Sandia National Laboratories,
Location	Nuclear Waste Management Programs Library
Call Number	SAND81-1167C
Location	Technical Library/NM
Call Number	SAND81-1167C

Author(s) Pubdate	A Workhardening/recovery model of transient creep of salt during stress loading and unloading. Sandia National Laboratories, Munson, Darrell E. April 1982
Location	Nuclear Waste Management Programs Library
Call Number	SAND82-0810J Technical Library/NM
Location Call Number	SAND82-0810I
Cum rumber	
Title	VERIFICATION OF FINITE ELEMENT METHODS USED TO PREDICT CREEP RESPONSE OF LEACHED SALT CAVERNS
Author(s)	Preece, Dale S. Sandia National Laboratories,
Published Location	April 1982 Technical Library/NM
Call Number	SAND82-1149C
Cum rumber	511(1)(2) 11()(2)
Title	ANALYSIS OF STEADY STATE CREEP OF BEDDED ROCK SALT - ABSTRACT
Author(s)	Herrmann, Walter Sandia National Laboratories,
Pubdate	November 1979
Location	Technical Library/NM
Call Number	SAND/9-2383A
Title	COMPARISON OF THE BEHAVIOR OF ROCK SALT FROM DIFFERENT SOURCES - ABSTRACT
Author(s)	Wawersik, Wolfgang R. Sandia National Laboratories,
Pubdate	December 1979
Location	Technical Library/NM
Call Number	SAND/9-2464A
Title	Heated mine room and pillar secondary creep response.
Author(s) Pubdata	April 1980
Location	April 1700 Nuclear Waste Management Programs Library
Call Number	SAND79-1199
Location	Technical Library/CA
Call Number	SAND79-1199
T '41.	New sight simulation of this second is not safe and the form the second second of DII TDII
litle	Numerical simulation of drift response in rock salt resulting from the emplacement of RH-IRU waste in an array of horizontal long horaboles in a separate panel at the WIPP
Author(s)	Sandia National Laboratories Argüello, Jose Guadalune
Pubdate	March 1987
Location	WIPP Library
Call Number	SAND86-2224C
Location	Nuclear Waste Management Programs Library
Call Number	SAND86-2224C
Location	Technical Library/NM
Call Number	SAND86-2224C
Title	Pseudostrain representation of multipass excavations in salt
Author(s)	Sandia National Laboratories Munson Darrell F.
Pubdate	March 1987
Location	Nuclear Waste Management Programs Library
Call Number	SAND86-2397C
Location	Technical Library/NM
Call Number	SAND86-2397C

Title Author(s) Pubdate Location Call Number Location Call Number	Evaluating design procedures for structures in rock salt. Sandia National Laboratories, Wawersik, Wolfgang R. March 1987 Nuclear Waste Management Programs Library SAND86-2597C Technical Library/NM SAND86-2597C
Title	International Symposium on Salt, 06TH, 1983, Ontario, Canada, V 01, Introduction, Geology, Geophysics, Evaporites, Geochemistry, Tectonics, Rock Mechanics and Dry Mining 6th symposium on salt
Author(s) Pubdate Location Call Number Location Call Number	Schreiber, B. Charlotte. SALT INST. ALEXANDRIA, VA. 1985 Nuclear Waste Management Programs Library QE 471.15.S2.S8 1983 v.01 Technical Library/NM QE 471.15 -S2 -S8 -83 1
Title	A Characterization of pressure records in inelastic rock demonstrated by hydraulic fracturing measurements in salt.
Author(s) Pubdate Location Call Number Location Call Number	Sandia National Laboratories, Wawersik, Wolfgang R. June 1988 Nuclear Waste Management Programs Library SAND87-2569J Technical Library/NM SAND87-2569J
Title Author(s) Pubdate Location	International Symposium on Salt, 06TH, 1983, Ontario, Canada, V 02, Solution Mining, Cavern Development and Utilization, Solar Evaporation, Salt Processing and Technology, Occupational Safety and Health, Environmental Considerations 6th symposium on salt Schreiber, B. Charlotte. SALT INST. ALEXANDRIA, VA. 1985 Nuclear Waste Management Programs Library
Title Author(s) Pubdate Location Call Number Location Call Number	International Symposium on Salt, 06TH, 1983, Ontario, Canada, V 02, Solution Mining, Cavern Development and Utilization, Solar Evaporation, Salt Processing and Technology, Occupational Safety and Health, Environmental Considerations 6th symposium on salt Schreiber, B. Charlotte. SALT INST. ALEXANDRIA, VA. 1985 Nuclear Waste Management Programs Library QE 471.15.S2.S8 1983 v.02 Technical Library/NM QE 471.15 -S2 -S8 -83 2
Title Author(s) Pubdate Location Call Number Location Call Number Title	International Symposium on Salt, 06TH, 1983, Ontario, Canada, V 02, Solution Mining, Cavern Development and Utilization, Solar Evaporation, Salt Processing and Technology, Occupational Safety and Health, Environmental Considerations 6th symposium on salt Schreiber, B. Charlotte. SALT INST. ALEXANDRIA, VA. 1985 Nuclear Waste Management Programs Library QE 471.15.S2.S8 1983 v.02 Technical Library/NM QE 471.15 -S2 -S8 -83 2 Cross-Hole Measurements of Velocity and Attenuation to Detect a Disturbed Zone in Salt at the Waste Isolation Pilot Plant
Title Author(s) Pubdate Location Call Number Location Call Number Title Author(s) Pubdate Location Call Number Location Call Number Location Call Number	International Symposium on Salt, 06TH, 1983, Ontario, Canada, V 02, Solution Mining, Cavern Development and Utilization, Solar Evaporation, Salt Processing and Technology, Occupational Safety and Health, Environmental Considerations 6th symposium on salt Schreiber, B. Charlotte. SALT INST. ALEXANDRIA, VA. 1985 Nuclear Waste Management Programs Library QE 471.15.S2.S8 1983 v.02 Technical Library/NM QE 471.15 -S2 -S8 -83 2 Cross-Hole Measurements of Velocity and Attenuation to Detect a Disturbed Zone in Salt at the Waste Isolation Pilot Plant Holcomb, David Joseph Sandia National Laboratories, December 1987 WIPP Library SAND87-3016C Nuclear Waste Management Programs Library SAND87-3016C

Location Call Number	Nuclear Waste Management Programs Library SAND88-2744C Taskning Library (NM
Location Call Number	SAND88-2744C
Title	Approach to First Principles Model Prediction of Measured Waste Isolation Pilot Plant (WIPP) In Situ Room Closure in Salt
Author(s) Pubdate Location Call Number Location Call Number	Munson, Darrell E. Sandia National Laboratories, January 1989 Nuclear Waste Management Programs Library SAND88-2535C Technical Library/NM SAND88-2535C
Title Author(s) Pubdate Location Call Number Location Call Number Location Call Number	The delineation of the disturbed rock zone surrounding excavations in salt, Sandia National Laboratories, Borns, David J. August 1988 WIPP Library SAND88-2230C Nuclear Waste Management Programs Library SAND88-2230C Technical Library/NM SAND88-2230C
Title Author(s) Pubdate Location Call Number Location Call Number Location Call Number	Computed and measured responses of a thick-walled hollow cylinder of salt subjected to both homogeneous and inhomogeneous loading. Sandia National Laboratories, Morgan, Harold S. June 1989 WIPP Library SAND88-2744 Nuclear Waste Management Programs Library SAND88-2744 Technical Library/CA SAND88-2744
Title Author(s) Pubdate Location Call Number	Investigation of an Empirical Creep Law for Rock Salt that Uses Reduced Elastic Moduli Morgan, Harold S. Sandia National Laboratories, December 1989 Technical Library/NM SAND89-2322C
Title Author(s) Pubdate Location Call Number Location Call Number	Development and validation of a predictive technology for creep closure of underground rooms in salt. Sandia National Laboratories, Munson, Darrell E. October 1990 Nuclear Waste Management Programs Library SAND90-1147C Technical Library/NM SAND90-1147C
Title Author(s) Pubdate Location	Analysis of early creep closures in geomechanically connected underground rooms in salt. Sandia National Laboratories, Munson, Darrell E. January 1991 Nuclear Waste Management Programs Library

Call Number	SAND90-2081C
Location	Technical Library/NM
Call Number	SAND90-2081C
Title	The Use of thick-walled hollow cylinder creep tests for evaluating flow criteria for rock salt.
Author(s)	Sandia National Laboratories, Morgan, Harold S.
Pubdate	November 1990
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-1861C
Location	Technical Library/NM
Call Number	SAND90-1861C
Title	The effect of brine injection on the creep of WIPP salt during laboratory tests.
Author(s)	Sandia National Laboratories, Brodsky, Nancy S.
Pubdate	January 1991
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-2367C
Location	Technical Library/NM
Call Number	SAND90-2367C
Title	Changes in rock salt permeability due to nearby excavation.
Author(s)	Sandia National Laboratories, Daemen, Jaak Joseph K.
Pubdate	January 1991
Location	WIPP Library
Call Number	SAND91-0269C
Location	Nuclear Waste Management Programs Library
Call Number	SAND91-0269C
Location	Technical Library/NM
Call Number	SAND91-0269C
Title Author(s) Pubdate Location Call Number Location Call Number Location Call Number	Experimental and Modeling Results for Reconsolidation of Crushed Natural Rock Salt under Varying Physical Conditions: Applications to Nuclear Waste Isolation in Bedded and Domal Salt Formations Zeuch, David Henry Sandia National Laboratories, August 1991 WIPP Library SAND90-2509C Nuclear Waste Management Programs Library SAND90-2509C Technical Library/NM SAND90-2509C
Title	Room response analyses to investigate waste disposal issues.
Author(s)	Sandia National Laboratories, Argüello, Jose Guadalupe,
Pubdate	August 1991
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-2449C
Location	Technical Library/NM
Call Number	SAND90-2449C
Title	Structural analyses and design of a concrete liner that limits the disturbed rock zone around underground openings in salt.
Author(s)	Sandia National Laboratories, Ehgartner, Brian L.
Pubdate	January 1991

Location	WIPP Library
Call Number	SAND90-2702
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-2702
Location	Technical Library/CA
Call Number	SAND90-2702
Title	Development and validation of a predictive technology for creep closure of underground rooms in salt
Author(s) Pubdate Location Call Number Location Call Number Location Call Number	Santi Sandia National Laboratories, Munson, Darrell E. July 1991 WIPP Library SAND90-1147 Nuclear Waste Management Programs Library SAND90-1147 Technical Library/CA SAND90-1147
Title	Analysis of early creep closures in geomechanically connected underground rooms in salt.
Author(s)	Sandia National Laboratories, Munson, Darrell E.
Pubdate	July 1991
Location	WIPP Library
Call Number	SAND90-2081
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-2081
Location	Technical Library/CA
Call Number	SAND90-2081
Title	Constitutive modeling of salt behavior, state of the technology.
Author(s)	Sandia National Laboratories, Munson, Darrell E.
Pubdate	July 1991
Location	Nuclear Waste Management Programs Library
Call Number	SAND91-1614C
Location	Technical Library/NM
Call Number	SAND91-1614C
Title	The Effect of brine on the creep of WIPP salt in laboratory tests.
Author(s)	Sandia National Laboratories, Brodsky, Nancy S.
Pubdate	July 1991
Location	WIPP Library
Call Number	SAND90-2367
Location	WIPP Library
Call Number	SAND90-2367
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-2367
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-2367
Location	Technical Library/CA
Call Number	SAND90-2367
Title	Measured and calculated closures of open and brine filled shafts and deep vertical boreholes in salt
Author(s)	Munson, Darrell E. Sandia National Laboratories,
Pubdate	December 1991
Location	WIPP Library

Call Number	SAND91-1869C
Location	Nuclear Waste Management Programs Library
Call Number	SAND91-1869C
Location Call Number	I ecnnical Library/NM SANDOL 1860C
Call Number	SAND91-1809C
Title	Changes in rock salt permeability due to nearby excavation.
Author(s)	Sandia National Laboratories, Stormont, John C.
Pubdate	July 1991
Location	WIPP Library
Call Number	SAND91-0269
Location	Nuclear Waste Management Programs Library
Call Number	SAND91-0269
Location	Technical Library/NM
Call Number	SAND91-0269
Title	Experimental and modeling results for reconsolidation of crushed natural rock salt under varying
	physical conditions.
Author(s)	Sandia National Laboratories, Zeuch, David Henry
Pubdate	November 1991
Location	WIPP Library
Call Number	SAND90-2509
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-2509
Location	Technical Library/NM
Call Number	SAND90-2509
Title	Measured and calculated closures of open and brine filled shafts and deep vertical boreholes in salt.
Author(s)	Sandia National Laboratories, Munson, Darrell E.
Pubdate	January 1992
Location	WIPP Library
Call Number	SAND91-1869
Location	Nuclear Waste Management Programs Library
Call Number	SAND91-1869
Location	Technical Library/CA
Call Number	SAND91-1869
Title	Two- and three-dimensional calculations of scaled in situ tests using the M-D model of salt creen
Author(s)	Sandia National Laboratories Munson Darrell E
Pubdate	January 1993
Location	Nuclear Waste Management Programs Library
Call Number	SAND92-2063C
Location	Technical Library/NM
Call Number	SAND92-2063C
Title	Two and three dimensional scaled tests of a constitutive model for salt creep.
Author(s)	Sandia National Laboratories, Munson, Darrell E.
Pubdate	November 1992
Location	Nuclear Waste Management Programs Library
Call Number	SAND92-2063A
Location	Technical Library/NM
Call Number	SAND92-2063A

Title	Dilatancy of rock salt in laboratory tests.
Author(s)	Sandia National Laboratories, Van Sambeek, Leo L.
Pubdate	October 1992
Location	Nuclear Waste Management Programs Library
Call Number	SAND92-2184A
Location	Technical Library/NM
Call Number	SAND92-2184A
Title	The Use of gas flow measurements to delineate damage near excavations in bedded rock salt.
Author(s)	Sandia National Laboratories, Stormont, John C.
Pubdate	September 1992
Location	Nuclear Waste Management Programs Library
Call Number	SAND92-2082A
Title	Probability distributions for parameters of the Munson-Dawson salt creep model
Author(s)	Munson, Darrell E. Sandia National Laboratories,
Pubdate	January 1994
Location	Technical Library/NM
Call Number	SAND93-2090C
Title	Consolidation and permeability of crushed WIPP salt in hydrostatic and triaxial compression
Author(s)	Zeuch, David Henry Sandia National Laboratories,
Pubdate	December 1994
Location	Technical Library/NM
Call Number	SAND94-2199C
Title Author(s) Pubdate Location Call Number Location Call Number	Correlation of theoretical calculations and experimental measurements of damage around a shaft in salt Munson, Darrell E. Sandia National Laboratories, November 1994 Nuclear Waste Management Programs Library SAND94-2134C Technical Library/NM SAND94-2134C
Title	Constitutive representation of damage development and healing in WIPP salt
Author(s)	Munson, Darrell E. Sandia National Laboratories,
Pubdate	November 1994
Location	Nuclear Waste Management Programs Library
Call Number	SAND94-2136C
Location	Technical Library/NM
Call Number	SAND94-2136C
Title	Dynamic compaction of salt: initial demonstration and performance testing
Author(s)	Hansen, Francis D. Sandia National Laboratories,
Pubdate	December 1994
Location	Nuclear Waste Management Programs Library
Call Number	SAND94-2313C
Location	Technical Library/NM
Call Number	SAND94-2313C
Title	The Influence of crushed rock salt particle gradation on compaction
Author(s)	Zeuch, David Henry Sandia National Laboratories,
Pubdate	January 1995

Location	Nuclear Waste Management Programs Library
Call Number	SAND94-2343C
Location	Technical Library/NM
Call Number	SAND94-2343C
Title	The effect of brine injection on the creep of WIPP salt during laboratory tests.
Author(s)	Sandia National Laboratories, Brodsky, Nancy S.
Pubdate	August 1990
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-2367A
Title	Computational implementation of the multi-mechanism deformation coupled fracture model for salt.
Author(s)	Sandia National Laboratories, Koteras, James Richard
Pubdate	December 1995
Location	Technical Library/NM
Call Number	SAND96-2983A
Title	Computational implementation of the multi-mechanism deformation coupled fracture model for salt.
Author(s)	Sandia National Laboratories, Koteras, James Richard
Pubdate	March 1996
Location	Nuclear Waste Management Programs Library
Call Number	SAND95-2983C
Location	Technical Library/NM
Call Number	SAND95-2983C
Title Author(s) Pubdate Location Call Number	Comparison between predicted and measured south drift closures at the WIPP using a transient creep model for salt. Sandia National Laboratories, Munson, Darrell E. 1985 Nuclear Waste Management Programs Library SAND85-2238C
Title	Computational implementation of the multi-mechanism deformation coupled fracture model for salt.
Author(s)	Sandia National Laboratories, Koteras, James Richard
Pubdate	March 1996
Location	Technical Library/NM
Call Number	SAND96-0987C
Title	Three dimensional finite element simulations of room and pillar mines in rock salt.
Author(s)	Sandia National Laboratories, Hoffman, Edward L.
Pubdate	March 1996
Location	Technical Library/NM
Call Number	SAND96-0988C
Title	Using three dimensional structural simulations to study the interactions of multiple excavations in salt.
Author(s)	Sandia National Laboratories,
Pubdate	March 1997
Location	Technical Library/NM
Call Number	SAND97-1017A

Title	Rock mechanics : tools and techniques : proceedings of the 2nd North American Rock Mechanics Symposium, NARMS '96, a regional conference of ISRM, Montreal, Quebec, Canada, 19-21 June 1996 /
Author(s) Pubdate	Aubertin, Michel INTERNATIONAL SOCIETY FOR ROCK MECHANICS
Location	Nuclear Waste Management Programs Library
Call Number	TA706.N67 1996 v.1
Location	Nuclear Waste Management Programs Library
Call Number	TA706.N67 1996 v.2
Title	Using three dimensional structural simulations to study the interactions of multiple excavations in salt.
Author(s) Pubdate	Sandia National Laboratories, Hoffman, Edward L. January 1998
Location	Technical Library/NM
Call Number	SAND97-1017C
Title Author(s)	Micromechanics and homogenization techniques for analyzing the continuum damage of rock salt. Sandia National Laboratories, DeVries, Kerry L.
Pubdate	February 1998
Location	WIPP Library
Call Number	SAND98-0466C
Location	Nuclear Waste Management Programs Library
Call Number	SAND98-0466C
Coll Number	SANDOS-0466C
	SAND20-0400C
Title	Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage
	evolution and healing.
Author(s) Pubdata	Sandia National Laboratories, Pieirie, 10m W.
Location	WIDD L ibrary
Call Number	SAND98-0417C
Location	Nuclear Waste Management Programs Library
Call Number	SAND98-0417C
Location	Technical Library/NM
Call Number	SAND98-0417C
Title	Selected bibliography on ground subsidence caused by dissolution and removal of salt and other soluble evaporites.
Author(s)	Geological Survey (U.S.) Ege, John Rooda
Pubdate	1979
Location	Nuclear Waste Management Programs Library
Call Number	USGS-OFR-79-1133
Title	Experimental determination of the relationship between permeability and microfracture-induced damage in bedded salt.
Author(s)	Sandia National Laboratories, Pfeifle, Tom W.
Pubdate	February 1998
Location	WIPP Library
Call Number	SAND98-0411C
Location	Nuclear waste Management Programs Library
L acation	SAND70-0411C Technical Library/NM
Location	

Call Number	SAND98-0411C
Title	Application of isochronous healing curves in predicting damage evolution in salt structure.
Author(s)	Sandia National Laboratories, Chan, Kwai S.
Pubdate	February 1998
Location	WIPP Library
Call Number	SAND97-3146J
Location	Nuclear Waste Management Programs Library
Call Number	SAND97-3146J
Location	Technical Library/NM
Call Number	SAND97-3146J
Title	Rock mechanics models evaluation report.
Author(s)	Fluor Technology, Inc. Morrison-Knudsen Engineers, Inc.
Pubdate	August 1987
Location	Nuclear Waste Management Programs Library
Call Number	DOE/CH/46656-09
Location	Nuclear Waste Management Programs Library
Call Number	DOE/CH/46656-09
Title	A study of the extent of the disturbed rock zone surrounding long-term excavations in rock salt.
Author(s)	Sandia National Laboratories, Miller, Joel D.
Pubdate	August 1998
Location	WIPP Library
Call Number	SAND98-1755A
Location	Nuclear Waste Management Programs Library
Call Number	SAND98-1755A
Location	Technical Library/NM
Call Number	SAND98-1755A
Title	Assessing the disturbed rock zone (DRZ) around an eight hundred meter vertical shaft in salt using ultrasonic waves.
Author(s)	Sandia National Laboratories, Holcomb, David Joseph
Pubdate	February 1999
Location	Technical Library/NM
Call Number	SAND99-0442A
Title	Numerical modeling of deformation in salt basins : technical report /
Author(s)	Battelle Memorial Institute. Chang, C. Y. Battelle Memorial Institute.
Pubdate	[1987]
Location	Nuclear Waste Management Programs Library
Call Number	BMI/ONWI-649
Title	Surface displacements and pillar stresses associated with nuclear waste disposal in salt.
Author(s)	MINNESOTA UNIV., MINNEAPOLIS Hardy, M. P. Union Carbide Corporation.
Pubdate	June 1977
Location	Nuclear Waste Management Programs Library
Call Number	Y/OWI/SUB-7118/P1
Title	Comparison and evaluation of field and numerical results from the Site A heater test at Avery Island
Author(s)	RE/SPEC Inc. Wagner, Ralph A. Battelle Memorial Institute.
Pubdate	[1985].
Location	Nuclear Waste Management Programs Library
Call Number	ONWI-300

Title	Computation of the extent of the disturbed rock zone surrounding long-term excavations in rock salt.
Author(s)	Sandia National Laboratories, Miller, Joel D.
Pubdate	April 1999
Location	WIPP Library
Call Number	SAND99-0858A
Location	Nuclear Waste Management Programs Library
Call Number	SAND99-0858A
Location	Technical Library/NM
Call Number	SAND99-0858A
Title	NWTS in situ test needs workshop : August 29/30, 1978.
Author(s)	NWTS In Situ Test Needs Workshop Dames & Moore.
Pubdate	1978.
Location	Nuclear Waste Management Programs Library
Call Number	ONWI-7
Title	Parametric study involving thermo/viscoelastic analyses of a room and nillar configuration :
The	technical report /
Author(s)	Battelle Memorial Institute. Wagner, Ralph A. Battelle Memorial Institute.
Pubdate	1983.
Location	Nuclear Waste Management Programs Library
Call Number	ONWI-115
Title	Key geomechanics issues at the Waste Isolation Pilot Plant.
Author(s)	Sandia National Laboratories, Hansen, Francis D.
Pubdate	June 1999
Location	WIPP Library
Call Number	SAND99-1281C
Location	Nuclear Waste Management Programs Library
Call Number	SAND99-1281C
Location	Technical Library/NM
Call Number	SAND99-1281C
Title	Critical parameters for a high level waste repository
1 IUC Author(s)	United States, Binnall E. D. Lawrence Livermore Laboratory
Author(s) Pubdata	1085 1087
Fubuate Location	1903-1907. Nuclear Weste Management Dreagence Library
Coll Number	NUDEC/CD 4161 y 1
L agation	NUREO/UR-4101, V.I Nuclear Waste Management Drograms Library
Coll Number	NUDEC/CD 4161 x 2
L agation	NUKEU/UK-4101, V.2
Call Number	NUREG/CR-4161, v.3
Title	Assessing the disturbed rock zone (DRZ) around a 655 meter vertical shaft in salt using ultrasonic
	waves, an upuale.
Author(s)	Sandia Ivalional Laboratories, Hardy, Kobert Douglas
rubdate	
Location	I echnical Library/NM
Call Number	SAND2000-0668C
Title	Low temperature creep mechanics in rock salt.
Author(s)	Sandia National Laboratories, Wawersik, Wolfgang R.
Pubdate	September 1982

Location	Nuclear Waste Management Programs Library
Call Number	SAND82-2071A
Location	Technical Library/NM
Call Number	SAND82-2071A
Title Author(s) Pubdate Location Call Number Location Call Number	The Effect of a random variation of rock salt creep on closure calculations for an excavated opening in a complex stratigraphy. Sandia National Laboratories, Branstetter, Linda J. September 1982 Nuclear Waste Management Programs Library SAND82-2256A Technical Library/NM SAND82-2256A
Title	Using hydraulic fracturing and mineback to determine in situ stresses in rock salt.
Author(s)	Sandia National Laboratories, Wawersik, Wolfgang R.
Pubdate	April 1988
Location	Nuclear Waste Management Programs Library
Call Number	SAND88-1113A
Location	Technical Library/NM
Call Number	SAND88-1113A
Title	Three-dimensional finite element simulation of creep deformation in rock salt.
Author(s)	Sandia National Laboratories, Weatherby, Joe Randall
Pubdate	March 1993
Location	Nuclear Waste Management Programs Library
Call Number	SAND92-1537C
Location	Technical Library/NM
Call Number	SAND92-1537C
Title	Recursive adaptive meshing and discrete fracture modeling in rock salt.
Author(s)	Sandia National Laboratories, Chieslar, Jack D.
Pubdate	September 1992
Location	Nuclear Waste Management Programs Library
Call Number	SAND92-1628A
Location	Technical Library/NM
Call Number	SAND92-1628A
Title	Creep rupture of rock salt
Author(s)	Munson, Darrell E. Sandia National Laboratories,
Pubdate	February 1994
Location	Technical Library/NM
Call Number	SAND93-3902J
Title	A Constitutive model for representing coupled creep, fracture, and healing in Rock Salt.
Author(s)	Sandia National Laboratories, Chan, Kwai S.
Pubdate	January 1996
Location	Technical Library/NM
Call Number	SAND95-1150A
Title	Buoyancy flow in fractured rock with a salt gradient in the groundwateran initial study /
Author(s)	Swedish Nuclear Fuel and Waste Management Company (SKB), Claesson, Johan Lund University.
Pubdate	February 1992.
Location	Nuclear Waste Management Programs Library

Call Number	SKB-TR-92-05
Title	Buoyancy flow in fractured rock with a salt gradient in the groundwater : a second study of coupled salt and thermal buoyancy /
Author(s)	Swedish Nuclear Fuel and Waste Management Company (SKB). Claesson, Johan Lund University.
Pubdate	November 1992.
Location	Nuclear Waste Management Programs Library
Call Number	SKB-TR-92-41
Title	Brine migration test : Asse Salt Mine, Federal Republic of Germany : final report /
Series	GSF-Bericht;
Author(s)	GSF - Gesellschaft für Strahlen- und Umweltforschung Munchen Rothfuchs, 1. Battelle Memorial
Pubdate	
Location	WIPP Library
Call Number	GSF-R 6/88
Location	Nuclear Waste Management Programs Library
Call Number	GSF-R 6/88
Title	Consolidation of crushed rock salt, part I : experimental results for dry salt analyzed using a hot-
Author(c)	pressing model. Sandia National Laboratories, Holcomb, David Joseph
Author(s) Pubdate	October 1988
Location	WIPP Library
Call Number	SAND88-1469
Location	Nuclear Waste Management Programs Library
Call Number	SAND88-1469
Location	Technical Library/CA
Call Number	SAND88-1469
Title	Transmittal of English translations of German papers on sealing and backfilling.
Author(s)	Battelle Memorial Institute.
Pubdate	March 1987
Location	Nuclear Waste Management Programs Library
Call Number	ONWI-015-87-050
Title	ANALYSIS OF CREEP DATA FOR VARIOUS NATURAL ROCK SALTS
Author(s)	Herrmann, Walter Sandia National Laboratories,
Pubdate Location	WIDD Library
Call Number	SAND81_2567
Location	Nuclear Waste Management Programs Library
Call Number	SAND81-2567
Location	Technical Library/NM
Call Number	SAND81-2567
Title	Measurements of very large deformations in "Potash Salt" in conjuction with an ongoing mining operation.
Author(s)	Sandia National Laboratories, Sattler, Allan R.
Pubdate	June 1980
Location	WIPP Library
Call Number	SAND79-2254
Location	Nuclear Waste Management Programs Library
Call Number	SAND79-2254

Location	Technical Library/NM
Call Number	SAND79-2254
Title	Evaluation of potential crushed-salt constitutive models.
Author(s)	Sandia National Laboratories, Callahan, Gary D. RE/SPEC Inc.
Pubdate	December 1995
Location	WIPP Library
Call Number	SAND95-2143
Location	Nuclear Waste Management Programs Library
Call Number	SAND95-2143
Location	Technical Library/CA
Call Number	SAND95-2143
Title	Preliminary constitutive properties for salt and nonsalt rocks from four potential repository sites
Author(s)	Battelle Memorial Institute. Pfeifle, Tom W. RE/SPEC Inc.
Pubdate	July 1983
Location	Nuclear Waste Management Programs Library
Call Number	ONWI-450
Location	Nuclear Waste Management Programs Library
Call Number	ONWI-450
Title	The Permeability of salt-crystal interfaces to brine /
Series	ORNL (Oak Ridge National Laboratory) ;
Author(s)	Oak Ridge National Laboratory, Gilpatrick, L. O. Oak Ridge National Laboratory,
Pubdate	1982.
Location	Nuclear Waste Management Programs Library
Call Number	ORNL-5874
Title	Proceedings of the National Waste Terminal Storage Program Information Meeting, Columbus, Ohio, October 30-November 1, 1979 : sponsored by the U.S. Dept. of Energy, Richland Operations Office
Author(s)	National Waste Terminal Storage Program Information Meeting National Waste Terminal Storage Program Office (U.S.).
Pubdate	1979]
Location	Nuclear Waste Management Programs Library
Call Number	ONWI-62
Title	Mechanical behavior of Avery Island halite, a preliminary analysis : technical report /
Author(s)	Battelle Memorial Institute. Carter, Neville L. RE/SPEC Inc.
Pubdate	1980.
Location	Nuclear Waste Management Programs Library
Call Number	ONWI-100
Title	Evaluation of salt bodies and their overburden in the Netherlands for the disposal of radioactive waste : e. geological barrier model
Author(s)	Geological Survey of the Netherlands (RGD). Ruizendaal, A. Netherlands.
Pubdate	November 1993
Location	Nuclear Waste Management Programs Library
Call Number	NWML/1999/0061
Title	Physical properties data for rock salt /
Series	NBS monograph ; 167
Author(s)	Gevantman, L. H.

Alberta Geological Survey August, 2001

Pubdate Location Call Number Location Call Number	1981. Nuclear Waste Management Programs Library NBS-MONO-167 Technical Library/NM TN 902G337-81
Title	The effect of a random variation of rock salt creep on calculations of storage room closure for the
Author(s) Pubdate Location Call Number Location Call Number Location Call Number	WIPP project. Sandia National Laboratories, Branstetter, Linda J. December 1982 WIPP Library SAND82-0024 Nuclear Waste Management Programs Library SAND82-0024 Technical Library/CA SAND82-0024
Title Author(s) Pubdate Location Call Number Location Call Number Location Call Number	Review and comparison of transient creep laws used for natural rock salt. Sandia National Laboratories, Herrmann, Walter April 1981 WIPP Library SAND81-0738 Nuclear Waste Management Programs Library SAND81-0738 Technical Library/NM SAND81-0738
Title Author(s) Pubdate Location Call Number Location Call Number	IMPLEMENTATION OF A TRANSIENT CREEP MODEL FOR NATURAL ROCK SALT AS A MATERIAL RESPONSE SUBROUTINE FOR SANCHO Sandia National Laboratories, Montgomery, Stephen T. Sandia National Laboratories, August 1981 Nuclear Waste Management Programs Library SAND81-1163 Technical Library/NM SAND81-1163
Title Author(s) Pubdate Location Call Number Location Call Number Location Call Number	REVISED THEORY OF WATER TRANSPORT IN ROCK SALT Hadley, G. Ronald Sandia National Laboratories, October 1981 WIPP Library SAND80-2398 Nuclear Waste Management Programs Library SAND80-2398 Technical Library/NM SAND80-2398
Title Author(s) Pubdate Location Call Number Location Call Number	Interim summary of Sandia creep experiments on rock salt from the WIPP study area, southeastern New Mexico Sandia National Laboratories, Wawersik, Wolfgang R. February 1979 WIPP Library SAND79-0115 Nuclear Waste Management Programs Library SAND79-0115

Location	Technical Library/CA
Call Number	SAND79-0115
Location	Technical Library/NM
Call Number	SAND79-0115
Title	Constitutive models applied in the analysis of creep of rock salt.
Author(s)	Sandia National Laboratories, Dawson, Paul Richard
Pubdate	April 1979
Location	WIPP Library
Call Number	SAND79-0137
Location	Nuclear Waste Management Programs Library
Call Number	SAND79-0137
Location	Technical Library/CA
Call Number	SAND79-0137
Title	Compressibility of granulated rock salt.
Author(s)	Sandia National Laboratories, Stinebaugh, Robert E.
Pubdate	August 1979
Location	WIPP Library
Call Number	SAND79-1119
Location	Nuclear Waste Management Programs Library
Call Number	SAND79-1119
Location	Technical Library/NM
Call Number	SAND79-1119
Title Author(s) Pubdate Location Call Number Location Call Number	THERMAL PROPERTIES MEASUREMENT ON ROCK SALT SAMPLES FROM THE SITE OF THE PROPOSED WASTE ISOLATION PILOT PLANT Sweet, James N. Sandia National Laboratories, May 1980 Nuclear Waste Management Programs Library SAND80-0799 Technical Library/NM SAND80-0799
Title	CREEP HEALING OF FRACTURES IN ROCK SALT
Author(s)	Costin, Laurence S. Sandia National Laboratories,
Pubdate	August 1980
Location	WIPP Library
Call Number	SAND80-0392
Location	Nuclear Waste Management Programs Library
Call Number	SAND80-0392
Location	Technical Library/CA
Call Number	SAND80-0392
Title	MODEL FOR TRANSIENT CREEP OF SOUTHEASTERN NEW MEXICO ROCK SALT
Author(s)	Herrmann, Walter Sandia National Laboratories,
Pubdate	November 1980
Location	WIPP Library
Call Number	SAND80-2172
Location	Nuclear Waste Management Programs Library
Call Number	SAND80-2172
Location	Technical Library/CA
Call Number	SAND80-2172

Title	A Comparison of unified creep-plasticity and conventional creep models for rock salt based on
	predictions of creep behavior measured in several in situ and bench-scale experiments.
Author(s)	Sandia National Laboratories, Morgan, Harold S.
Pubdate	April 1988
Location Coll Number	WIPP LIDEARY
Call Number	SAND0/-100/ Nuclear Weste Menagement Dragrams Library
Location Call Number	Nuclear waste Management Programs Library
L agation	SANDO/-100/ Technical Library/CA
Call Number	SAND87-1867
	5/11/207-1007
Title	Interim report on the effects of brine-saturation and shear stress on consolidation of crushed, natural
	rock salt from the Waste Isolation Pilot Plant (WIPP).
Author(s)	Sandia National Laboratories, Zeuch, David Henry
Pubdate	July 1991
Location	WIPP Library
Call Number	SAND91-0105
Location	WIPP Library
Call Number	SAND91-0105
Location	Nuclear Waste Management Programs Library
Call Number	SAND91-0105
Location Call Number	rechnical Library/NM
Call Number	SAND91-0105
Title	In situ measurements of rock salt permeability changes due to nearby excavation
Author(s)	Sandia National Laboratories Stormont John C
Pubdate	July 1991
Location	WIPP Library
Call Number	SAND90-3134
Location	Nuclear Waste Management Programs Library
Call Number	SAND90-3134
Location	Technical Library/CA
Call Number	SAND90-3134
Title	Multiaxial creep of natural rock salt.
Author(s)	Sandia National Laboratories, Mellegard, K. D.
Location	WIPP Library
Call Number	SAND91-7083 Nuclear Weste Menagement Dragrams Library
Coll Number	SANDO1 7083
Location	Technical Library/CA
Call Number	SAND91-7083
	5/1(1)/1 /005
Title	Indicator tests for the creep of rock salt from borehole Moss Bluff 2, Moss Bluff Dome, Texas
Author(s)	Wawersik, Wolfgang R. Sandia National Laboratories,
Pubdate	November 1992
Location	Technical Library/CA
Call Number	SAND92-2122
Location	Technical Library/NM
Call Number	SAND92-2122
T •41	
litle	Dilation-induced permeability changes in rock salt
Autnor(s)	Stormont, John C. Sandia National Laboratories,
rupuate	NUVEIIIUEI 1993

Location	WIPP Library
Call Number	SAND93-2670C
Location	Nuclear Waste Management Programs Library
Call Number	SAND93-2670C
Location	Technical Library/NM
Call Number	SAND93-2670C
Title	Triaxial creep measurements on rock salt from the Jennings dome, Louisiana, Borehole LA-1, Core
Author(s) Pubdate Location Call Number	 Wawersik, Wolfgang R. Sandia National Laboratories, May 1994 Technical Library/CA SAND94-1432
Title	Mechanical behavior of New Mexico rock salt in triaxial compression up to 200 degrees C.
Author(s)	Sandia National Laboratories, Wawersik, Wolfgang R.
Pubdate	July 1979
Location	WIPP Library
Call Number	SAND77-1192
Location	Nuclear Waste Management Programs Library
Call Number	SAND77-1192
Title	Mechanical behavior of New Mexico rock salt in triaxial compression up to 200 degrees C.
Author(s)	Sandia National Laboratories, Wawersik, Wolfgang R.
Pubdate	July 1979
Location	Nuclear Waste Management Programs Library
Call Number	SAND77-1192C
Title Author(s) Pubdate Location Call Number	Untersuchungen zur dichte und schallgeschwindigkeit des steinsalzes der Asse in situ und im labor. GSF - Gesellschaft für Strahlen- und Umweltforschung München Gommlich, G. Institut für Tieflagurung Abteilung für Endlagertechnologie. 1993 Nuclear Waste Management Programs Library GSF-R-22/93
Title	Distribution of chloride in a salt-saturated grout in contact with rock salt.
Author(s)	Army Engineer Waterways Experiment Station, Wakeley, Lillian D.
Pubdate	September 1985
Location	Nuclear Waste Management Programs Library
Call Number	WES/MP/SL-85-15
Title	Fluid and ionic transport properties of deformed salt rock : final report, January 1984-June 1985 /
Series	Nuclear science and technology (Commission of the European Communities)
Author(s)	Commission of the European Communities Peach, C. J. Commission of the European Communities.
Pubdate	1987.
Location	Nuclear Waste Management Programs Library
Call Number	EUR-10926-EN
Title	Experimental consolidation of granulated rock salt with application to sleeve buckling.
Author(s)	RE/SPEC Inc. Hansen, Francis D. Oak Ridge National Laboratory,
Pubdate	1976.
Location	Nuclear Waste Management Programs Library
Call Number	ORNL-SUB-4269-21

Title Author(s) Pubdate Location Call Number	Thermal conductivity of rock salt from Louisiana salt domes / Oak Ridge National Laboratory. Morgan, M. T. United States. June 1979. Nuclear Waste Management Programs Library ORNL/TM-6809	
Title	Influence of deformation on the fluid transport properties of salt rocks = Invloed van deformatie op de vloeistoftransporteigenschappen van zoutgesteenten /	
Series Author(s) Pubdate	Geologica ultraiectina no. 77 Peach, Colin Jack, Rijksuniversiteit te Utrecht. 1991.	
Location Call Number	Technical Library/NM TN 900P42 -91	
Title	THERMAL PROPERTIES MEASUREMENT ON ROCK SALT SAMPLES FROM THE SITE OF THE PROPOSED WASTE ISOLATION PILOT PLANT	
Author(s)	Sweet, James N. Sandia National Laboratories,	
Pubdate Location	1980 Nuclear Waste Management Programs Library	
Call Number	SAND80-0799A	
Location	Nuclear Waste Management Programs Library	
Call Number	SAND80-0799A	
Title	Field tests of stress measurement techniques in rock salt.	
Author(s)	Sandia National Laboratories, Stormont, John C.	
Pubdate	April 1984	
Location	WIPP Library	
Call Number	SAND83-2507	
Location	Nuclear Waste Management Programs Library	
L agestion	SAND85-2507 Technical Library/CA	
Call Number	SAND83-2507	
Title	Analysis of borehole inclusion stress measurement concepts proposed for use in the Waste Isolation Pilot Plant in situ testing program.	
Author(s)	Sandia National Laboratories, Morgan, Harold S.	
Published Published	June 1982 WIPP Library	
Call Number	SAND82-1192	
Location	WIPP Library	
Call Number	SAND82-1192	
Location	Nuclear Waste Management Programs Library	
Call Number	SAND82-1192	
Location	Technical Library/NM	
Call Number	SAND82-1192	
Title	Preliminary deformation-mechanism map for salt (with application to WIPP).	
Author(s)	Sandia National Laboratories, Munson, Darrell E.	
Pubdate	January 1979	
Location	Nuclear Waste Management Programs Library	
Call Number	SAND79-0076	
Location	Technical Library/NM	
Call Number	SAND79-0076	

Title	Structural analysis of Weeks Island Mine/petroleum repository.
Author(s)	Sandia National Laboratories, Hilton, Peter D.
Pubdate	August 1979
Location	Nuclear Waste Management Programs Library
Call Number	SAND79-0595
Location	Technical Library/NM
Call Number	SAND79-0595
Title	ANALYSIS OF STEADY STATE CREEP OF SOUTHEASTERN NEW MEXICO BEDDED SALT
Author(s)	Herrmann, Walter Sandia National Laboratories,
Pubdate	March 1980
Location	WIPP Library
Call Number	SAND80-0558
Location	Nuclear Waste Management Programs Library
Call Number	SAND80-0558
Location	Technical Library/CA
Call Number	SAND80-0558
Title	Borehole-inclusion stressmeter measurements in bedded salt.
Author(s)	Sandia National Laboratories, Cook, C. Wayne
Pubdate	July 1980
Location	Nuclear Waste Management Programs Library
Call Number	SAND79-0377
Location	Technical Library/NM
Call Number	SAND79-0377
Title	Proceedings of the International Conference and Exposition on Fatigue, Corrosion Cracking, Fracture Mechanics and Failure Analysis, 1985, Salt Lake City, V 02, Corrosion Cracking
Author(s)	Goel, V. S. American Society for Metals
Pubdate	
Location	Technical Library/CA
Call Number	1A 409C67 -85 2
Title	Creep tests on clean and argillaceous salt from the Waste Isolation Pilot Plant.
Author(s)	Sandia National Laboratories, Mellegard, K. D.
Pubdate	May 1993
Location	WIPP Library
Call Number	SAND92-7291 Nastan Wasta Managamat Dagaman Library
Location Call Number	Nuclear waste Management Programs Library
Call Number	SAND92-7291 Tashrisal Lihram (NIM
Location Coll Number	E ANDO2, 7201
Can Number	SAND92-7291
Title	Review of waste package verification tests : Semiannual report covering the period April 1985 - September 1985.
Author(s)	Brookhaven National Laboratory, Soo, P. United States.
Pubdate	January 1986
Location	Nuclear Waste Management Programs Library
Call Number	NUREG/CR-3091, v./
Title	Thermoelastic/plastic analysis of waste-container sleeve : III. Influence of salt strength on sleeve loading.
Author(s)	RE/SPEC Inc. Pariseau, William G. Oak Ridge National Laboratory,

Pubdate	1975.
Location	Nuclear Waste Management Programs Library
Call Number	ORNL-SUB-4269-2
Title	Field evaluation of stress measurement techniques in rock salt.
Author(s)	Sandia National Laboratories, Stormont, John C.
Pubdate	September 1983
Location	Nuclear Waste Management Programs Library
Call Number	SAND83-2051A
Location	Technical Library/NM
Call Number	SAND83-2051A
Title	Field tests of stress measurement techniques in rock salt.
Author(s)	Sandia National Laboratories, Stormont, John C.
Pubdate	December 1983
Location	Nuclear Waste Management Programs Library
Call Number	SAND83-2507C
Location	Technical Library/NM
Call Number	SAND83-2507C
Title Author(s) Pubdate Location Call Number Location Call Number	RECENT MEASUREMENTS OF POWER LAW STRESS EXPONENTS - ACTIVATION ENERGIES AND CREEP TRANSIENTS - ABSTRACT Sandia National Laboratories, Wawersik, Wolfgang R. Sandia National Laboratories, April 1981 Nuclear Waste Management Programs Library SAND81-1117A Technical Library/NM SAND81-1117A
Title Author(s) Pubdate Location Call Number Location Call Number	COMPUTER MODELING OF STRESS STATES ASSOCIATED WITH FLUID MIGRATION EXPERIMENTS Trucano, Timothy Guy Sandia National Laboratories, September 1981 Nuclear Waste Management Programs Library SAND81-2008 Technical Library/NM SAND81-2008
Title Author(s) Pubdate Location Call Number	ON THE DESCRIPTION OF LOW STRESS - LOW TEMPERATURE CREEP OF ROCK SALT - ABSTRACT Wawersik, Wolfgang R. Sandia National Laboratories, March 1982 Technical Library/NM SAND82-0797A
Title	A Transient creep model for salt during stress loading and unloading.
Author(s)	Sandia National Laboratories, Munson, Darrell E.
Pubdate	September 1982
Location	WIPP Library
Call Number	SAND82-0962
Location	Nuclear Waste Management Programs Library
Call Number	SAND82-0962
Location	Technical Library/NM
Call Number	SAND82-0962

Title	Consolidation and permeability of crushed WIPP salt under hydrostatic and shear stress states.
Author(s)	Sandia National Laboratories, Brodsky, Nancy S.
Pubdate	February 1992
Location	Nuclear Waste Management Programs Library
Call Number	SAND92-0383A
Location	Technical Library/NM
Call Number	SAND92-0383A
Title	Extension of the M-D model for treating stress drops in salt
Author(s)	Munson, Darrell E. Sandia National Laboratories,
Pubdate	June 1993
Location	Technical Library/NM
Call Number	SAND93-0377C
Title	Stress measurements in rock salt using hydraulic fracturing.
Author(s)	Sandia National Laboratories, Wawersik, Wolfgang R.
Pubdate	April 1986
Location	WIPP Library
Call Number	SAND86-1034C
Location	Nuclear Waste Management Programs Library
Call Number	SAND86-1034C
Title	Effects of temperature, temperature gradients, stress, and irradiation on migration of brine inclusions in a salt repository /
Author(s)	Oak Ridge National Laboratory, Jenks, Glenn Herbert, Oak Ridge National Laboratory.
Pubdate	July 1979.
Location	Nuclear Waste Management Programs Library
Call Number	ORNL-5526

9. EUB Applications Related to Salt Caverns (Source: EUB Library)

Record number:	16867
Application number:	BT1A
Company:	NUCO PETROLEUMS LTD.
Summary:	FOR A SCHEME TO DISPOSE OF PRODUCED SALT
•	WATER INTO THE BEAVERHILL LAKE
	FORMATION IN THE LLOYDMINSTER FIELD
Department:	DEVELOPMENT
Descriptors:	Water disposal
Area/Field:	LLOYDMINSTER
Date registered:	19550101
Decision/Approval/Order	DECISION NOT AVAILABLE
Date of hearing:	19550922
Hearing location:	PETROLEUM AND NATURAL GAS CONSERVATION BOARD, CALGARY
Notice date:	19550901
Number of interventions:	1
Note.	NOTICE AND DECISION NOT AVAILABLE
Note.	APPLICATION NOT AVAILABLE
Date created:	May 27, 1997
Updated:	July 21, 1997
Status:	Completed
Record number:	222
Application number:	910420
Company:	Amoco Canada Petroleum Company Ltd.
Summary:	To add a well for water disposal to dispose of brine water associated with salt cavern sand
Department:	Drilling and Production
Descriptors:	Water disposal [•] Waste disposal
Area/Field:	Lindbergh
Date registered:	19910315
Decision/Approval/Order	Approval 7139
Note.	Approval 6424 is rescinded
Rox number:	965
Data aroated:	May 27, 1007
Undeted:	lung 22, 1007
Status:	Completed
Status.	Completed
Record number:	27084
Application number:	830529
Company:	Northwestern Utilities Ltd
Summary:	AMEND APPROVAL NO. 3673. FOR THE
~ , .	CONSTRUCTION AND OPERATION OF ONE ADDITIONAL SALT STORAGE CAVERN FOR THE DUBPOSE OF STORING NATURAL CAS
Departments	I UNI USE UF STUNINU NATUKAL UAS DEVELODMENT
Department:	DE VELOPIVIEINI Cas starage: Amondment: Cas starage
Descriptors:	Gas storage; Amendment; Gas storage
Area/Field:	KEDWAIEK
Date registered:	19830603
Decision/Approval/Order:	Approval 36/3A
Notice date:	19830810

Alberta Geological Survey August, 2001

Objection date:	19830901
Date created:	May 27, 1997
Updated:	December 07, 1997
Status:	Completed
Record number:	31696
Application number:	820506
Company:	Northwestern Utilities Ltd
Summary:	DISPOSE OF BRINE PRODUCED IN ASSOCIATION WITH THE CONSTRUCTION OF THE CAVERN STORAGE FACILITIES
Department:	DEVELOPMENT
Descriptors:	Gas storage; SALT; Underground storage
Area/Field:	FORT SASKATCHEWAN; REDWATER
Date registered:	19820526
Decision/Approval/Order:	Approval 3673
Notice date:	19820820
Objection date:	19820914
Related application:	820504; 820505
Date created:	May 27, 1997
Updated:	December 07, 1997
Status:	Completed
Record number:	31698
Application number:	820504
Company:	Northwestern Utilities Ltd
Summary:	CONSTRUCTION AND OPERATION OF A SALT CAVERN STORAGE FACILITY FOR THE PURPOSE OF STORING NATURAL GAS
Department:	DEVELOPMENT
Descriptors:	Gas storage: SALT: Underground storage
Area/Field:	FORT SASKATCHEWAN; REDWATER
Date registered:	19820526
Decision/Approval/Order:	Approval 3673 ; Approval 3674
Notice date:	19820820
Objection date:	19820914
Related application:	820505; 820506
Date created:	May 27, 1997
Updated:	December 07, 1997
Status:	Completed
Record number:	20453
Application number:	790326
Company:	DOME PETROLEUM LIMITED
Summary:	TO AMEND APPROVAL NO. 2358 FOR THE CONSTRUCTION AND OPERATION OF TWO ADDITIONAL SALT STORAGE CAVERNS
Department:	DEVELOPMENT
Descriptors:	Gas storage; Amendment; Underground storage
Area/Field:	FORT SASKATCHEWAN
Date registered:	19790516
Decision/Approval/Order:	Approval 2358A
Notice date:	19790807
Objection date:	19790823

Date created:	May 27, 1997
Updated:	December 07, 1997
Status:	Completed
Record number:	23385
Application number:	770520
Company:	DOME PETROLEUM LIMITED
Summary:	FOR THE DISPOSAL OF BRINE PRODUCED IN CONJUNCTION WITH THE CONSTRUCTION AND OPERATION OF SALT CAVERN STORAGE FACILITIES IN THE FORT SASKATCHEWAN AREA
Department:	DEVELOPMENT
Descriptors:	Waste disposal; WASTE DUMP
Area/Field:	FORT SASKATCHEWAN
Date registered:	19770704
Decision/Approval/Order:	Approval 2520
Notice date:	19770719
Objection date:	19770810
Date created:	May 27, 1997
Updated:	December 08, 1997
Status:	Completed
Record number:	30714
Application number:	770101
Company:	CHEVRON STANDARD LIMITED
Summary:	FOR STORAGE AND DISPOSAL OF LIQUID HYDROCARBONS
Department:	Gas
Descriptors:	Gas storage; Liquefied natural gas; Underground storage; Salt
Area/Field:	FORT SASKATCHEWAN
Date registered:	19770203
Decision/Approval/Order:	Approval 1547D
Box number:	1003
Date created:	May 27, 1997
Updated:	December 08, 1997
Status:	Completed
Record number:	26819
Application number:	008154
Company:	M-P PETROLEUM LTD.
Summary:	TO CONSTRUCT AND OPERATE A SALT CAVERN L.P.G STORAGE FACILITY
Department:	DEVELOPMENT
Descriptors:	Gas storage; Underground storage
Area/Field:	FORT SASKATCHEWAN
Date registered:	19/41028
Decision/Approval/Order:	Approval 2101
Notice date:	19/5010/
Objection date:	19/50210 Mar 27, 1007
Date created:	May 21, 1997
Updated:	December 08, 1997
Status:	Completed

27004
007756
DOME PETROLEUM LIMITED
AMENDMENT OF APPROVAL NO. 1932 FOR A SCHEME TO CONSTRUCT AND OPERATE A SALT CAVERN STORAGE FACILITY
DEVELOPMENT
Gas storage; Amendment; Underground storage
FORT SASKATCHEWAN
19740501
Approval 2042
19740703
19740725
May 27, 1997
December 08, 1997
Completed
27470
007659
SHELL CANADA LIMITED
AMENDMENT OF APPROVAL NO. 1849 FOR THE INJECTION AND STORAGE OF NATURAL GAS LIQUIDS
Gas
Gas storage; Liquefied natural gas; Salt
SIMONETTE
19740314
Approval 1849A
May 27, 1997
December 08, 1997
Completed
26489
007578
IMPERIAL PIPELINE COMPANY, LIMITED
TO CONSTRUCT AND OPERATE A SALT CAVERN STORAGE FACILITY
DEVELOPMENT
Gas storage; Underground storage
REDWATER
19/40131
Approval 2039
19/40625
19/40/15
REPORT - BRINE POND, DESIGN RECOMMENDATIONS, REDWATER, ALBERTA, 731116; BRINE POND REDWATER, ALBERTA, DESIGN RECOMMENDATION, 740124
May 27, 1997
December 08, 1997
Completed

28900 007325 DOME PETROLEUM LIMITED FOR CONSTRUCTION AND OPERATION OF AN UNDERGROUND SALT CAVERN STORAGE
FACILITY DEVELOPMENT
Gas storage; Liquefied natural gas; Salt
FORT SASKATCHEWAN
19730904
Approval 1932
APPL. NO. 33
$M_{\rm av} 27, 1997$
December 08 1997
Completed
31143
006461
CHEVRON STANDARD LIMITED
OPERATE A FRACTIONATION PLANT AND RELATED SURFACE FACILITIES ASSOCIATED WITH THE STORAGE OF LIQUID PETROLEUM GASES IN SALT CAVERNS
Gase
Gas storage: Liquefied natural gas: Salt
FORT SASKATCHEWAN
19720630
Approval 1547A
{APPL. NO. 3
ARC 18-13-65
May 27, 1997
November 28, 1997
Completed
29507
UU5673 CHEVRON STANDARD I IMITED
FOR APPROVAL FOR THE CONSTRUCTION AND OPERATION OF A SALT CAVERN STORAGE FACILITY
Gas
Underground storage; Gas storage; Salt
FORT SASKATCHEWAN
19710329 Ammana 1,1524
Approval 1534
19/10311 ENERGY RESOURCES CONSERVATION ROAPD
CALGARY
19/10415 10710505
2
5

Related application: Special report:	005672 PROPOSED BRINE PONDS - FORT SASKATCHEWAN FRACTIONIZATION PLANT.: DATED 710400
Note:	NO TRANSCRIPTS ON FILE
Box number:	APPL, NO. 17
Accession number:	16-4-72
Date created:	May 27, 1997
Updated:	December 08, 1997
Status:	Completed
Record number:	29508
Application number:	005672
Company: Summary:	FOR STORAGE AND DISPOSAL OF LIQUID HYDROCARBONS
Department:	Gas
Descriptors:	Gas storage; Liquefied natural gas
Area/Field:	FORT SASKATCHEWAN
Date registered:	19710329
Decision/Approval/Order:	Approval 1547
Date of hearing:	19710511
Hearing location:	ENERGY RESOURCES CONSERVATION BOARD, CALGARY
Notice date:	19710415
Objection date:	19710505
Number of interventions:	2
Exhibits:	
Box number:	APPL. NO. 16
Accession number:	19-6-30 Marc 27, 1007
Date created:	May 27, 1997
Updaled: Status:	Completed
Status.	Completed
Record number:	24877
Application number:	009520
Company:	DOME PETROLEUM LIMITED
Summary:	FOR THE STORAGE AND DISPOSAL OF LIQUID HYDROCARBONS IN UNDERGROUND CAVERNS IN THE FORT SASKATCHEWAN AREA
Department:	DEVELOPMENT
Descriptors:	Gas storage; Underground storage
Area/Field:	FORT SASKATCHEWAN
Date registered:	19760727
Decision/Approval/Order:	Approval 2358
Notice date:	19761129
Objection date:	19/01222 May 27, 1007
Date created:	May 27, 1997 December 08, 1007
Opualeu: Status:	Completed
Status.	Completed
Record number:	18781
Application number:	003021
Company:	HOME OIL COMPANY LIMITED
Summary:	APPROVAL OF A SCHEME FOR DISPOSAL OF BRINE

	PRODUCED DURING DEVELOPMENT OF STORAGE CAVERNS IN SALT
Department:	DEVELOPMENT
Descriptors:	Water disposal; Underground storage; Water disposal; HYDROCARBON
Area/Field:	HARDISTY
Date registered:	19660718
Decision/Approval/Order:	Approval 878 ; Approval 885
Notice date:	19660804
Objection date:	19660815
Date created:	May 27, 1997
Updated:	December 08, 1997
Status:	Completed

APPENDIX B

DATA SUMMARY TABLES - ORIGINAL STUDY AREA

- Table B.1Bulk density log data available in the original study area for the
Elk Point Group
- Table B.2Dipmeter log data available in the original study area for the
Elk Point and Beaverhill Lake Groups
- Table B.3Core available in the original study area for the Elk Point
Group
- Table B.4DST data available in original study area for wells that had bulk
density log data

Alberta Geological Survey March, 2001

No.	UWI	Well Name	Year Logged	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Total Depth (m KB)	Top Elk Point GP (m KB)	Top of Fm in the Elk Point Group Logged with Density	Bottom Fm Depth (m KB)	Lowest Formation Logged by Density	EUB Digital Data?
1	00/06-05-048-06W4/0	HUSKY D.H. WILDMERE 6-5-48-6	1970	610	975	1405	1180	ELK POINT GRP	1377	ORDOVICIAN	N
2	00/02-19-053-01W4/0	HUSKY 2C FROG LAKE 2-19-53-1	1996	132	1133	1140	842	ELK POINT GRP	1080	BASAL RED BEDS	Y
3	00/10-17-054-05W4/00	HUSKY DH ETHELWYN 10D-17-54-5	1971	366	965		948	ELK POINT GRP	964	PRAIRIE EVAPORITE	N
4	00/16-27-055-12W4/0	CHEMCELL DUVERNAY NACL 16-27-55-12	1969	187	1448		1066	ELK POINT GRP	1442	BASAL RED BEDS	N
5	00/16-13-071-01\V4/0	AEC ET AL SCHELTENS 16-13-71-1	1985	184	824	825	751	ELK POINT GRP	751	ELK POINT GRP	N
6	00/07-12-071-11W4/0	RAX ET AL MILLS 7-12-71-11	1978	309	1373		799	ELK POINT GRP	1331	BASAL RED BEDS	N
7	00/06-26-072-11\V4/0	PAN AM A-1 BEHAN 6-26-72-11	1969	427	1035		800	ELK POINT GRP	1030	CONTACT RAPIDS	N
8	00/07-08-082-06W4/0	GULF RESDELN 7-8-82-6	1981	370	654		424	ELK POINT GRP	603	GRANITE WASH	N
9	00/07-32-083-06W4/0	NORTHSTAR ET AL SURMONT 7-32-83-6	1980	25	703	703	457	ELK POINT GRP	703	TOTAL DEPTH	N
10	W0/05-23-094-07W4/0	CHEVRON STEEPBANK EX 8-22-94-7	1981	12	414	416	329	ELK POINT GRP	397	METHY FM	N
11	00/03-14-095-07W4/0	HUSKY TENN NOVA 3-14-95-7	1981	45	403	404	275	ELK POINT GRP	404	PRECAMBRIAN	N
12	00/03-15-095-07\\4/0	HUSKY TENN NOVA 3-15-95-7	1981	43	391	393	261	ELK POINT GRP	377	PRECAMBRIAN	N
13	00/04-22-095-07W4/0	HUSKY TENN NOVA 4-22-95-7	1981	45	383	383	252	ELK POINT GRP	371	GRANITE WASH	N
14	00/01-24-095-07W4/0	CDCOG TENN MUSKEGR 1-24-95-7	1980	129	412	412	283	ELK POINT GRP	405	GRANITE WASH	N
15	AA/12-07-095-08W4/0	ESSO 90PC OSLO 12-7-95-8	1990	10	311	312	184	ELK POINT GRP	307	PRECAMBRIAN	N
16	00/15-08-096-01W4/0	GULF FIREBAG 15-8-96-1	1976	15	134	135	129	ELK POINT GRP	······		N
17	00/08-09-053-03W4/0	HUSKY 8B MARWAYNE 8-9-53-3	1996	132	1393	1400	869	WATT MTN	1149	PRECAMBRIAN	Y
18	00/06-12-053-04W4/0	STERLING ET AL DEWBERRY 6-12-53-4	1998	425	1104	1105	899	WATT MTN	1062	WINNIPEGOSIS	N
19	03/16-23-056-05W4/0	CANSALT L-2 NACL LIND 16-23-56-5	1989	156	1218	1253	824	WATT MTN	1133	LOTSBERG	N
20	11/15-13-058-05W4/2	MURPHY SWD 5 LIND 15-13-58-5	1987	178	1549	1573	870	WATT MTN	1502	BASAL SANDSTONE UNIT	N
21	00/08-01-062-11W4/0	SASKOIL SUGDEN 8-1-62-11	1991	296	1635	1635	936	WATT MTN	1555	CAMBRIAN	N
22	02/01-28-063-02W4/0	RENAISSANCE COLD LAKE 1-28-63-2	1989	170	794	805	618	WATT MTN	744	WINNIPEGOSIS	N
23	02/08-26-063-03W4/0	CON BEACON PARA COLOLK 8-26-63-3	1992	177	1243	1249	589	WATT MTN	1174	CAMBRIAN	N
24	02/06-13-063-08W4/0	CDNOXY SWD 2 SUGDEN 6-13-63-8	1986	270	1461	1462	783	WATT MTN	1474	PRECAMBRIAN	N
25	AA/15-20-064-02W4/0	ESSO MARIE OV 15-20-64-2	1979	20	1206	1207	652	WATT MTN	1203	PRECAMBRIAN	N
26	00/07-18-064-03W4/0	ESSO 79 SWD COLDLK 7-18-64-3	1979	20	1291	1288	666	WATT MTN	1288	PRECAMBRIAN	N
27	00/01-19-064-03W4/0	ESSO 85 SWD ETHELLK 1-19-64-3	1985	250	1232	1293	657	WATT MTN	1221	PRECAMBRIAN	N
28	00/11-22-064-03W4/0	ESSO 83 SWD ETHELLK 11-22-64-3	1983	252	1276	1279	654	WATT MTN	1279	PRECAMBRIAN	N
29	00/03-29-064-03\V4/0	ESSO 81 SWD ETHELLK 3-29-64-3	1981	20	1309	1309	672	WATT MTN	1303	PRECAMBRIAN	N
30	00/08-33-064-03\V4/0	ESSO 83 INJ ETHELLK 8-33-64-3	1993	256	1318	1318	706	WATT MTN	1318	PRECAMBRIAN	N
31	00/05-06-064-06W4/0	MOBIL GARTH 5-6-64-6	1989	20	1403	1404	736	WATT MTN	1384	PRECAMBRIAN	N

Table B.1: Bulk density log data available in the original study area for the Elk Point Group (source: AEUB well database)

Alberta Geological Survey March, 2001

No.	UWI	Well Name	Year Logged	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Total Depth (m KB)	Top Elk Point GP (m KB)	Top of Fm in the Elk Point Group Logged with Density	Bottom Fm Depth (m KB)	Lowest Formation Logged by Density	EUB Digital Data?
32	00/12-06-064-06W4/0	MOBIL GARTH 12-6-64-6	1985	18	1412	1413	744	WATT MTN	1394	PRECAMBRIAN	N
33	00/03-04-065-03W4/0	ESSO SWD LEMING ETHELLK 3-4-65-3	1978	395	1318	1319	692	WATT MTN	1309	PRECAMBRIAN	N
34	AA/09-20-065-03W4/0	ESSO 81 ETHELLK OV 9-20-65-3	1999	37	1211	1262	624	WATT MTN	1258	PRECAMBRIAN	N
35	AA/06-08-066-02W4/0	ESSO MEDLEY OV 6-8-66-2	1979	18	1213	1218	677	WATT MTN	1210	PRECAMBRIAN	N
36	AA/14-28-066-03W4/0	ESSO MEDLEY OV 14-28-66-3	1979	16	1251	1254	644	WATT MTN	1245	PRECAMBRIAN	N
37	00/10-08-066-05W4/0	BP PCI MARGLK 10-8-66-5	1984	15	1352	1354	707	WATT MTN	1335	PRECAMBRIAN	N
38	00/10-10-066-06W4/0	BP LEMING 10-10-66-6	1981	157	1363	1363	720	WATT MTN	1351	PRECAMBRIAN	N
39	02/10-05-067-04W4/0	AMOCO 1084 MOORE 10-5-67-4	1985	168	1338	1340	694	WATT MTN	1321	PRECAMBRIAN	N
40	00/07-11-067-06W4/0	ESSO AEC 85 FISHCK 7-11-67-6	1985	250	1340	1342	701	WATT ΜΤΝ	1327	PRECAMBRIAN	N
41	00/12-31-067-07W4/0	ESSO AEC 85 FISHCK 12-31-67-7	1985	15	1333	1334	698	WATT MTN	1322	PRECAMBRIAN	N
42	00/07-34-067-08W4/0	ESSO AEC 85 FISHCK 7-34-67-8	1985	249	1385	1386	753	WATT MTN	1374	PRECAMBRIAN	N
43	00/11-19-068-06W4/0	ESSO AEC 85 FISHCK 11-19-68-6	1985	15	1317	1340	715	WATT MTN	1392	PRECAMBRIAN	N
44	07/08-12-069-05W4/0	AECOG (NE) FISHER 8D-12-69-5	1990	196	922	921	665	WATT MTN	904	CONTACT RAPIDS	N
45	00/11-26-069-10W4/0	ARCO HEART LAKE 11-26-69-10	1967	189	190	1432	832	WATT MTN	1421	BASAL RED BEDS	N
46	00/05-21-071-04W4/0	AMOCO AEC KIRBY 5-21-71-4	1980	154	1159	1160	591	WATT MTN	1160	PRECAMBRIAN	N
47	00/06-30-071-05W4/0	AMOCO AEC IPIATIK 6-30-71-5	1980	282	1222	1222	648	WATT MTN	1222	PRECAMBRIAN	N
48	00/10-17-071-06W4/0	AMOCO AEC IPIATIK GRIST 10-17-71-6	1980	156	1225	1225	642	WATT MTN	1217	PRECAMBRIAN	N
49	00/10-26-071-07W4/0	AEC PHILLIPS WIAU 10-26-71-7	1980	10	1230	1230	672	WATT MTN	1225	PRECAMBRIAN	N
50	00/16-36-072-01W4/0	AEC ET AL FOSTERCK 16-36-72-1	1985	199	771	805	657	WATT MTN	754	CONTACT RAPIDS	N
51	00/11-18-072-04W4/0	AMOCO AEC IPIATIK 11-18-72-4	1979 🖉	284	1188	1189	610	WATT MTN	1178	CONTACT RAPIDS	N
52	00/10-22-072-06W4/0	AMOCO KIRBY 10-22-72-6	2000	,299	1214	1214	672	WATT MTN	1205	BASAL RED BEDS	N
53	00/11+14-072-08W4/0	AEC PHILLIPS WIAU 11-14-72-8	1980	151	1278	1279	721	WATT MTN	1254	BASAL RED BEDS	N
54	00/10-33-072-08W4/0	AEC PHILLIPS WIAU 10-33-72-8	1980	10	1292	1292	746	WATT MTN	1271	BASAL RED BEDS	N
55	00/10-14-073-05W4/0	AMOCO AEC IPIATIK KIRBY 10-14-73-5	1979	281	1119	1120	600	WATT MTN	938	LOTSBERG FM	N
56	00/11-30-074-05W4/0	AMOCO KIRBY 11-30-74-5	1977	0	1108	1110	606	WATT MTN	943	LOTSBERG FM	N
57	00/10-09-074-06W4/0	AMOCO KIRBY 10-9-74-6	1977	188	1094	1094	583	WATT MTN	1079	BASAL RED BEDS	N
58	00/06-24-074-07W4/0	AMOCO KIRBY 6-24-74-7	1977	190	1142	1144	632	WATT MTN	1137	BASAL RED BEDS	N
59	02/10-01-077-07W4/0	HOME LEISMER A10-1-77-7	1987	191	958	959	466	WATT MTN	952	PRECAMBRIAN	N
60	00/03-07-077-07W4/0	HOME LEISMER 3-7-77-7	1998	128	788	788	521	WATT MTN	775	CONTACT RAPIDS	N
61	00/02-08-077-08W4/0	NORCEN POR LEISMER 2-8-77-8	1982	168	782	782	568	WATT MTN	767	WINNIPEGOSIS	N
62	00/10-28-077-08W4/0	ALTANA HUBER CHRISTINA 10-28-77-8	1971	118	788	789	513	WATT MTN	729	WINNIPEGOSIS	N
63	00/10-05-080-02W4/0	HOME WINNEFRED LAKE 10-5-80-2	1967	116	558	558	478	WATT MTN	537	CONTACT RAPIDS	N

Table B.1: Bulk density log data available in the original study area for the Elk Point Group (source: AEUB well database)
--

March, 2001

No,	UWI	Well Name	Year Logged	Top Log Interval (m KB)	Bottom Log Intervai (m KB)	Total Depth (m KB)	Top Elk Point GP (m KB)	Top of Fm in the Elk Point Group Logged with Density	Bottom Fm Depth (m KB)	Lowest Formation Logged by Density	EUB Digital Data?
64	00/11-32-080-04W4/0	HOMESTEAD CANOXY COWPAR 11-32-80-4	1976	62	365	503	395	WATT MTN	490	WINNIPEGOSIS	N
65	00/10-29-082-12W4/0	HUSKY ET AL DIVIDE 10-29-82-12	1988	201	964	965	689	WATT MTN	941	CONTACT RAPIDS	N
66	00/10-08-083-06W4/0	GULF RESDELN 10-8-83-6	1981	120	624	625	482	WATT MTN	560	WINNIPEGOSIS	N
67	00/01-14-083-06W4/0	TEXCAN COTTONWOOD 1-14-83-6	1969	113	685	685	433	WATT MTN	678	PRECAMBRIAN	N
68	00/15-14-084-11\\\4/0	JACOS WD HANGST 15-14-84-11	1990	183	883	885	522	WATT MTN	872	PRECAMBRIAN	N
69	02/09-27-084-11W4/0	PCI PCEJ HANGST 9-27-84-11	1988	80	863	865	498	WATT MTN	852	PRECAMBRIAN	N
70	00/14-24-085-06W4/0	RAX NEWBY 14-24-85-6	1988	119	470	471	337	WATT MTN	449	CONTACT RAPIDS	N
71	00/16-27-085-11W4/0	TEXCAN CS HORSE 16-27-85-11	1969	183	779	779	418	WATT MTN	771	PRECAMBRIAN	N
72	00/11-10-085-13W4/0	CIGOL ET AL HORSE 11-10-85-13	1970	97	875	875	526	WATT MTN	872	PRECAMBRIAN	N
73	00/02-32-089-12W4/0	SUNCOR CLARKE 2-32PREV-89-12	1981	86	717	717	398	WATT MTN	713	PRECAMBRIAN	N
74	00/06-18-093-12W4/0	AOSTRA WDW1 ATHABASCA 6-18-93-12	1991	179	599	600	315	WATT MTN	583	PRECAMBRIAN	N
75	00/13-23-094-07W4/0	CHEVRON WDW STEEPBANK 13-23-94-7	1991	180	396	398	284	WATT MTN	329	WINNIPEGOSIS	N
76	02/14-28-055-06W4/0	AMOCO INJ LINDBERGH 14-28-55-6	1991	188	1398	1398	989	PRAIRIE EVAPORITE	1282	LOTSBERG FM	N
77	00/06-01-052-13W4/0	VOYAGER PLAIN 6-1-52-13	1978	749	2100	2100	1356	PRAIRIE EVAPORITE	2008	BASAL SANDSTONE UNIT	N
78	00/02-13-055-13W4/0	WESTMIN HAIRY 2-13-55-13	1984	334	1734	1745	1170	PRAIRIE EVAPORITE	1723	PRECAMBRIAN	N
79	02/02-03-065-03W4/0	ESSO 83 SWD ETHELLK 2-3-65-3	1984	256	1312	1313	712	PRAIRIE EVAPORITE	1259	CAMBRIAN	N
80	00/07-07-072-03W4/0	AEC FOSTER CREEK 7-7-72-3	1996	170	836	839	624	PRAIRIE EVAPORITE	813	CONTACT RAPIDS	Y
81	00/06-25-073-03W4/0	AEC FOSTER CREEK 6-25-73-3	1997	149	812	825	685	PRAIRIE EVAPORITE	685	PRAIRIE EVAPORITE	Y
82	00/09-25-073-05W4/0	AMOCO KIRBY 9-25-73-5	1980	223	845	845	601	PRAIRIE EVAPORITE	835	CONTACT RAPIDS	N
83	00/14-29-079-05W4/0	LAKEWOOD ET AL CHARD 14-29-79-5	1991	128	604	604	426	PRAIRIE EVAPORITE	571	CONTACT RAPIDS	N
84	00/06-23-094-07W4/0	CHEVRON STEEPBANK 6-23-94-7	1992	189	424	438	334	WINNIPEGOSIS FM	334	WINNIPEGOSIS	N
85	00/01-03-095-07W4/0	CDCOG TENN MUSKEGR 1-3-95-7	1980	119	408	408	306	PRAIRIE EVAPORITE	318	KEG RIVER	N
86	00/01-20-095-07W4/0	HUSKY TENN MUSKEGR 1-20-95-7	1980	105	338	338	105	BASE OF DRIFT	324	PRECAMBRIAN	N
87	00/14-11-096-01W4/0	GULF FIREBAG 14-11-96-1	1976	9	132	133	130	ELK POINT GRP		·····	N
88	00/06-26-096-01W4/0	GULF FIREBAG 6-26-96-1	1976	14	162	162	161	ELK POINT GRP			N
89	00/07-29-096-01W4/0	GULF FIREBAG 7-29-96-1	1976	11	113	114	112	ELK POINT GRP			N
90	00/02-08-097-01W4/0	GULF FIREBAG 2-8-97-1	1976	7	126	127	123	ELK POINT GRP			ТN
91	00/02-11-097-01W4/0	GULF FIREBAG 2-11-97-1	1976	12	171	171	170	ELK POINT GRP			N
92	00/13-12-097-02W4/0	GULF FIREBAG 13-12-97-2	1976	10	147	147	145	ELK POINT GRP	1		N

Table B.1: Bulk density log data available in the original study area for the Elk Point Group (source: AEUB well databas	se)
--	-----

Service of

March, 2001

No.	UWI	Well Name	Year Logged	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Total Depth (m KB)	Top Fm Depth (m KB)	Top Formation Logged with Dipmeter	Top of Lowest Logged Fm (m KB)	Interval of Interest (m)	Lowest Formation Logged by Dipmeter
1	00/07+14-057+06W4/0	TEXEX ET AL ELK POINT 7-14-57-6	1956	546	1585	1589	403	BLAIRMORE GRP	1587	1039	PRECAMBRIAN
2	00/10-13-060-04W4/0	TEXEX ET AL CHAR LAKE 10-13-60-4	1956	597	1433	1437	551	BEAVERHILL LAKE FM	1433	836	PRECAMBRIAN
3	02/10-30-048-10W4/0	NUL KINSELLA 10-30-48-10	1978	579	937	938	542	SWS	811	126	IRETON
4	00/06-14-048-14W4/0	VOYAGER ET AL BRUCE 6-14-48-14	1982	891	2087	894	890	CALMAR	892	1195	NISKU
5	00/14-09-049-08W4/0	PCP MANNVILLE SOUTH 14-9-49-8	1983	520	813	813	488	sws	782	31	WOODBEND GRP
6	00/16-31-050-01W4/0	CNRL B LLOYD 16-31-50-1	1981	534	705	706	521	COLONY MBR	697	9	WOODBEND GRP
7	00/14-22-050-11W4/0	SIGNALTA ET AL BIRCH 14-22-50-11	1971	506	718	721	493	BASE FISH SCALES	712	6	IRETON FM
8	00/11-34-051-04W4/0	CDNOXY P9 MORGAN EX 11-34-51-4	1980	115	622	623	254	COLORADO GRP	615	7	WOODBEND GRP
9	00/06-32-055-06W4/0	AMOCO LINDBERGH 6-32-55-6	1996	450	681	683	450	VIKING	678	3	WOODBEND GRP
10	AR/10-11-056-01W4/0	AMOCO AQ JOHN LAKE EX 10-11-56-1	1983	400	634	635	392	VIKING	605	29	BEAVERHILL LAKE
11	A8/15-11-056-01W4/0	AMOCO AB JOHN LAKE EX 15-11-56-1	1983	333	630	630	311	SWS	601	29	BEAVERHILL LAKE
12	00/15-26-056-02W4/0	TEXACO FROG LAKE 15-26-56-2	1983	390	603	604	381	VIKING	585	19	BEAVERHILL LAKE
13	00/13-35-056-02W4/0	ESSO FROG LAKE 13-35-56-2	1984	400	621	621	383	VIKING	590	31	BEAVERHILL LAKE
14	00/14-06-057-01W4/0	CNRL JOHN LAKE 14-6-57-1	1984	450	667	667	424	VIKING	620	47	BEAVERHILL LAKE
15	00/14-18-057-01W4/0	TEXACO FROG LAKE 14-18-57-1	1984	390	641	642	389	VIKING	602	40	BEAVERHILL LAKE
16	00/13-01-057-02W4/0	TEXACO FROG LAKE 13-1-57-2	1984	420	640	635	414	VIKING	620	21	BEAVERHILL LAKE
17	00/15-12-057-02W4/0	CNRL JOHN LAKE 15-12-57-2	1984	390	620	620	373	VIKING	584	35	BEAVERHILL LAKE
18	00/07-15-059-02W4/0	CNRL CHANDLER 7-15-59-2	1989	470	589	590	446	SPARKY MBR	576	13	BEAVERHILL LAKE
19	00/07-16-059-02W4/0	SUNCOR ET AL CHANDLER 7-16-59-2	1983	25	584	585	234	COLORADO GRP	570	14	BEAVERHILL LAKE
20	00/07-27-059-02W4/0	TRANSWEST CHANDLER 7-27-59-2	1983	450	554	558	411	SPARKY MBR	544	11	BEAVERHILL LAKE
21	00/06-20-062-04W4/0	GENESIS ET AL FTKENT 6-20-62-4	1985	275	525	527	259	VIKING	520	6	WOODBEND GRP
22	00/11-24-062-04W4/0	GENESIS ET AL FTKENT 11-24-62-4	1985	268	504	505	202	BASE FISH SCALES	495	9	BEAVERHILL LAKE
23	00/09-13-062-08W4/0	AMOCO ET AL SUGDEN 9-13-62-8	1994	143	499	547	157	SWS	489	10	WOODBEND GRP
24	00/01-13-063-08W4/0	CDNOXY ET AL SUGDEN 1-13-63-8	1985	251	500	511	223	BASE FISH SCALES	497	3	WOODBEND GRP
25	00/11-14-063-08W4/0	NUMAC 11A WOLF LAKE 11-14-63-8	1997	300	513	513	315	GRAND RAPIDS	499	14	WOODBEND GRP
26	02/16-06-064-06W4/0	MOBIL GARTH 16-6-64-6	1981	300	525	525		NO PICKS			
27	00/03-07-064-06W4/0	MOBIL GARTH 3-7-64-6	1990	290	513	515		NO PICKS			
28	AA/14-20-064-06W4/0	MOBIL GARTH OV 14-20-64-6	1980	335	547	550	317	VIKING	541	7	WOODBEND GRP
29	AA/02-21-064-06W4/0	MOBIL GARTH EX 2-21-64-6	1983	315	504	505	263	JOLI FOU FM	495	9	WOODBEND GRP
30	AA/03-27-064-06W4/0	MOBIL GARTH EX 3-27-64-6	1982	300	521	514		NO PICKS		l –	
31	AA/09-27-064-06W4/0	MOBIL GARTH EX 9-27-64-6	1981	300	530	530		NO PICKS			

Table B.2: Dipmeter log data available in the original study area for the Elk Point and Beaverhill Groups (source: AEUB well database)

Advanced Geotechnology Inc.

1. ÷

March, 2001

No,	UWI	Well Name	Year Logged	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Total Depth (m KB)	Top Fm Depth (m KB)	Top Formation Logged with Dipmeter	Top of Lowest Logged Fm (m KB)	Interval of Interest (m)	Lowest Formation Logged by Dipmeter
32	AA/09-28-064-06W4/0	MOBIL GARTH OV 9-28-64-6	1980	160	520	526	205	SWS	517	3	WOODBEND GRP
33	00/16-01-064-07W4/0	MOBIL SUGDEN 16-1-64-7	1980	280	519	521	273	VIKING	506	13	WOODBEND GRP
34	02/07-13-065-04W4/0	ESSO 83 B3-20 COLDLK 7-13-65-4	1984	20	195	564		NO PICKS			
35	00/06-27-065-05W4/0	BP LEMING 6-27-65-5	1981	159	561	562	224	SWS	569	2	BEAVERHILL LAKE
36	00/07-31-065-05W4/0	BP LEMING 7-31-65-5	1981	153	551	551	225	sws	550	2	WOODBEND GRP
37	00/11-01-065-06W4/0	BP MARGUERITE LAKE 11-1-65-6	1981	150	550	552	227	SWS	549	2	WOODBEND GRP
38	00/07-08-065-06W4/0	BP MARGUERITE LAKE 7-8-65-6	1981	154	561	561	227	sws	560	1	WOODBEND GRP
39	11/12-08-066-05W4/0	BP PCI 21 MARGLK 12-8-66-5	1981	150	528	529		NO PICKS			
40	14/12-08-066-05W4/0	BP PCI 24 MARGLK 12-8-66-5	1981	155	526	526		NO PICKS			
41	17/12-08-066-05W4/0	BP PCI 13-81 OB MARG LK 12-8-66-5	1981	156	522	533		NO PICKS			
42	00/06-13-066-06W4/0	BP MARGUERITE 6-13-66-6	1981	157	519	521	210	SWS	517	3	WOODBEND GRP
43	00/12-30-069-07W4/0	AEC FISHER 12-30-69-7	1988	436	534	543	423	CLEARWATER SD	533	1	BEAVERHILL LAKE
44	00/08-20-070-03W4/0	AEC FISHER 8-20-70-3	1997	124	531	533	319	GRAND RAPIDS	519	12	BEAVERHILL LAKE
45	03/05-14-070-04W4/0	AEC 03 FISHER 5-14-70-4	1996	355	538	538	293	GRAND RAPIDS	522	16	BEAVERHILL LAKE
46	05/05-14-070-04W4/0	AEC 06 FISHER 5-14-70-4	1996	375	560	562	299	GRAND RAPIDS FM	546	14	BEAVERHILL LAKE
47	00/11-14-070-04W4/0	AECOG C11 FISHER 11-14-70-4	1998	124	514	515	297	GRAND RAPIDS	499	15	BEAVERHILL LAKE
48	00/12-14-070-04W4/0	AEC 01 FISHER 12-14-70-4	1996	450	550	557	306	GRAND RAPIDS	541	9	8EAVERHILL LAKE
49	00/07-15-070-04W4/0	AECOG A7 FISHER 7-15-70-4	1998	380	507	510	295	GRAND RAPIDS	500	7	BEAVERHILL LAKE
50	00/08-15-070-04VV4/0	AEC 02 FISHER 8-15-70-4	1996	390	540	540	301	GRAND RAPIDS	540	0	BEAVERHILL LAKE
51	00/11-15-070-04W4/0	AEC FISHER 11-15-70-4	1996	405	515	517	295	GRAND RAPIDS	500	15	BEAVERHILL LAKE
52	00/13-15-070-04W4/0	AEC 13A FISHER 13-15-70-4	1997	124	514	515	290	GRAND RAPIDS	500	14	BEAVERHILL LAKE
53	00/15-15-070-04W4/0	AEC B15 FISHER 15-15-70-4	1997	359	504	510	291	GRAND RAPIDS	496	8	BEAVERHILL LAKE
54	00/09-16-070-04W4/0	AEC A9 FISHER 9-16-70-4	1997	350	510	517	293	GRAND RAPIDS	503	8	BEAVERHILL LAKE
55	00/10-16-070-04W4/0	AEC FISHER 10-16-70-4	1997	371	529	529	304	GRAND RAPIDS	515	14	BEAVERHILL LAKE
56	00/15-16-070-04W4/0	AEC A15 FISHER 15-16-70-4	1997	114	518	524	295	GRAND RAPIDS	510	8	BEAVERHILL LAKE
57	00/16-16-070-04W4/0	AEC B16 FISHER 16-16-70-4	1997	100	522	522	295	GRAND RAPIDS	509	14	BEAVERHILL LAKE
58	00/01-21-070-04W4/0	AEC 81 FISH 1-21-70-4	1997	360	510	515	298	GRAND RAPIDS	504	6	BEAVERHILL LAKE
59	02/01-21-070-04W4/0	AEC 1A FISHER 1-21-70-4	1997	400	511	514	292	GRAND RAPIDS	498	13	BEAVERHILL LAKE
60	03/01-21-070-04W4/0	AEC C1 FISHER 1-21-70-4	1997	325	500	510	291	GRAND RAPIDS	497	4	BEAVERHILL LAKE
61	04/01-21-070-04W4/0	AEC D1 FISHER 1-21-70-4	1997	375	515	565	141	COLORADO GRP	500	15	BEAVERHILL LAKE

Table B.2: Dipmeter log data available in the original study area for the Elk	Point and Beaverhill Groups (source: AEUB well database)
---	--

Advanced Geotechnology Inc.

AGI 10-122

i. National

March, 2001

No.	UWI	Well Name	Year Logged	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Total Depth (m KB)	Top Fm Depth (m KB)	Top Formation Logged with Dipmeter	Top of Lowest Logged Fm (m KB)	Interval of Interest (m)	Lowest Formation Logged by Dipmeter
62	00/02-21-070-04W4/0	AEC C2 FISHER 2-21-70-4	1997	350	500	509	288	GRAND RAPIDS	494	6	BEAVERHILL LAKE
63	00/08-21-070-04W4/0	AEC A8 FISHER 8-21-70-4	1997	350	500	514	147	COLORADO GRP	500	0	BEAVERHILL LAKE
64	00/10-21-070-04W4/0	AEC A10 FISHER 10-21-70-4	1997	369	519	520	297	GRAND RAPIDS	505	14	BEAVERHILL LAKE
65	02/10-21-070-04W4/0	AEC 810 FISHER 10-21-70-4	1997	350	515	515	290	GRAND RAPIDS	498	17	BEAVERHILL LAKE
66	02/15-21-070-04W4/0	AEC 15B FISHER 15-21-70-4	1997	350	510	518	293	GRAND RAPIDS	502	8	BEAVERHILL LAKE
67	00/02-22-070-04W4/0	AECOG D2 FISHER 2-22-70-4	1997	375	507	507	290	GRAND RAPIDS	494	13	BEAVERHILL LAKE
68	00/03-22-070-04W4/0	AEC 83 FISHER 3-22-70-4	1997	375	500	511	291	GRAND RAPIOS	496	4	BEAVERHILL LAKE
69	00/04-22-070-04W4/0	AEC 4C FISHER 4-22-70-4	1997	96	518	519	295	GRAND RAPIDS	504	14	BEAVERHILL LAKE
70	04/05-22-070-04W4/2	AEC 104 FISHER 5-22-70-4	1996	450	525	554		NO PICKS			
71	05/05-22-070-04W4/0	AECOG 105 FISHER 5-22-70-4	1997	390	530	529		NO PICKS			· ··· · · · · · · · · · · · · · · · ·
72	06/05-22-070-04W4/0	AECOG AS FISHER 5-22-70-4	1997	73	220	522		NO PICKS			·····
73	00/06-22-070-04W4/0	AEC 6A FISHER 6-22-70-4	1997	110	515	522		NO PICKS			
74	00/07-22-070-04W4/0	AECOG(E) A7 FISHER 7-22-70-4	2000	130	516	516		NO PICKS			
75	00/11-22-070-04W4/0	AEC 118 FISHER 11-22-70-4	1997	350	514	515	345	LOWER GRAND RAPIDS	500	14	BEAVERHILL LAKE
76	04/11-22-070-04W4/0	AECOG 2811 FISHER 11-22-70-4	1997	70	513	516		NO PICKS			
77	00/12-22-070-04W4/0	AEC FISHER 12-22-70-4	1996	400	515	515	345	LOWER GRAND RAPIDS	501	14	BEAVERHILL LAKE
78	03/12-22-070-04W4/0	AEC 12C FISHER 12-22-70-4	1997	347	516	518	340	LOWER GRAND RAPIDS	503	14	BEAVERHILL LAKE
79	02/14-22-070-04W4/0	AEC C14 FISHER 14-22-70-4	1997	340	502	506	295	GRAND RAPIDS	491	12	BEAVERHILL LAKE
80	00/03-23-070-04W4/0	AECOG A3 FISHER 3-23-70-4	1998	123	513	515	296	GRAND RAPIDS	501	13	BEAVERHILL LAKE
81	00/14-28-070-04W4/0	AECOG A14 FISHER 14-28-70-4	1998	125	513	511	293	GRAND RAPIDS	496	17	BEAVERHILL LAKE
82	00/07-32-070-04W4/0	AEC FISHER 7-32-70-4	1996	375	525	523	289	GRAND RAPIDS	508	17	BEAVERHILL LAKE
83	00/06-33-070-04W4/0	AEC FISHER 6-33-70-4	1997	400	500	502	287	GRAND RAPIDS	487	14	BEAVERHILL LAKE
84	00/08-13-070-06W4/0	AEC FISHER 8-13-70-6	1988	491	585	561	477	MCMURRAY	551	34	BEAVERHILL LAKE
85	00/05-23-070-06W4/0	AEC FISHER 5D-23-70-6	1987	275	544	545	261	VIKING	535	10	BEAVERHILL LAKE
86	00/10-34-072-06\V4/0	AMOCO AEC KIRBY 10-34-72-6	1980	160	588	589	331	GRAND RAPIDS	571	18	BEAVERHILL LAKE
87	02/12-01-073-06W4/0	AEC 07 KIRBY 12-1-73-6	1983	108	569	568	324	BASE OF DRIFT	560	9	BEAVERHILL LAKE
88	00/07-03-073-06\/\4/0	AMOCO AEC IPIATIK 7-3-73-6	1980	160	577	578	328	GRAND RAPIDS	559	18	BEAVERHILL LAKE
89	00/10-03-073-06W4/0	AMOCO AEC IPIATIK KIRBY 10A-3-73-6	1984	160	579	580	309	BASE OF DRIFT	561	18	BEAVERHILL LAKE
90	00/06-05-073-06W4/0	AMOCO AEC KIRBY 6-5-73-6	1990	100	572	573	338	GRAND RAPIDS	550	22	BEAVERHILL LAKE
91	00/11-09-073-06W4/0	AMOC AEC IPIATIK 11-9-73-6	1995	160	534,9	535	288	BASE OF DRIFT	514	21	BEAVERHILL LAKE

Table B.2: Dipmeter log data available in the original study area for the Elk Point and Beaverhill Groups (source: AEUB well database)

. .

Alberta Geological Survey March, 2001

					·····							
No.	UWI	Well Name	Year Logged	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Total Depth (m KB)	Top Fm Depth (m KB)	Top Formation Logged with Dipmeter	Top of Lowest Logged Fm (m KB)	Interval of Interest (m)	Lowest Formation Logged by Dipmeter	
92	00/10-11-073-06W4/0	AEC AMOCO IPIATIK KIRBY 10-11-73-6	1984	160	605	605	308	BASE OF DRIFT	586	19	BEAVERHILL LAKE	
93	00/04-15-073-06W4/0	AECOG ET AL KIRBY 4-15-73-6	1997	96	528.5	529		NO PICKS				
94	00/12-11-074-08W4/0	ISH KIRBY 12-11-74-8	1997	440	530	529		NO PICKS				
95	00/12-14-074-08W4/0	ISH KIRBY 12-14-74-8	2000	440	519.3	521	280	VIKING	519	Ó	WOODBEND GRP	
96	00/14-05-082-12W4/0	TRANSWEST DIVIDE 14-5-82-12	1987	275	535	536	202	SWS	520	16	WOODBEND GRP	
97	00/10-29-082-12W4/0	HUSKY ET AL DIVIDE 10-29-82-12	1988	382	461	965	379	WABISKAW MBR	439	22	WOODBEND GRP	
98	00/16-03-083-07W4/0	GULF RESDELN 16-3-83-7	1981	175	505	505	225	GRAND RAPIDS	451	54	BEAVERHILL LAKE	
99	AA/11-15-083-07W4/0	GULF RESDELN 11-15-83-7	1997	400	500	502	316	CLEARWATER	489	11	BEAVERHILL LAKE	

Table B.2: Dipmeter log data available in the original study area for the Elk Point and Beaverhill Groups (source: AEUB well database)

Advanced Geotechnology Inc.

AGI 10-122

Alberata Geological Survey March, 2001

Table B.3: Core available in the original study area for the Elk Point Group (source: AEUB well database)

. . .

 ± 1

No.	UWI	Well Name	Year	Top Core Interval (m KB)	Bottom Core Interval (m KB)	Analyzed	Formation Names covered by Core	Top Fm (m KB)
1	00/10-03-049-06W4/0	HUSKY DH WILDMERE 10-3-49-6	1967	678.8	680.3	N	LLOYDMINSTER MBR	643.1
							WOODBEND GRP	679.7
				1110.7	1154	N	WATT MTN	1099.7
			1				PRAIRIE EVAPORITE	1112.5
2	A0/12-15-050-02W4/0	BLACKFOOT DEVONIAN TEST SYNDICATE #1	1948	802.2	884.2	N	DEVONIAN SYSTEM	741.3
				934.5	962.6	N	BEAVERHILL LAKE	805.9
			1	964.7	1041.2	N	ELK POINT GRP	1010.1
							FIRST SALT	1024.1
3	00/14-29-052-02W4/0	CALSTAN PACIFIC MARWAYNE 14-29-52-2	1958	780.3	826	N	BEAVERHILL LAKE	690.1
				902.2	917,4	N	ELK POINT GRP	901.9
				1062.2	1074.1	N	PRAIRIE EVAPORITE	915.6
				1118.9	1148.8	N	RED RIVER FM	1115.9
ļ	l						CAMBRIAN	1148.2
4	00/08-09-053-03W4/0	HUSKY 8B MARWAYNE 8-9-53-3	1996	1029	1038	Y	WINNIPEGOSIS	1025
5	02/14-28-055-06W4/0	AMOCO INJ LINDBERGH 14-28-55-6	1991	1260	1289.3	Y	ERNESTINA LK	1258.7
						Y	LOTSBERG	1281.5
6	00/11-22-055-12W4/0	WHITE ROSE DUVERNAY 11-22-55-12	1961	1255.8	1286.6	N	FIRST SALT	1125.3
							WINNIPEGOSIS	1258.8
7	02/10-27-055-12W4/0	WESTERN CHEMICALS NO. 27-10S	1953	1086.6	1087.5	N	ELK POINT GRP	1077.5
8	00/15-27-055-12W4/0	WESTERN DUVERNAY 27-15	1952	1068.3	1209.1	N	BEAVERHILL LAKE	833
							ELK POINT GRP	1069.2
9	02/15-27-055-12W4/0	CHEMICALS DUVERNAY SBP A15-27-55-12	1960	1079	1093.9	N	ELK POINT GRP	1067.1
ļ							FIRST SALT	1082.3
10	00/16-27-055-12W4/0	CHEMCELL DUVERNAY NACL 16-27-55-12	1969	1342	1449.6	N	LOTSBERG	1339.6
							BASAL RED BEDS	1441.7
11	00/05-26-056-05W4/0	CANSALT 3 LINDBERGH NACL 5-26-56-5	1966	805	936.7	N	ELK POINT GRP	796.1
							FIRST SALT	859.5
ļ							SECOND SALT	907.7
12	00/07-26-056-05W4/0	ELK POINT WELL NO. 1	1946	848	997	N	FIRST SALT	845.8
				1030.8	1197.6	N	SECOND SALT	1060.7
							THIRD SALT	1128.4
No.	UWI	Well Name	Year	Top Core Interval (m KB)	Bottom Core Interval (m KB)	Analyzed	Formation Names covered by Core	Top Fm (m KB)
-----	---------------------	----------------------------------	------	--------------------------------	-----------------------------------	----------	------------------------------------	------------------
13	00/02-21-057-05W4/0	ANGLO-CAN. ELK POINT NO. 11	1949	1020.2	1033.6	N	PRAIRIE EVAPORITE	884.5
				1324.9	1356	Y	WINNIPEGOSIS	1027.2
							CONTACT RAPIDS	1070.2
							COLD LAKE	1115.9
							ERNESTINA LK	1159.8
							LOTSBERG	1180.5
							BASAL RED BEDS	1301.5
							CAMBRIAN	1350.3
14	00/07-14-057-06W4/0	TEXEX ET AL ELK POINT 7-14-57-6	1956	859.2	872	Y	BEAVERHILL LAKE	631.5
						Y	WATT MTN	866.2
15	00/10-13-060-04W4/0	TEXEX ET AL CHAR LAKE 10-13-60-4	1956	808	811,1	Y	PRAIRIE EVAPORITE	746.5
				1251.2	1299.4	Y	BASAL RED BEDS	1225.3
						,	EARLIE	1297.8
16	00/13-03-060-11W4/0	CNRL ASHMONT 13-3-60-11	1949	799.8	807.1	N	BEAVERHILL LAKE	802.2
				848	848.6	N	ELK POINT GRP	1036.3
				912.9	915.6	N	PRAIRIE EVAPORITE	1056.1
				975.4	982.1	N	WINNIPEGOSIS	1197.3
				1051.3	1059.2	N	CONTACT RAPIDS	1232.9
				1260.7	1267.1	N	BASAL RED BEDS	1546.9
				1267.7	1274.7	N	EARLIE	1604.8
				1581	1594.1	N	ELDON	1627.6
				1687.4	1694.7	N	BASAL SANDSTONE UNIT	1664.2
				1727	1728,5	N	PRECAMBRIAN	1741
17	00/08-01-062-11W4/0	SASKOIL SUGDEN 8-1-62-11	1991	1103	1121	Y	COLD LAKE	1084.2
				1160	1166.2	Y	ERNESTINA LK	1155.3
18	02/01-28-063-02W4/0	RENAISSANCE COLD LAKE 1-28-63-2	1989	751	752.8	N	WINNIPEGOSIS	744
19	AA/15-20-064-02W4/0	ESSO MARIE OV 15-20-64-2	1979	1140	1206.2	Y	BASAL RED BEDS	1092.5
							CAMBRIAN	1144.5
20	00/07-18-064-03W4/0	ESSO 79 SWD COLDLK 7-18-64-3	1979	1217	1288	Y	BASAL RED BEDS	1171
							CAMBRIAN	1218.5
21	00/01-32-064-03W4/0	ESSO 83 SWD ETHELLK 1-32-64-3	1984	1273	1335.1	Y	BASAL RED BEDS	1225
	<u></u>						CAMBRIAN	1274.5

 Table B.3: Core available in the original study area for the Elk Point Group (source: AEUB well database)

Advanced Geotechnology Inc.

······

Alberata Geological Survey

March, 2001

Table B.3: Core available in	the original study area	for the Elk Point Group	(source: AEUB well database)

No.	UWI	Well Name	Year	Top Core Interval (m KB)	Bottom Core Interval (m KB)	Analyzed	Formation Names covered by Core	Top Fm (m KB)
22	00/08-33-064-03W4/0	ESSO 83 INJ ETHELLK 8-33-64-3	1983	1260	1317	Y	BASAL RED BEDS	1211
							CAMBRIAN	1262.5
23	00/12-08-065-03W4/0	ESSO 79 SWD ETHELLK 12-8-65-3	1979	1222	1267.4	Y	BASAL RED BEDS	1175
							CAMBRIAN	1225
24	AA/06-08-066-02W4/0	ESSO MEDLEY OV 6-8-66-2	1979	1173	1217.5	Y	BASAL RED BEDS	1142.5
							CAMBRIAN	1182
25	00/07-11-067-06W4/0	ESSO AEC 85 FISHCK 7-11-67-6	1985	1305	1332	Y	BASAL RED BEDS	1261
				· · · · · · · · · · · · · · · · · · ·			CAMBRIAN	1308
26	00/11-19-068-06W4/0	ESSO AEC 85 FISHCK 11-19-68-6	1985	1298.8	1330	Y	BASAL RED BEDS	1275.8
							CAMBRIAN	1324
27	07/08-12-069-05W4/0	AECOG (NE) FISHER 8D-12-69-5	1990	856	897.5	Y	WINNIPEGOSIS FM	855.4
28	00/04-03-069-10W4/0	MOBIL PAN AM HEART LAKE 4-3-69-10	1958	1136	1151.2	N	ELK POINT GRP	929.9
29	00/11-26-069-10W4/0	ARCO HEART LAKE 11-26-69-10	1967	1018.6	1061.9	Y	WINNIPEGOSIS	1018.6
							CONTACT RAPIDS	1060.7
30	02/05-22-070-04W4/2	AEC 102 FISHER 5-22-70-4	1996	801	834	Y	WINNIPEGOSIS	794.5
31	00/16-13-071-01W4/0	AEC ET AL SCHELTENS 16-13-71-1	1985	750	768	Y	ELK POINT GRP	751.4
32	00/10-17-071-06W4/0	AMOCO AEC IPIATIK GRIST 10-17-71-6	1980	643	656.6	Y	WATT MTN FM	641.8
				1187	1199	Y	BASAL RED BEDS	1185
33	00/16-36-072-01W4/0	AEC ET AL FOSTERCK 16-36-72-1	1985	693.5	693.5	Y	KEG RIVER FM	677.1
34	00/10-22-072-06W4/0	AMOCO KIRBY 10-22-72-6	1980	862	880	Y	WINNIPEGOSIS	860
35	00/09-25-073-05W4/0	AMOCO KIRBY 9-25-73-5	1980	777	794	Y	PRAIRIE EVAPORITE	601
							WINNIPEGOSIS	784
36	00/01-28-075-03W4/0	HOME WINEFRED LAKE 1-28-75-3	1967	669	708.1	Y	PRAIRIE EVAPORITE	648.6
							WINNIPEGOSIS	680
							CONTACT RAPIDS	699.2
37	00/02-34-075-11W4/0	FINA CAL AM WAPPAU 2-34-75-11	1966	974.1	989.1	N	KEG RIVER	951.6
38	00/10-22-076-01W4/0	HOME WINEFRED LAKE 10-22-76-1	1967	564.2	591	Y	WATT MTN	534.6
			-				WINNIPEGOSIS	572.1
39	00/01-25-076-01W4/0	HOME SWEEZY 1-25-76-1	1969	518.2	545.6	Y	WINNIPEGOSIS	512.7
40	00/03-07-077-07W4/0	HOME LEISMER 3-7-77-7	1980	726	744.3	Y	PRAIRIE EVAPORITE	534.5
							WINNIPEGOSIS	726.5

No.	UWI	Well Name	Year	Top Core Interval (m KB)	Bottom Core Interval (m KB)	Analyzed	Formation Names covered by Core	Top Fm (m KB)
41	00/02-25-077-09W4/0	CHRISTINA RIVER HARDY NO. 1 WELL	1949	342	794.6	N	BEAVERHILL LAKE	370.3
							ELK POINT GRP	548.6
							PRAIRIE EVAPORITE	578.2
							WINNIPEGOSIS	765
42	00/11-12-077-10W4/0	PACIFIC MAY RIVER 11-12-77-10	1958	884.2	887.3	N	KEG RIVER	856.5
43	00/07-13-078-01W4/0	HOME SWEEZY 7-13-78-1	1969	478.5	506	Y	WINNIPEGOSIS	476.7
44	00/03-25-078-02W4/0	HOME WINEFRED LAKE 3-25-78-2	1967	530.7	583.1	Y	WINNIPEGOSIS	514.8
45	00/06-07-078-11W4/0	R O CORP CHRISTINA RIVER 6-7-78-11	1958	971.1	994	Ν	KEG RIVER	957.1
46	00/10-05-080-02W4/0	HOME WINNEFRED LAKE 10-5-80-2	1967	522.1	540.4	Y	WINNIPEGOSIS	519.1
							CONTACT RAPIDS	537.1
47	00/05-23-080-05W4/0	R O CORP JANVIER 5-23-80-5	1958	484.3	491.9	N	ELK POINT GRP	353.6
				521.8	522.7	Y	RED BEDS	543.8
				684.9	692.5	N		
48	00/09-01-080-08W4/0	R O CORP PONY CREEK 9-1-80-8	1958	371.9	508.4	N	BEAVERHILL LAKE	397.8
				509	549.2	N	ELK POINT GRP	515.7
49	00/06-08-081-08W4/0	R O CORP ET AL CORNER LK 6-8-81-8	1958	842.2	847.6	N	ELK POINT GRP	640.1
				856.5	862.6	N		
50	00/02-23-082-05W4/0	R O CORP COTTONWOOD 2-23-82-5	1958	417.6	420.6	N	ELK POINT GRP	378.3
51	00/07-08-082-06W4/0	GULF RESDELN 7-8-82-6	1981	302.5	311.5	Y	BEAVERHILL LAKE	305
				585.5	654	Y	WINNIPEGOSIS	511.8
							GRANITE WASH	603.2
52	00/10-29-082-12W4/0	HUSKY ET AL DIVIDE 10-29-82-12	1988	891	900.2	Y	WINNIPEGOSIS	878.9
53	00/06-36-082-12W4/0	R O CORP ET AL DIVIDE 6-36-82-12	1958	944.9	952.5	N	ELK POINT GRP	733
54	00/04-20-083-04W4/0	DOME GORDON LAKE 4-20-83-4		454.5	459.3	Y	PRAIRIE EVAPORITE	406.9
				477.6	479.1	N		1
55	00/10-08-083-06W4/0	GULF RESDELN 10-8-83-6	1981	561.9	570.9	Y	WINNIPEGOSIS	559.7
				571	625	Y		
56	00/16-27-085-11W4/0	TEXCAN CS HORSE 16-27-85-11	1969	694	699.8		KEG RIVER	693.4
57	AA/08-10-089-09W4/0	TH INDUSTRIAL MINERALS #1	1936	0	273.4	N	BEAVERHILL LAKE	30.6
			tt				SLAVE POINT	149.4
				· .·			PRAIRIE EVAPORITE	150.4

Table B.3: Core available in the original study area for the Elk Point Group (source: AEUB well database)

No.	UWI	Well Name	Year	Top Core Interval (m KB)	Bottom Core Interval (m KB)	Analyzed	Formation Names covered by Core	Top Fm (m KB)
58	00/02-32-089-12W4/0	SUNCOR CLARKE 2-32PREV-89-12	1981	345	713.5	N	WATT MTN	397.8
							PRAIRIE EVAPORITE	406.2
							WINNIPEGOSIS	606
				a grant and a			CONTACT RAPIDS	675
59	00/13-16-091-08W4/0	BAYSEL STEEPBANK 13-16-91-8	1957	459.6	461.2	N	ELK POINT GRP	302.1
				477.6	477.9		GRANITE WASH	463.3
60	00/04-32-093-10W4/0	BEAR VAMPIRE #2	1949	147.8	269.1	N	ELK POINT GRP	157
							RED BEDS	262
61	00/06-18-093-12W4/0	AOSTRA WDW1 ATHABASCA 6-18-93-12	1991	487	532.9	Y	WINNIPEGOSIS	479
62	00/06-23-094-07W4/0	CHEVRON STEEPBANK 6-23-94-7	1996	350	359	Y	WINNIPEGOSIS	334
63	00/13-23-094-07W4/0	CHEVRON WDW STEEPBANK 13-23-94-7	1991	360	369.5	Y	WINNIPEGOSIS	329
64	AA/12-07-095-08W4/0	ESSO 90PC OSLO 12-7-95-8	1990	129.6	310.9	Y	BEAVERHILL LAKE	129.5
							ELK POINT GRP	183.5
							METHY FM	213
							CONTACT RAPIDS	268

Table B.3: Core available in the original study area for the Elk Point Group (source: AEUB well database)

Table B.4: DST data available in the original study area for wells that had bulk density log data (source: AEUB well database)

No.	UWI	Well Name	DST Description	DST Description
1	00/10-17-054-05W4/00	HUSKY DH ETHELWYN 10D-17-54-5	1971/08/14 FM;PRAIRIE EVAPORITE FM -	
			MECHANICALLY GOOD STRADDLE DST FM Dep: 1112.50-1127.80	
			Rec Depth:1106.40 SP; 11797 FFP: 159 VO; 60 (min.)	
			HP:13548 ,13548 SIP:11838 /11349 /0 /0 SIT:60 /90 /0 /0	
			FP:124 /179 /0 /0 /0 /0 /0 /0 FT:15 /60 /0 /0	
			Recovery: MUD 1.50 M	
2	00/16-13-071-01W4/0	AEC ET AL SCHELTENS 16-13-71-1	1985/02/21 FM:ELK POINT GRP -	1985/02/23 FM:ELK POINT GRP -
			MECHANICALLY GOOD LIMITED RECOVERY DST FM Dep: 753.00-761.00	MECHANICALLY GOOD STRADDLE DST FM Dep: 754.00-759.50
			Rec Depth:740.10 SP: 4646 FFP: 2563 VO: 148 (min.)	Rec Depth:741.00 SP: 4764 FFP: 3462 VO: 55 (min.)
			HP:8090 ,7943 SIP:2563 /4646 /0 /0 SIT:0 /148 /0 /0	HP:8114 ,7973 SIP:4764 /4758 /0 /0 SIT:60 /182 /0 /0
			FP:431 /0 /0 /0 /0 /0 /0 FT:10 /0 /0 /0	FP:263 /855 /1109 /3462 /0 /0 /0 /0 FT:5 /55 /0 /0
			Recovery: MUD-CUT WATER 40.00 M	
			Recovery: BRACKISH WATER 200.00 M	
3	00/07-12-071-11W4/0	RAX ET AL MILLS 7-12-71-11	1978/02/25 FM:ERNESTINA LK FM - LOTSBERG FM	1978/02/26 FM:ERNESTINA LK FM - LOTSBERG FM
			MECHANICALLY GOOD STRADDLE DST FM Dep; 1121.10-1136.90	MECHANICALLY GOOD STRADDLE DST FM Dep: 1111.90-1127.80
			Rec Depth;1121.70 SP: 3758 FFP: 185 VO: 60 (min.)	Rec Depth:1112.50 SP: 1724 FFP: 165 VO: 60 (min.)
			HP:14727 ,14665 SIP:3758 /2358 /0 /0 SIT:60 /90 /0 /0	HP:0 ,0 SIP:0 /0 /0 /0 SIT:60 /90 /0 /0
			FP:241 /103 /0 /0 /0 /0 /0 /0 FT:10 /60 /0 /0	FP:0 /0 /0 /0 /0 /0 /0 FT:15 /60 /0 /0
			Recovery: MUD 3.00 M	Recovery: 0.00 M
4	00/06-26-072-11W4/0	PAN AM A-1 BEHAN 6-26-72-11	1969/02/10 FM:COOKING LAKE FM - BEAVERHILL LAKE FM	1989/02/24 FM:PRAIRIE EVAPORITE FM - WINNIPEGOSIS FM
			MECHANICALLY GOOD LIMITED RECOVERY DST FM Dep: 557,50-615.70	MECHANICALLY GOOD LIMITED RECOVERY DST FM Dep: 978,40-988,50
			Rec Depth;614,20 SP; 3930 FFP: 1620 VO: 120 (min.)	Rec Depth:973,20 SP; 10563 FFP; 110 VO; 60 (min.)
			HP:6867 ,6860 SIP:3930 /3909 /0 /0 SIT:60 /60 /0 /0	HP:11880 ,11397 SIP:386 /8177 /0 /0 SIT:30 /30 /0 /0
			FP:917 /1620 /0 /0 /0 /0 /0 /0 FT:120 /0 /0 /0	FP:290 / 290 /0 /0 /0 /0 /0 FT:60 /0 /0 /0
[Recovery; SULPHUROUS WATER 51.80 M	Recovery: MUD 6,10 M
	<u> </u>		Recovery: MUD 18.30 M	
5	00/07-08-082-06W4/0	GULF RESDELN 7-8-82-6	1981/03/14 FM:WINNIPEGOSIS FM ·	
			MECHANICALLY GOOD STRADDLE DST FM Dep: 582.00-602.00	
			Rec Depth:577.10 SP: 296 FFP: 251 VO: 60 (min.)	
			HP:8078 ,8078 SIP:217 /296 /0 /0 SIT:60 /60 /0 /0	
			FP:365 /137 /217 /251 /0 /0 /0 /0 FT:10 /60 /0 /0	
			Recovery; MUD 19.00 M	
6	00/01-24-095-07W4/0	CDCOG TENN MUSKEGR 1-24-95-7	1980/03/04 FM:METHY FM - GRANITE WASH	
			MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 384.00-412.00	
		(CONTACT RAPIDS 385 m KB)	Rcc Depth:374.00 SP: 78 FFP: 56 VO: 60 (min.)	
1			HP:4374 ,4374 SIP:300 /300 /0 /0 SIT:60 /120 /0 /0	
1			FP:300 / /300 /0 /0 /0 /0 /0 /0 FT:10 /30 /0 /0	
			Recovery: MUD 1.00 M	

Table B.4: DST data available in the original study area for wells that had bulk density log data (source: AEUB well database)

No.	UWI	Well Name	D\$T Description	DST Description
7	00/08-09-053-03W4/0	HUSKY 8B MARWAYNE 8-9-53-3	1996/11/19 FM:WINNIPEGOSIS FM ·	
			MECHANICALLY GOOD LIMITED RECOVERY DST FM Dep: 1025,00-1046.00	
			Rec Depth; 1027,91 SP; 665 FFP; 294 VO: 32 (min.)	
			Recovery: MUD 30.00 M	
			1988/06/10 FM:WINNIPEGOSIS FM - TOTAL DEPTH	
8	00/06-12-053-04W4/0	STERLING ET AL DEWBERRY 6-12-53-4	MECHANICALLY GOOD LIMITED RECOVERY DST FM Dep: 1071.00-1105.00	1988/06/11 FM:WINNIPEGOSIS FM
			Rec Depth:1061.00 SP: 4275 FFP: 90 VO: 62 (min.)	MECHANICALLY GOOD STRADDLE DST FM Dep: 1063.20-1067.00
			HP:13872 ,13856 SIP:2957 /4274 /0 /0 SIT:57 /118 / /	Rec Depth:1051.90 SP: 0 FFP: 0 VO: 61 (min.)
			FP:131 /82 /158 /89 /0 /0 /0 /0 FT:12 /62 / /	HP:13748 ,13748 SIP:68 /46 /0 /0 SIT:62 /118 / /
			Recovery: MUD 1.00 M	FP;117 /117 /117 /117 /0 /0 /0 /0 FT;9 /61 / /
9	00/08-01-062-11W4/0	SASKOIL SUGDEN 8-1-62-11	1991/07/18 FM:BASAL RED BEDS - CAMBRIAN SYSTEM	
			MECHANICALLY GOOD STRADDLE DST FM Dep: 1525.00-1556.00	
			Rec Depth:1529.94 SP: 13702 FFP: 5210 VO; 60 (min.)	
			HP:19787 ,19732 SIP:13513 /12865 /0 /0 SIT:60 /120 / /	
			FP:806 /2158 /2578 /4936 /0 /0 /0 /0 FT:10 /60 / /	
			Recovery: MUD 75.00 M	
			Recovery: SALT WATER 323.00 M	
10	02/01-28-063-02W4/0	RENAISSANCE COLD LAKE 1-28-63-2	1989/07/05 FM:WINNIPEGOSIS FM -	
1			MECHANICALLY GOOD STRADDLE DST FM Dep: 744.00-752.00	
			Rec Depth;747.00 SP: 466 FFP: 224 VO: 16 (min.)	
			HP:9266 ,9273 SIP:468 /330 /0 /0 SIT:54 /27 / /	
			FP:330 /220 /330 /220 /0 /0 /0 /0 FT:12 /16 / /	
			Recovery: MUD 25.00 M	
11	02/08-26-063-03W4/0	CON BEACON PARA COLDLK 8-26-63-3	1992/12/13 FM:WINNIPEGOSIS FM -	1992/12/15 FM:ERNESTINA LK FM - LOTSBERG FM
			MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 764.80-799.00	MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 914.00-928.00
			Rec Depth:767.00 SP: 8618 FFP: 4411 VO: 60 (min.)	Rec Depth: 917.64 SP: 8978 FFP: 255 VO: 30 (min.)
			Recovery: MUD 152.00 M	Recovery: MUD 1.00 M
			Recovery: WATER 175.00 M	
12	02/06-13-063-08W4/0	CDNOXY SWD 2 SUGDEN 6-13-63-8	1986/12/28 FM:BASAL RED BEDS - CAMBRIAN SYSTEM	
	1		MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 1350.00-1384.00	
			Rec Depth:1344.40 SP: 12750 FFP; 12743 VO: 60 (min.)	
			HP:18181 .17940 SIP:12741 /12748 /0 /0 SIT:60 /90 / /	
			FP:11645 /11776 /12003 /6 /0 /0 /0 /0 FT:10 /60 / /	
		1	Recovery: MUD-CUT SALT WATER 240.00 M	
1		1	Recovery: SALT WATER 780.00 M	

Table B.4: DST data available in the original study area for wells that had bulk density log data (source: AEUB well database)

No.	UWI	Well Name	DST Description	DST Description
13	00/10-10-066-06W4/0	BP LEMING 10-10-66-6	1981/03/05 FM:BASAL RED BEDS · PRECAMBRIAN SYSTEM	1981/03/06 FM:WINNIPEGOSIS FM ·
			MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 1310.00-1362.00	MECHANICALLY GOOD STRADDLE DST FM Dep: 910.00-935.00
			Rec Depth:1312.00 SP: 11496 FFP: 11447 VO: 120 (min.)	Rec Depth:899.00 SP: 1432 FFP: 1355 VO: 60 (min.)
			HP:16484 ,16484 SIP:11356 /11497 /0 /0 SIT:60 /120 /0 /0	HP:11162 ,11162 SIP:8446 /0 /0 /0 SIT:60 /120 /0 /0
			FP:11197 /11426 /0 /0 /0 /0 /0 /0 FT:5 /120 /0 /0	FP:177 /813 /0 /0 /0 /0 /0 FT:\$ /60 /0 /0
			Recovery: MUD 80.00 M	Recovery: MUD 72.00 M
			Recovery: MUD-CUT SALT WATER 870.00 M	Recovery: MUD-CUT SALT WATER 14.00 M
14	00/11-26-069-10W4/0	ARCO HEART LAKE 11-26-69-10	1967/03/22 FM:LOTSBERG FM • BASAL RED BEDS	1967/03/22 FM:ERNESTINA LK FM -
			MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 1414.30-1432.00	MECHANICALLY GOOD STRADDLE DST FM Dep: 1155,80-1163,10
			Rec Depth;1407.60 SP: 545 FFP: 110 VO: 30 (min.)	Rec Depth:1146.00 SP: 1496 FFP: 62 VO: 30 (min.)
			HP:18292 ,18326 SIP:552 /269 /0 /0 SIT:30 /45 /0 /0	HP:14920 ,14865 SIP:1158 /1531 /0 /0 SIT:30 /55 /0 /0
			FP:138 /138 /0 /0 /0 /0 /0 /0 FT:5 /30 /0 /0	FP:159 /117 /0 /0 /0 /0 /0 /0 FT:5 /30 /0 /0
			Recovery: MUD 1.50 M	Recovery: MUD 1.50 M
			1967/03/23 FM:CONTACT RAPIDS FM -	1967/03/23 FM:WINNIPEGOSIS FM -
			MECHANICALLY GOOD STRADDLE DST FM Dep: 1082.00-1103.40	MECHANICALLY GOOD STRADDLE DST FM Dep: 1021.70-1054.60
			Rec Depth:1074.40 SP: 207 FFP: 76 VO: 35 (min.)	Rec Depth:1015.00 SP: 290 FFP; 138 VO; 30 (min.)
			HP:13865 ,13748 SIP:248 /186 /0 /0 SIT:30 /90 /0 /0	HP:13231 ,13190 SIP:296 /331 /0 /0 SIT:30 /90 /0 /0
1			FP:16706 /0 /0 /0 /0 /0 /0 /0 FT:5 /35 /0 /0	FP:200 /159 /0 /0 /0 /0 /0 /0 FT:5 /30 /0 /0
			Recovery: MUD 1.50 M	Recovery; MUD 1.50 M
15	00/10-17-071-06W4/0	AMOCO AEC IPIATIK GRIST 10-17-71-6	1980/02/22 FM:BEAVERHILL LAKE FM -	1980/03/08 FM:ERNESTINA LK FM - LOTSBERG FM
			MECHANICALLY GOOD STRADDLE DST FM Dep: 515.00-530.00	MECHANICALLY GOOD STRADDLE DST FM Dep: 973,00-983.00
			Rec Depth:506.00 SP: 2948 FFP: 63 VO: 60 (min.)	Rec Depth:963.00 SP: 97 FFP: 32 VO: 90 (min.)
			HP:6099 ,6099 SIP:3090 /3090 /0 /0 SIT:60 /120 /0 /0	HP:12428 ,12510 SIP:333 /166 /0 /0 SIT:90 /120 /0 /0
			FP:269 /323 /0 /0 /0 /0 /0 /0 FT:10 /60 /0 /0	FP:333 /166 /0 /0 /0 /0 /0 /0 FT:10 /60 /0 /0
			Recovery: OIL-CUT MUD 3.00 M	Recovery: MUD 0.50 M
16	00/16-36-072-01W4/0	AEC ET AL FOSTERCK 16-36-72-1	1985/03/07 FM:KEG RIVER FM -	
			MECHANICALLY GOOD WIRELINE FORMATION TEST FM Dep: 680.50-680.50	
			Rec Depth;680,50 SP: 7147 FFP; 0 VO: 0 (min.)	
17	00/11-14-072-08W4/0	AEC PHILLIPS WIAU 11-14-72-8	1980/01/30 FM:LOTSBERG FM - BASAL RED BEDS	1980/02/01 FM:WINNIPEGOSIS FM -
			MECHANICALLY GOOD STRADDLE DST FM Dep: 1250.00-1260.00	MECHANICALLY GOOD STRADDLE OST FM Dep: 910.00-920.00
			Rec Depth:1240.70 SP: 263 FFP: 200 VO: 60 (min.)	Rec Depth:900.70 SP: 11730 FFP: 217 VO: 60 (min.)
			HP:16648 ,16811 SIP:351 /282 /0 /0 SIT:60 /60 /0 /0	HP:12088 ,12240 SIP:11911 /11478 /0 /0 SIT:60 /105 /0 /0
			FP:326 /326 /0 /0 /0 /0 /0 /0 FT:5 /60 /0 /0	FP:320 /313 /0 /0 /0 /0 /0 /0 FT:5 /60 /0 /0
			Recovery: MUD 7.00 M	Recovery: MUD 7,00 M
I		· · · · · · · · · · · · · · · · · · ·	1980/02/01 FM:PRAIRIE EVAPORITE FM - WINNIPEGOSIS FM	
I			MECHANICALLY GOOD STRADDLE DST FM Dep: 905.00-915.00	
			Rec Depth:895.70 SP: 10853 FFP: 303 VO: 60 (min.)	
			HP:11978 ,12021 SIP:10973 /10607 /0 /0 SIT:60 /90 /0 /0	
			FP:328 /313 /0 /0 /0 /0 /0 /0 FT:5 /60 /0 /0	
1	l		Recovery: MUD 7.00 M	

Table B.4: DST data available in the original study area for wells that had bulk density log data (source: AEUB well database)

.

No.	UWI	Well Name	DST Description	DST Description
18	00/10-14-073-05W4/0	AMOCO AEC IPIATIK KIRBY 10-14-73-5	1979/02/04 FM:WINNIPEGOSIS FM -	
			MECHANICALLY GOOD STRADDLE DST FM Dep: 793.00-820.00	
			Rec Depth:785.00 SP: 5383 FFP: 5331 VO; 60 (min.)	
			HP:4247 ,0 SIP:5534 /5534 /0 /0 SIT:30 /120 /0 /0	
			FP:4615 /5534 /0 /0 /0 /0 /0 /0 FT:10 /60 /0 /0	
			Recovery: MUD-CUT SALT WATER 60.00 M	
19	00/10-09-074-06W4/0	AMOCO KIRBY 10-9-74-6	1977/02/21 FM:WINNIPEGOSIS FM -	1977/02/21 FM:ERNESTINA LK FM
			MECHANICALLY GOOD STRADDLE DST FM Dep: 810.20-513.80	MECHANICALLY GOOD WIRELINE FORMATION TEST FM Dep; 917,40-917,40
			Rec Depth;812,30 SP; 6543 FFP; 345 VO; 30 (min.)	Rec Depth:917.40 SP: 4426 FFP: 0 VO; 0 (min.)
			HP:10446 .10411 SIP:614 /634 /0 /0 SIT:30 /60 /0 /0	HP:10446 ,10411 SIP:614 /634 /0 /0 SIT:30 /60 /0 /0
			FP:248 /290 /0 /0 /0 /0 /0 FT:10 /30 /0 /0	FP:248 /290 /0 /0 /0 /0 /0 /0 FT:10 /30 /0 /0
			Recovery: MUD 12.20 M	
			1977/02/21 FM:WINNIPEGOSIS FM ·	1977/02/21 FM:WINNIPEGOSIS FM -
			MECHANICALLY GOOD STRADDLE DST FM Dep: 801.00-804.70	MECHANICALLY GOOD WIRELINE FORMATION TEST FM Dep: 813,20-813.20
			Rec Depth;802.50 SP; 6440 FFP; 345 VO; 30 (min.)	Rec Depth:813,20 SP; 110 FFP; 0 VO; 0 (min.)
			HP:10411 ,10446 SIP:634 /614 /0 /0 SIT:30 /75 /0 /0	HP:10411 ,10446 SIP:634 /614 /0 /0 SIT:30 /75 /0 /0
			FP:248 /290 /324 /0 /0 /0 /0 /0 FT:10 /30 /0 /0	FP:248 /290 /324 /0 /0 /0 /0 /0 FT:10 /30 /0 /0
			Recovery: MUD	
			1977/02/21 FM:WINNIPEGOSIS FM ·	
			MECHANICALLY GOOD WIRELINE FORMATION TEST FM Dep; 786.40-786.40	
			Rec Depth:786.40 SP; 5992 FFP; 0 VO; 0 (min.)	
20	02/10-01-077-07W4/0	HOME LEISMER A10-1-77-7	1975/02/08 FM:GRANITE WASH - PRECAMBRIAN SYSTEM	
			MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 929.60-959.20	
			Rec Depth:932.40 SP; 221 FFP; 207 VO; 20 (min.)	
			HP:12128 ,12087 SIP:207 /207 /0 /0 SIT:20 /20 /0 /0	
			FP:207 /207 /0 /0 /0 /0 /0 /0 FT:20 /20 /0 /0	
			Recovery: 0.00 M	
21	00/10-28-077-08W4/0	ALTANA HUBER CHRISTINA 10-28-77-8	1971/02/03 FM:PRAIRIE EVAPORITE FM - WINNIPEGOSIS FM	1971/02/03 FM:BEAVERHILL LAKE FM -
			MECHANICALLY GOOD STRADDLE DST FM Dep: 727.90-740.70	MECHANICALLY GOOD STRADDLE DST FM Dep: 375.50-378.90
			Rec Depth;721.50 SP: 9880 FFP: 1951 VQ: 60 (min.)	Rec Depth:369.10 SP: 676 FFP: 345 VO: 60 (min.)
			HP:8963 ,9067 SIP:9880 /9349 /0 /0 SIT:70 /60 /0 /0	HP:4585 ,4571 SIP:676 /0 /0 /0 SIT:60 /60 /0 /0
			FP:579 /1951 /0 /0 /0 /0 /0 /0 FT:5 /60 /0 /0	FP:324 /345 /0 /0 /0 /0 /0 /0 FT:5 /60 /0 /0
			Recovery: MUD-CUT SALT WATER 170.70 M	Recovery; WATER-CUT MUD 25.90 M
22	00/10-05-080-02W4/0	HOME WINNEFRED LAKE 10-5-80-2	1967/03/11 FM:PRAIRIE EVAPORITE FM - CONTACT RAPIOS FM	
			MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 516,80-557.80	
			Rec Depth:556.60 SP; 4289 FFP: 2427 VO: 150 (min.)	
			HP:5288 ,5288 SIP:3896 /3620 /0 /0 SIT:60 /150 /0 /0	
		1	FP:276 /1951 /0 /0 /0 /0 /0 /0 FT:150 /0 /0 /0	
			Recovery: SALT WATER 131.10 M	
I	1	1 .	Recovery: MUD 73.20 M	

Table B.4: DST data available in the original study area for wells that had bulk density log data (source: AEUB well database)

No.	UW	Well Name	DST Description	DST Description
23	00/11-32-080-04W4/0	HOMESTEAD CANOXY COWPAR 11-32-80-4	1976/01/21 FM:PRAIRIE EVAPORITE FM - WINNIPEGOSIS FM	
			MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 487.70-499.90	
			Rec Depth:491.90 SP: 4557 FFP: 1386 VO: 60 (min.)	
			HP:5633 ,5543 SIP:4551 /4420 /0 /0 SIT:60 /90 /0 /0	
			FP:621 /1379 /0 /0 /0 /0 /0 FT:10 /60 /0 /0	
			Recovery: SALT WATER 112.80 M	
24	00/10-08-083-06W4/0	GULF RESDELN 10-8-83-6	1981/02/22 FM:WINNIPEGOSIS FM -	
			MECHANICALLY GOOD STRADDLE DST FM Dep: 579.00-588.50	
			Rec Depth:570.00 SP: 3150 FFP: 1125 VO: 80 (min.)	
			HP:7738 ,7895 SIP:3266 /2795 /0 /0 SIT:60 /115 /0 /0	
			FP:559 /0 /0 /0 /0 /0 /0 /0 FT:5 /60 /0 /0	
			Recovery: MUD 65.00 M	
25	00/01-14-083-06W4/0	TEXCAN COTTONWOOD 1-14-83-6	1969/02/15 FM:KEG RIVER FM ·	
			MECHANICALLY GOOD STRADDLE DST FM Dep; 548,00-564,50	
			Rec Depth:556.60 SP: 4261 FFP: 3799 VO: 60 (min.)	
			HP:6729 ,6647 SIP:3868 /4006 /0 /0 SIT:60 /90 /0 /0	
			FP:1165 /3530 /0 /0 /0 /0 /0 /0 FT:5 /60 /0 /0	
			Recovery: SALT WATER 320.00 M	
26	00/15-14-084-11W4/0	JACOS WD HANGST 15-14-84-11	1990/02/22 FM:WINNIPEGOSIS FM	1990/02/22 FM:WINNIPEGOSIS FM -
			MECHANICALLY GOOD WIRELINE FORMATION TEST FM Dep: 781.60-781.60	MECHANICALLY GOOD WIRELINE FORMATION TEST FM Dep: 781,50-781,50
			Rec Depth:781.60 SP: 9980 FFP: 0 VO: 0 (min.)	Rec Depth;781.50 SP; 10028 FFP: 0 VO; 0 (min.)
			1990/02/22 FM:WINNIPEGOSIS FM -	1990/02/22 FM;WINNIPEGOSIS FM -
			MECHANICALLY GOOD WIRELINE FORMATION TEST FM Dep: 747,10-747,10	MECHANICALLY GOOD WIRELINE FORMATION TEST FM Dep: 747.10-747.10
			Rec Depth:747.10 SP: 9595 FFP: 0 VO: 0 (min.)	Rec Depth:747.10 SP: 9597 FFP: 0 VO: 0 (min.)
27	00/06-01-052-13W4/0	VOYAGER PLAIN 6-1-52-13	1978/09/12 FM:ERNESTINA LK FM -	
			MECHANICALLY GOOD STRADDLE DST FM Dep: 1581.00-1565.00	
			Rec Depth:1583.00 SP: 6965 FFP: 192 VO: 60 (min.)	
			HP:18809 ,18809 SIP:1204 /6965 /0 /0 SIT:30 /90 /0 /0	
ļ			FP:209 /192 /0 /0 /0 /0 /0 /0 FT:10 /60 /0 /0	
			Recovery; MUD 1.00 M	
28	00/02-13-055-13W4/0	WESTMIN HAIRY 2-13-55-13	1983/09/08 FM:BASAL RED BEDS .	
			MECHANICALLY GOOD REVERSE-CIRCULATION DST_FM Dep:1635.00-1644.00	
			Rec Depth:1627.30 SP: 668 FFP: 90 VO: 60 (min.)	
1			HP:21024 ,21024 SIP:180 /682 /0 /0 SIT:60 /90 /0 /0	
			FP:144 /144 /198 /126 /0 /0 /0 /0 FT:15 /60 /0 /0	
L			Recovery: 0.00 M3	
29	00/07-07-072-03W4/0	AEC FOSTER CREEK 7-7-72-3	1996/01/24 FM;WINNIPEGOSIS FM ·	
			MECHANICALLY GOOD LIMITED RECOVERY DST FM Dep: 777.00-802.00	
		1	Rec Depth:779.91 SP: 5335 FFP: 5334 VO: 60 (min.)	
1	1		To Surface: GAS: 0 (min.) Max FI: 0.3 E3m3/d Final FI: 0.0 E3m3/d	

AGI 10-122

Table B.4: DST data available in the original study area for wells that had bulk density log data (source: AEUB well database)

. .

No,	UWI	Well Name	DST Description	DST Description
30	00/01-03-095-07W4/0	CDCOG TENN MUSKEGR 1-3-95-7	1980/02/18 FM:KEG RIVER SS -	1980/02/20 FM:BEAVERHILL LAKE FM - PRAIRIE EVAPORITE FM
			MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 375.00-408.00	MECHANICALLY GOOD STRADDLE DST FM Dep: 300.00-316.00
			Rec Depth:376.00 SP: 1736 FFP: 255 VO: 60 (min.)	Rec Depth:302,00 SP: 1110 FFP: 773 VO: 30 (min.)
	1		HP:3456 ,3373 SIP:329 /1728 /0 /0 SIT:60 /120 /0 /0	HP:3109 ,3021 SIP:977 /977 /0 /0 SIT:60 /120 /0 /0
			FP:247 / /247 /0 /0 /0 /0 /0 /0 FT:10 /30 /0 /0	FP:355 /622 /0 /0 /0 /0 /0 /0 FT:10 /30 /0 /0
			Recovery: SALT WATER 0.30 M	Recovery: WATER-CUT MUD 65.00 M
			1980/02/20 FM:BEAVERHILL LAKE FM -	
			MECHANICALLY GOOD STRADDLE DST FM Dep: 258,00-290,00	
			Rec Depth:260.00 SP; 790 FFP; 527 VO: 30 (min.)	
			HP:25505 ,25505 SIP:2468 /8226 /0 /0 SIT:60 /120 /0 /0	
			FP:0 /6582 /0 /0 /0 /0 /0 /0 FT:10 /30 /0 /0	
L			Recovery: MUD 72.00 M	
31	00/01-20-095-07W4/0	HUSKY TENN MUSKEGR 1-20-95-7	1980/03/11 FM:GRANITE WASH PRECAMBRIAN SYSTEM	1980/03/12 FM:BEAVERHILL LAKE FM - KEG RIVER FM
			MECHANICALLY GOOD CONVENTIONAL DST FM Dep: 310.00-338.00	MECHANICALLY GOOD STRADDLE DST FM Dep: 226.00-254.00
			Rec Depth:300.30 SP: 223 FFP: 11 VO: 30 (min.)	Rec Depth:216.30 SP: 903 FFP: 675 VO: 60 (min.)
			HP:3427 ,3427 SIP:1108 /1108 /0 /0 SIT:30 /120 /0 /0	HP:2287 .2287 SIP:892 /1003 /0 /0 SIT:30 /120 /0 /0
			FP:1108 /1108 /0 /0 /0 /0 /0 /0 FT:10 /30 /0 /0	FP:167 /836 /0 /0 /0 /0 /0 FT:10 /30 /0 /0
			Recovery: MUD 1.00 M	Recovery: MUD 92.00 M
			1980/03/12 FM:BEAVERHILL LAKE FM -	1980/03/12 FM:BEAVERHILL LAKE FM -
			MECHANICALLY GOOD STRADDLE DST FM Dep: 202.00-224.00	MECHANICALLY GOOD STRADDLE DST FM Dep: 190.00-200.00
1			Rec Depth:192.30 SP: 764 FFP: 747 VO: 30 (min.)	Rec Depth;191.00 SP; 484 FFP; 202 VO; 30 (min.)
		1	HP:2304 ,2304 SIP:901 /0/0 SIT:30 /120 /0 /0	HP:2004 ,2004 SIP:1202 /701 /0 /0 SIT:30 /120 /0 /0
			FP:901 /901 /0 /0 /0 /0 /0 FT:10 /30 /0 /0	FP:200 /200 /0 /0 /0 /0 /0 /0 FT:10 /30 /0 /0
			Recovery: MUD 65.00 M	Recovery: MUD 9,00 M

.

APPENDIX C

DATA SUMMARY TABLES – EXPANDED STUDY AREA

Table C.1	Bulk density log data available in the expanded study area for the Elk Point Group (source: AEUB well database)
Table C.2	Dipmeter log data available in expanded study area for the Elk Point Group (source: AEUB well database)
Table C.3	Bulk density log data available in the expanded Saskatchewan area for the Elk Point Group (source: AEUB well database)
Table C.4	Dipmeter log data available in the expanded Saskatchewan area for the Paleozoic-age Formations (source: AEUB well database)

APPENDIX C

DATA SUMMARY TABLES – EXPANDED STUDY AREA

- Table C.1Bulk density log data available in expanded study area for the
Elk Point Group
- Table C.2Dipmeter log data available in expanded study area for the Elk
Point Group

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
1	00/01-01-091-05W5/0	1986/04/01	15	1445	0000	7940	N	0.01	
2	00/01-03-073-04W5/0	1991/11/30	300	1619	0000	7820	N	0.19	
3	00/01-03-089-03W5/0	1987/09/26	25	1468	0000	9800	Y	0.02	
4	00/01+04+070+03W5/0	1988/02/24	470	1739.1	2060	7820	N	0.27	
5	00/01-05-071-03W5/0	1992/08/04	275	1779.7	0000	7820	N	0.15	
6	00/01-06-090-03W5/0	1998/02/14	1085	1508	0004	9800	Y	0.72	
7	00/01-07-036-18W4/0		354	2121	0000	7700	N	0,17	
8	00/01+07-074-04W5/0	1993/03/07	195.2	1643.9	0000	7820	N	0.12	
9	00/01-07-093-04W5/0	1987/03/06	295	1326	0000	9800	٠Y	0.22	
10	00/01-08-094-03W5/0	1993/01/05	807.6	1352.2	7170	9800	Y	0.60	
ш	00/01-11-073-04W5/0	1998/08/20	273.5	1626	0000	7820	N	0.17	
12	00/01-11-090-03W5/0	1994/02/12	1012.8	1481.6	7170	7880	N	0.68	
13	00/01-11-091-05W/5/0	1986/02/20	16	1371,5	0000	9760	Y	0.01	
14	00/01-11-101-02W5/0		609.6	1082.6	7440	9800	Y	0.56	
15	00/01-12-060-21W4/0		20	[492	0000	7700	N	0.01	
16	00/01+15-090-05W5/0	1988/08/07	450:	1535	0000	9999	Y	0.29	
17	00/01-15-093-02W5/0	1995/08/24	787	1310.1	7170	9999	Y	0.60	
18	00/01+16-074-04W5/0	1990/10/07	1330	1668.8	7170	7820	N	0.80	
19	00/01-17-092-04W5/0	1987/03/15	794	1298,1	7170	9800	Y	0.61	
20	00/01-19-089-03W5/0	1988/11/16	1141	1531	7440	9800	Y	0,75	
21	00/01-20+090-03W5/0	1993/03/22	960.6	1443.79	7170	7880	N .	0.67	
22	00/01-20-094-03W5/0	1996/02/09	30	1345.7	0000	9800	Y	0.02	Y
23	00/01-22-089-03W5/0	1988/02/08	20	1481	0000	9800	Y	0.01	
24	00/01-23-095-05W5/0	1985/03/11	246	1239.5	0000	9800	Y	0.20	
25	00/01-24-071-04W5/0	1989/02/26	181	1743.2	0000	7820	N	0.10	
26	00/01-24-090-03W5/0	1985/11/11	854	1389	7170	9800	Y	0,61	
27	00/01-25-096-05W5/0	1987/01/16	15	1272	0000	9800	. Y	0.01	Y
28	00/01-28-089-03W5/0	1988/10/26	20	1521.2	0000	9999	Y	0.01	
29	90/01-28-092-04W5/0	1988/03/05	20	1335	0000	9800	N	0.01	Y
30 a	0/01-29-101-24W4/0	1985/03/15	281	1068	7170	9999	Y	0.26	Y
31	0.101-30-089-03W5/0	1986/12/21	356	1529	0000	9800	Y	0.23	
32 (00:01-31-095-04W5/0	1985/01/26	290	1208.2	0000	9999	N	0.24	
33 (00/01-32-089-02W5/0	1993/11/13	20	1459.4	0000	7880	N	0.01	
34 (0/01-33-090-01W5/0	1986/01/31	793.5	1223.4	7440	9999	Ŷ	0.65	
35 (0/01-34-089-04W/5/0	1991/02/09	1050.2	1491.7	7170	9999	Y	0.70	
36 (0201-36-093-04W5/0	1995/01/08	63.7	1285.5	6000	7880	N	0.05	
37 0	0 02-01-074-05W5/0	1988/08/12	275	1645	0000	7820	N	0.17	
38 0	0/02-01-090-04W5/0	1993/07/11	1443.6	1453.3	7820	7880	N	0,99	
39 0	0/02-01-094-02W5/0	1997/02/19	10	1329,9	0000	9800	Y	0.01	Ŷ
40 0	0/02-02-042-14W4/0	1987/05/27	830	1624.7	2360	7860	N	0.51	
41 0	0/02-03-070-03W5/0	1993/10/19	400	1688	0000	7820	N	0.24	
42 0	0.92-03-072-04W5/0	1990.11718	450	1807.5	0000	7820	N	0.25	
43 0	w02-03-090-03W5/0	1992 08/25	1028	1478.7	7170	7880	N	0 70	

Table C.1: Bulk density log data available in the expanded study area for the Elk Point Group (source: AEUB well database)

No.	UWI	Run Date	Top Log Interval	Bottom Log Interval	Top Formation	Bottom Formation	Top and Bottom Coverage in Elk	Fraction of Unknown Bulk Density Data from Surface	Wells Proposed for
		-	(m KB)	(m KB)	Code	Code	Point Group	to Bottom Log Interval	Analysis
44	00/02-04-015-11W4/0	1997/10/16	362	1691.4	0000	7700	N	0.21	
45	00/02-04-071-03W5/0		1249,7	1706,9	7160	7820	N	0.73	
46	00/02-04-072-04W5/0	1992/11/27	1725	1816.5	7440	7820	N	0,95	
47	00/02-04-089-03W5/0	1987/10/17	1021	1535	7170	9800	Y	0.67	
48	00/02-05-073-04W5/0	1986/08/21	13	1658.1	0000	7820	N	0.01	
49	00/02-05-074-04W5/0	1988/02/12	205.3	1628.4	0000	7820	N	0,13	
50	00/02-05-090-02W5/0	1988/02/29	963	1491	7170	9800	Y	0.65	
51	00/02-06-072-03W5/0	1993/03/05	250	1694.5	0000	7820	N	0.15	
52	00/02-06-074-04W5/0	1988/09/06	318	1652	0000	9999	N	0,19	
53	00/02-07-090-02W5/0	1993/03/30	25	1396.3	0000	7880	N	0.02	
54.	00/02-10-055-22W4/0	1985/09/27	505	1876.2	1600	7960	N	0.27	
55	00/02-10-074-05W5/0	1987/11/01	180.5	1693	0000	7820	N	0.11	
56	00/02-10-089-03W5/0		30.5	1450.8	0000	9800	Ŷ	0.02	
57	00/02-10-102-23W4/0	1985/02/06	325.7	1074.9	0000	9800	Y	0.30	Y
58	00/02-11-089-03W5/0	1988/03/16	1046.5	1501	7320	9800	Y	0.70	
59	00/02-12-093-05W5/0	1987/03/01	10	1337.3	0000	9800	Ŷ	0.01	Y
60	00/02-13-073-04W5/0	1991/01/29	1350	1605.5	7170	7820	N	0.84	
6I	00/02-13-073-05W5/0	1991/03/02	1624.5	1649.8	7620	7820	N	0.98	
62	00/02+14-090-05W5/0	1992/03/19	3.7	1491.8	0000	7880	N	0.00	
63	00/02-14-091-05₩5/0	1986/08/25	30	1401	0000	9800	Y	0.02	
64	00/02-15-072-04W5/0	1990/11/23	450	1788.5	0000	7820	N	0.25	
65	00/02-15-074-05W5/0	1987/12/01	1000	1779.4	6580	7820	N	0,56	
66	00/02+15-089-03W/5/0	1987/11/18	20	1552.1	0000	9800	Y	· 0.01	
67 ;	00/02-16-074-05W5/0		195	1795.7	0000	7820	N	0.11	
68	00/02-18-071-03W5/0	1990/01/08	1751.3	1793.6	7580	7820	N	0.98	
69	00/02-18-072-03W5/0	1991/01/26	1397:5	1724.5	7100	7820	N	0.81	
70	00/02+18-090-02W5/0	1986/02/20	868	1350	7170	9800	Y	0.64	
71	00/02-20-051-23W4/0		200	1854.5	0000	7700	N	0.11	
72	00/02-20-073-04W5/0	1985/02/23	1300	1636	7100	99999	Ŷ	0.79	
73	00/02-20-091-02W5/0	1986/02/10	240	1282	0000	9800	Y	0.19	
74	00/02-21-073-04W5/0	1992/01/28	265	1627	0000	7820	N	0.16	
75	00/02-21-091-03W5/0	1985/03/17	5	1394,7	0000	9800	Ŷ	0,00	
76 0	00/02-21-092-04W5/0	1987/10/31	15	1294.3	0000	9800	Υ	0.01	
77	00/02-23-070-04 W5/0	1993/07/10	1790	1863.6	7440	7820	N	0.96	
78	00/02-23-072-04W 5/0	1991/01/21	310	1663.4	0000	7820	N	0.19	
72 0	00/02-23-073-04W5/0	1991/02/17	1518.2	1609,2	7440	7820	м	0.94	
80 0	90/02-23-091-05W/5/0	1988/08/01	848	1367.2	7170	9800	Y	0.62	
St [1	00:02-24-088-03\V5/0	1987/09/23	1018	1434	7170	9800	Y	071	
52 6	00/02-25-096-05W/5/0	1995/01/22	1140	1222.1	7820	9800	Y	0.93	
83 0	00.02-26-072-04W5/0	1992/07/21	250	1628	0000	7820	Ň	0,15	
84 0	0.02-27-089-03W5/0	1988/10/26	25	1500.2	0000	98041	Y	0.02	
85 0	10/02-28-070-03W5/0		190,5	1751.1	0000	7820	N	0.11	
So 10	0:02-28-072-04W5/0	1992/02/08	1588	1946 5	7440	9999	Y	0.87	
								N.M.	

Interval (m KB) Formation (m KB) Formation (m KB) Formation Code Code Code Code Point Group Density Data from Surface to Botton Log Interval Analysis 87 00/02-28-073-04W5/0 1988/02/15 206 1620 0000 7820 N 0.13 88 00/02-28-094-01W5/0 1987/01/25 8.56 1463.2 7170 9800 Y 0.59 90 00/02-30-072-04W5/0 1990/12/31 300 1674.2 0000 7820 N 0.18 91 00/02-30-072-04W5/0 1997/01/25 2.49 16605 0000 7820 N 0.61 92 00/02-31-072-03W5/0 1992/01/25 2.49 16605 0000 7820 N 0.016 93 00/02-31-073-04W5/0 1992/01/21 7150 0000 9800 Y 0.01 0.01 0.01
87 00/02-28-073-04W5/0 198/02/15 2:04 16:20 0:000 7820 N 0.13 88 00/02-28-094-01W5/0 1987/01/25 856 1463.2 7170 9800 Y 0.59 80 00/02-28-094-01W5/0 1987/01/23 300 1674.2 0000 7820 N 0.18 90 00/02-30-072-04W5/0 1987/01/20 350 1586.8 0000 9800 Y 0.22 91 00/02-30-094-03W5/0 1994/12/07 813.5 1324 7170 7880 N 0.61 92 00/02-31-072-03W5/0 1992/01/25 249 1605 0000 7820 N 0.16 93 00/02-31-093-02W5/0 1985/01/20 709 1375 7160 9800 Y 0.52 94 00/02-32-070-03W5/0 1988/08/09 560 1778.7 2480 7820 N 0.31 95 00/02-32-070-03W5/0 1982/04/11 1024 1507.7 7170 98
88 00/02-28-094-01 W 5/0 1987/01/25 8.56 1463.2 71.70 9800 Y 0.59 89 00/02-30-072-04 W 5/0 1990/12/31 300 1674.2 0000 7820 N 0.18 90 00/02-30-072-04 W 5/0 1987/08/20 350 1586.8 0000 9800 Y 0.22 91 00/02-30-094-03 W 5/0 1994/12/07 813.5 1324 71.70 7880 N 0.61 92 00/02-31-072-03 W 5/0 1992/01/25 249 1.605 0000 7820 N 0.16 93 00/02-31-093-02 W 5/0 1992/01/20 709 1.375 71.60 9800 Y 0.52 94 00/02-32-070-03 W 5/0 1998/01/20 709 1.375 71.60 9800 Y 0.52 95 00/02-32-070-03 W 5/0 1998/08/09 560 1778.7 2480 7820 N 0.31 96 00/02-32-070-03 W 5/0 1992/06/11 1024 1507.7
89 00/02-30-072-04W5/0 1990/12/31 300 1674.2 0000 7820 N 0.18 90 00/02-30-088-03W5/0 1987/08/20 350 1586.8 0000 9800 Y 0.22 91 00/02-30-094-03W5/0 1994/12/07 813.5 1324 7170 7880 N 0.61 92 00/02-31-072-03W5/0 1992/01/25 249 1605 0000 7820 N 0.16 93 00/02-31-089-03W5/0 1998/01/20 709 1375 7160 9800 Y 0.01 94 00/02-31-093-02W5/0 1998/01/20 709 1375 7160 9800 Y 0.52 95 00/02-32-070-03W5/0 1998/08/09 560 1778.7 2480 7820 N 0.31 96 00/02-32-070-34W5/0 1992/01/21 1565 1627 7440 7820 N 0.96 97 00/02-32-073-04W5/0 1992/01/21 1565 1627 7440 7820
90 0x02-30-088-03W5/0 1987/08/20 350 1586.8 0000 9800 Y 0.22 91 0x02-30-094-03W5/0 1994/12/07 813.5 1324 7170 7880 N 0.61 92 0x02-31-024-03W5/0 1992/01/25 249 1.605 0000 7820 N 0.16 93 0x02-31-089-03W5/0 1987/11/04 20 1.507 0000 9800 Y 0.01 94 0x02-31-093-02W5/0 1998/01/20 709 1.375 7160 9800 Y 0.52 95 0x02-32-070-03W5/0 1988/08/09 560 1.778.7 2480 7820 N 0.31 96 0x02-32-070-03W5/0 1992/01/21 1565 1627 7440 7820 N 0.96 97 0x02-32-089-03W5/0 1987/06/11 1024 1507.7 7170 9800 Y 0.68 98 0x02-33-072-04W5/0 1990/03/17 286 1639 00000 9899
91 00/02-30-094-03W5/0 1994/12/07 813.5 1324 7170 7880 N 0.61 92 00/02-31-072-03W5/0 1992/01/25 249 1605 0000 7820 N 0.16 93 00/02-31-089-03W5/0 1987/11/04 20 1507 0000 9800 Y 0.01 94 00/02-31-089-03W5/0 1998/01/20 709 1375 7160 9800 Y 0.52 95 0/02-32-070-03W5/0 1998/01/20 709 1375 7160 9800 Y 0.52 95 0/02-32-070-03W5/0 1998/01/21 1565 1627 7440 7820 N 0.96 97 0/02-32-089-03W5/0 1992/01/21 1565 1627 7440 7820 N 0.96 98 0/02-32-089-03W5/0 1992/01/21 1565 1627 7440 7820 N 0.17 99 0/02-34-060-01W5/0 1992/01/21 1565 1627 7440 7820
92 0µ/02-31-072-03W5/0 1992/01/25 249 1605 0000 7820 N 0.16 93 0µ/02-31-089-03W5/0 1987/11/04 20 1507 0000 9800 Y 0.01 94 0µ/02-31-093-02W5/0 1998/01/20 709 1375 7160 9800 Y 0.52 95 0µ/02-32-070-03W5/0 1998/01/20 709 1375 7160 9800 Y 0.52 1 96 0µ/02-32-070-03W5/0 1988/08/09 560 1778.7 2480 7820 N 0.31 1 96 0µ/02-32-070-03W5/0 1992/01/21 1565 1627 7440 7820 N 0.96 97 0µ/02-32-089-03W5/0 1987/06/11 1024 1507.7 7170 9800 Y 0.68 98 0µ/02-33-072-04W5/0 1990/03/17 286 1639 0000 9999 N 0.17 199 0µ/02-34-090-02W5/0 1988/03/28 18 1341.3
93 00/02-31-089-03W5/0 1987/11/04 20 1507 0000 9800 Y 0.01 94 00/02-31-093-02W5/0 1998/01/20 709 1375 7160 9800 Y 0.52
94 00/02-31-093-02W5/0 1998/01/20 709 1375 7160 9800 Y 0.52 95 00/02-32-070-03W5/0 1988/08/09 560 1778.7 2480 7820 N 0.31
95 00/02-32-070-03W5/0 1988/08/09 560 1778.7 2480 7820 N 0.31 96 00/02-32-073-04W5/0 1992/01/21 1565 1627 7440 7820 N 0.96 97 00/02-32-089-03W5/0 1987/06/11 1002 1507.7 7170 9800 Y 0.68 98 00/02-33-072-04W5/0 1990/03/17 286 1639 0000 9999 N 0.17 99 00/02-34-060-01W5/0 1988/03/28 18 1341.3 0000 9800 Y 0.01 101 00/02-35-071-04W5/0 1988/03/28 18 1341.3 0000 9800 Y 0.01 102 00/02-35-072-04W5/0 1992/06/29 250 1801 0000 7820 N 0.14 102 00/02-35-073-04W5/0 1992/04/29 1645 1625 7440 7820 N 0.12 103 00/02-35-073-05W5/0 1985/03/04 197.8 1649.8 0000
96 00/02-32-073-04W5/0 1992/01/21 1565 1627 7440 7820 N 0.96 97 00/02-32-089-03W5/0 1987/06/11 1024 1507.7 7170 9800 Y 0.68 98 00/02-32-089-03W5/0 1990/03/17 286 1639 0000 9999 N 0.17 99 00/02-34-060-01W5/0 1990/03/17 286 1639 0000 9999 N 0.17 100 00/02-34-090-02W5/0 1988/03/28 18 1341.3 0000 9800 Y 0.01 101 00/02-35-071-04W5/0 1992/06/29 250 1801 0000 7820 N 0.14 102 00/02-35-072-04W5/0 1990/11/24 1545 1625 7440 7820 N 0.12 103 00/02-35-073-05W5/0 1985/03/04 197.8 1649.8 0000 7820 N 0.12 104 00/02-36-072-04W5/0 1985/03/04 197.8 1649.8 00
97 00/02-32-089-03W5/0 1987/06/11 1024 1507.7 7170 9800 Y 0.68 98 00/02-33-072-04W5/0 1990/03/17 286 1639 0000 99999 N 0.17 99 00/02-34-060-01W5/0 1990/03/17 286 1639 0000 99999 N 0.17 100 00/02-34-060-01W5/0 1988/03/28 18 1341.3 0000 9800 Y 0.01 101 00/02-34-090-02W5/0 1988/03/28 18 1341.3 0000 9800 Y 0.01 102 00/02-35-071-04W5/0 1992/06/29 250 1801 0000 7820 N 0.14 102 0/02-35-073-04W5/0 1990/11/24 1545 1625 7440 7820 N 0.12 103 0/02-36-072-04W5/0 1985/03/04 197.8 1649.8 00000 7820 N 0.13
98 00/02-33-072-04W5/0 1990/03/17 286 1639 0000 9999 N 0.17 99 0/02-34-060-01W5/0 Image: Constraint of the
99 00/02-34-060-01W5/0 100 780.2 1858.5 2480 7700 N 0.42 100 0/02-34-090-02W5/0 1988/03/28 18 1341.3 0000 9800 Y 0.01 1 101 0/02-35-071-04W5/0 1992/06/29 250 1801 0000 7820 N 0.14 1 102 0/02-35-072-04W5/0 1990/11/24 1545 1625 7440 7820 N 0.95 1 102 0/02-35-073-05W5/0 1995/03/04 197.8 1649.8 0000 7820 N 0.12 1 104 0/02-36-072-04W5/0 1985/03/04 197.8 1649.8 0000 7820 N 0.13 1 104 0/02-36-072-04W5/0 1985/03/04 197.8 1649.8 0000 7820 N 0.13 1 105 0/02-36-072-04W5/0 1984/12/05 37 1404 0000 9800 Y 0.03 1 1 1 1
100 0/02-34-090-02W5/0 198/03/28 18 1341.3 0000 9800 Y 0.01 101 0/02-35-071-04W5/0 1992/06/29 250 1801 0000 7820 N 0.14 102 0/02-35-072-04W5/0 1990/11/24 1545 1625 7440 7820 N 0.95 103 0/02-35-073-05W5/0 1985/03/04 197.8 1649.8 0000 7820 N 0.12 104 0/02-35-073-05W5/0 1985/03/04 197.8 1649.8 00000 7820 N 0.12 104 0/02-36-072-04W5/0 1985/03/04 197.8 1649.8 00000 7820 N 0.12 104 0/02-36-072-04W5/0 1984/12/05 37 1404 0000 9800 Y 0.03 105 0/02-36-072-03W5/0 1989/04/06 1400 1650.6 7170 7820 N 0.855 106 0/03-01-074-05W5/0 1993/08/04 1443 1461.9 7820
101 0/02-35-071-04W5/0 1992/06/29 250 1801 0000 7820 N 0.14 102 0/02-35-072-04W5/0 1990/11/24 1545 1625 7440 7820 N 0.05 100 103 0/02-35-073-05W5/0 1985/03/04 197.8 1649.8 0000 7820 N 0.12 101 104 0/02-36-072-04W5/0 1985/03/04 197.8 1649.8 0000 7820 N 0.12 101 104 0/02-36-072-04W5/0 1984/12/05 373 1404 0000 9800 Y 0.03 103 105 0/03-01-074-05W5/0 1989/04/06 1400 1650.6 7170 7820 N 0.85 101 106 0/03-01-090-04W5/0 1993/08/04 1443 1461.9 7820 7880 N 0.999
102 0/02-35-072-04W5/0 1990/11/24 1545 1625 7440 7820 N 0.95 103 0/02-35-073-05W5/0 1985/03/04 197.8 1649.8 0000 7820 N 0.12 1 104 0/02-36-072-04W5/0 1985/03/04 197.8 1649.8 0000 7820 N 0.13 1 105 0/02-36-070-04W5/0 1984/12/05 37 1404 0000 9800 Y 0.03 1 105 0/02-36-090-03W5/0 1989/04/06 1400 1650.6 7170 7820 N 0.85 1 106 0/03-01-090-04W5/0 1993/08/04 1443 1461.9 7820 7880 N 0.999
103 0/02-35-073-05W5/0 1985/03/04 197.8 1649.8 0000 7820 N 0.12 104 0/02-36-072-04W5/0 1885/03/04 197.8 1649.8 0000 7820 N 0.13 105 0/02-36-090-03W5/0 1984/12/05 37 1404 0000 9800 Y 0.03 106 0/03-01-074-05W5/0 1989/04/06 1400 1650.6 7170 7820 N 0.85 107 0/03-01-090-04W5/0 1993/08/04 1443 1461.9 7820 7880 N 0.999
104 0/02-36-072-04W5/0 108 210 1644 7 0000 7820 N 0.13 105 0/02-36-090-03W5/0 1984/12/05 37 1404 0000 9800 Y 0.03 106 0/03-01-074-05W5/0 1989/04/06 1400 1650.6 7170 7820 N 0.85 107 0/03-01-090-04W5/0 1993/08/04 1443 1461.9 7820 7880 N 0.999
105 00/02-36-090-03W5/0 1984/12/05 37 1404 0000 9800 Y 0.03 106 00/03-01-074-05W5/0 1989/04/06 1400 1650.6 7170 7820 N 0.85 107 0/03-01-090-04W5/0 1993/08/04 1443 1461.9 7820 7880 N 0.999
106 00/03-01-074-05W5/0 1989/04/06 1400 1650.6 7170 7820 N 0.85 107 00/03-01-090-04W5/0 1993/08/04 1443 1461.9 7820 7880 N 0.99
107 00/03-01-090-04W5/0 1993/08/04 1443 1461.9 7820 7880 N 0.99
108 00/03-01-093-05W5/0 1987/09/30 17 1369.8 0000 9800 Y 0.01 Y
109 00/03-03-090-03W5/0 1992/12/03 1030,4 1489,2 0000 7880 N 0,69
110 00/03-04-031-12W4/0 1984/04/04 350 1876.5 0000 7777 N 0.19
III 09/03-04-094-04W5/0 990.6 I311.9 7440 7940 N 0.76
112 00/03-05-072-03W5/0 1023.5 1684.5 6960 7820 N 0.61
113-00/03-05-095-03W5/0 1996/02/18 1240.5 1299.5 7820 7880 N 0.95
114 00/03-07-074-04W5/0 1992/12/10 190.4 1643.2 1860 7820 N 0.12
115 00/03-07-094-03W5/0 1986/02/19 380 1312 0000 9800 Y 0.29
116 00/03-08-093-04W5/0 1987/10/28 806 1315 7170 9800 Y 0.61
117 00/03-11-072-04W5/0 191 1800 0000 7820 N 0.11
118 00/03-15-027-08W4/0 899.2 1718.5 2140 7700 N 0.52
119 00/03-15-089-03W5/0 1987/07/11 350 1509 0000 9800 Y 0.23
129 00/03-17-096-04W5/0 1995/01/07 300 1148 0000 7820 N 0.26
121 00/03-18-092-04W5/0 1987/12/20 825 1351 7170 9800 Y 0.61
122 0003-18-093-04W5/0 1988/01/24 10 1345.9 0000 9800 Y 0.01 Y
:23 (6)/03-18-094-03W5/0 1994-03/23 1025.5 1304 7580 7880 N 0.74
124 J0J03-19-094-03W5/0 1994/12/20 808.9 1322.8 7170 7880 N 0.61
125 00/03-20-093-03W5/0 1996/01/05 615 1319,4 6709 7880 N 0.47
126 00303-20-094-03W5/0 1996/03/09 15 1351 0004 7940 N 0.01
127 00/03-22-111-04W5/0 109.1 904 0000 9800 Y 0.12
128 00/03-24-090-03W5/0 1984/10/18 25 1410 0000 99999 Y 0.02
129 00/03-25-083-02W5/0 1100 1500 7440 7880 N 0.73

Table C.1: Bulk density log data available in the expanded study area for the Elk Point Group (source: AEUB well database)

No	. Uwi	Run Date	Top Log	Bottom Log	Top	Bottom	Top and Bottom	Fraction of Unknown Bulk	Wells Proposed for
			(m KB)	(m KB)	Code	Code	Point Group	to Bottom Log Interval	Analysis
130	0 00/03-27-089-03W5/0	1986/03/23	982,5	1515	7170	9999	Y	0.65	
13	00/03-29-070-03W5/0	1992/07/22	764	1758	6440	7820	N	0.43	
132	2 00/03-30-109-03W5/0		93	843.4	7100	9800	Y	0.11	
133	00/03-32-015-05W4/0		193	1717.2	0000	9160	Y	0.11	Y
134	00/03-32-094-03W5/0	1996/01/14	10	1307.9	0000	7880	N	0.01	
135	5 00/03-34-089-03W5/0	1985/12/03	1003	1512.7	7170	9800	Y	0.66	
136	00/03-35-095-05₩5/0	1988/03/24	810	1279	7440	9800	Y	0,63	
137	00/03-35-101-22W4/0		609.6	1022.6	7540	7960	N	0,60	
138	00/04-01-045-16W4/0	1983/12/03	284	1802	0000	דדדד	N	0.16	
139	00/04-01-073-05W5/0	1990/03/01	180	1669.2	0000	7820	N	0.11	
140	00/04-02-073-04W5/0	1991/07/05	\$400	1616.2	7320 .	7820	N	0.87	
141	00/04-02-074-05W5/0	1984/01/19	184.5	1661	0000	7820	N	0.11	
142	00/04-02-090-04W5/0	1997/11/26	559	1494	0000	9800	Y	0.37	
143	00/04-02-093-05W5/0	1988/03/12	20	1356	0000	7940	N	0.01	
144	00/04-03-070-03W5/0		175	1708	0000	7820	N	0.10	
145	00/04-04-070-03W5/0	1991/10/03	1650	1719	7440	7820	N	0,96	
146	00/04-05-093-04W5/0	1987/09/22	30	1314	0000	9999	Y	0.02	Y
147	00/04-06-074-04W5/0	1989/06/12	218.9	1649.2	0000	7820	N	0.13	
148	00/04-06-090-03W5/0	1993/06/15	25	1520,1	0000	9999	N	0.02	
149	00/04-06-098-01W5/0	1990/01/27	35	1210.4	0000	9760	Y ·	0.03	Y
150	00/04-07-073-04W5/0	1989/12/17	1593	1656	7440	7820	N	0.96	
151	00/04-07-093-04W5/0	1987/08/21	805	1344	7170	7940	N	0.60	
152	00/04-08-073-04W5/0	1989/03/24	1541	1651	7440	7820	N	0.93	
153	00/04-08-095-04W5/0	1987/03/16	794	1291.1	7440	9800	Y	0.61	
154	00/04-08-097-02W5/0		847.3	1272.8	7440	9800	Y	0.67	
155	00/04-09-074-04W5/0	1989/09/25	295.5	1642.5	0000	7820	N	0,18	
156	00/04-10-073-04W5/0		1519.4	1652.5	7440	7820	N	0.92	
157	00/04-10-073-05W5/0	1985/02/12	1533	1702.2	7440	7820	N	0.90	
158	00/04-11-055-22W4/0	1994/12/16	216.4	1939	0000	8040	N	0.11	
159	00/04-11-089-03W5/0	1987/11/01	15	1514	0000	9800	Y	0.01	
160	00/04-11-098-23W4/0		187.8	1185.1	0000	7940	N	0.16	
161	00/04-12-073-04W5/0	1998/09/24	635,8	1626.6	000(14	7820	N	0.39	
162	00/04-12-090-05W5/0	1987/03/17	1097.7	1522.2	0000	9800	Ŷ	0.72	
163	00/04-13-090-03W5/0	1986/02/06	10	1472	0000	9800	Y	0.01	
164	00/04-14-073-05W5/0	1994/02/18	1590	1663	7440	7820	м	0.96	-
105	00/04-15-073-05W5/0	1993/02/20	1680	1753.7	7440	7820	N	0.96	
160	00/04-15-074-04W5/0	1993/02/19	298.2	1659.8	0000	7820	Ň	0.18	
187	00/04-15-074-05W5/0		209	1773	0000	7820	N	0.12	
168	00/04-16-095-02W5/0	1988/03/11	316.1	1373.5	(երեյլ	9800	Y	0.23	Y
169	00/04-17-070-03W5/0	1990/12/17	1678.5	1722.5	7620	7820	x	0.97	
170	00/04-17-072-03W5/0	1995/02/16	1533	1687	7440	7780	N	0.91	
171	00/04-17-073-04W5/0	1992/02/08	1600.7	1644,4	7580	7820	N	0,97	
172	00/04-17-093-04W5/0	1987/11/12	793.5	1319	7170	9800	γ.	0,60	Y
							L		

Table C.1: Bulk density log data available in the expanded study area for theElk Point Group (source: AEUB well database)

No.	UWI	Run Date	Top Log Interval	Bottom Log Interval	Top Formation	Bottom Formation	Top and Bottom Coverage in Elk	Fraction of Unknown Bulk Density Data from Surface	Wells Proposed for
-			(m KB)	(m KB)	Code	Code	Point Group	to Bottom Log Interval	Analysis
173	00/04-17-094-03W5/0	1994/03/17	1039.4	[319.1	7580	7880	N	0,79	
174	00/04-18-038-01W4/0	1994/08/02	837.4	1570.8	3220	9000	Y	0.53	Y
175	00/04-18-073-04W5/0	1990/02/10	180	1654.3	0000	9999	N	0,11	
176	00/04-18-090-02W5/0	1992/03/07	497	1389.99	0009	7880	N	0.36	
177	00/04-19-071-03W5/0	1991/12/10	300	1734,9	0000	7820	N	0,17	
178	00/04-19-095-04W5/0	1985/01/06	50	1270,3	0000	9999	N	0.04	
179	00/04-20-070-03W5/0	1991/09/07	1650	1737.8	7440	7820	N	0.95	
180	100/04-20-089-03W5/0	1987/10/14	20	1554.4	0000	9800	Y	0.01	
181	00/04-20-094-03 W 5/0	1993/02/12	25	1332	0000	7940	N	0.02	
182	00/04-21-071-04W5/0	1984/12/23	1650	[78]	7440	7820	N	0.93	
183	00/04-24-073-04W 5/0		290	16[4]	0000	7820	N	0,18	
184	00/04-25-090-03WS/0	1984/03/25	182	1357	0000	9999	Y	0.13	
185	00/04-25-093-24W4/0	1984/03/22	40	1281.5	0000	7940	N	0.03	
186	00/04-26-073-04W/5/0	1985/01/05	184	1611.1	0000	7820	N	0.11	
187	00/04-26-089-04W5/0	1989/07/20	1099.5	1509	0000	9800	Y	0.73	
188	00/04-26-104-01W5/0		129,8	855.9	7100	9800	Y	0.15	Y
189	00/04-28-035-20W4/0		1200	2249	2060	7700	N	0.53	
190	00/04-28-085-04W5/0		1188.7	1651.1	7170	9800	Y	0.72	
191	00/04-29-071-03W5/0	1994/02/01	680	1724.7	2480	7820	N	0.39	
192	00/04-29-071-04W5/0	1984/11/18	1700	1830	7440	7820	N	0.93	
193	00/04-29-098-21W4/0	1985/02/09	324.5	1185.1	0000	9800	Y	0.27	Y
194	00/04-30-091-04W5/0	1990/02/28	996.4	1370	7440	9800	Y	0.73	
195	00/04-31-070-03W5/2	1992/09/05	380	1808.2	0000	7820	N	0.21	
196	00/04-31-072-03W5/0		214.9	1607.2	0000	7820	N	0.13	
197	00/04-33-069-03W5/0	1984/03/06	203	1732	0000	7820	N	0.12	
198	00/04-33-072-04W5/0	1992/01/23	1604.5	1647	7580	7820	N	0,97	
199	00/04-33-073-04W5/0	1992/02/27	250	1616.1	0000	7820	N	0,15	
200	00/04-33-096-04W5/0	1987/01/14	50	1210.5	0000	9800	Y	0.04	Y
201	00/04-35-071-04W5/0	1991/10/22	1781.2	1824.8	7620	7820	N	0.98	
202	00/04-36-072-04W5/0		340	1622	2060	7820	N	0.21	
203	00/04-36-073-05W5/0	1989/03/31	300	1650.2	0000	7820	N	0,18	
204	00/04-36-092-05W5/2	1986/09/20	1011	1348	0000	7880	N	0.75	
205	00/05-01-090-02W5/0	1985/01/16	50	1383,8	0000	9800	Y	0.04	
206	00/05-02-020-03W4'9		925	2194	6420	9480	Y	0.42	Y
207	00/05-02-089-03W5/0	1987/12/18	35	1503.2	0000	9800	Y	0.02	
208	00/05-02-094-01W5 0	1997/01/11	813	1407,4	7170	9800	Y	0.58	
209	00/05-06-104-23W4-0		350.5	878.4	7520	9800	Y	0.40	Y
210	00/05-07-090-02W510	1992/09/04	949	1421.3	0000	7940	N	0.67	
211	00/05-07-092-04W'5 0	1987/09/17	809	1335	7170	9800	Y	0,61	
212	00/05-08-094-04W/5/0	1986/02/09	950	1273.6	7440	9800	Y	0.75	
243	00/05-08-100-22W4/2	1985/03/29	650	1212.1	0000	7920	N	0.54	
214	00/05-11-020-06W4/0		1052.2	2228,7	6440	9800	Y	0.47	Y
215	30/05-11-065-02W5/0		897.5	1815	3360	7820	N	0.49	

.

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
216	00/05-11-088-24W4/0		458.7	1200.6	7160	7960	N	0.38	
217	00/05-12-089-02W5/0	1986/03/21	15	1527	0000	9800	Y	0,01	
218	00/05-12-092-05W5/0	1987/12/07	15	1363	0000	9800	Y	0.01	
219	00/05-12-092-24W4/0		0	1240.5	0000	9800	Y	0.00	Y
220	00/05-12-099-04W5/0	1985/02/17	501,3	1237.4	7170	9999	Y	0.41	
221	00/05-13-070-04W5/0	1993/06/20	820	1842	3260	7820	N	0.45	
222	00/05-13-073-04W5/0	1990/02/27	290,4	1619	0000	7820	N	0.18	
223	00/05-14-094-02W5/0	1998/02/06	739.7	1397.1	7170	9800	Y	0.53	
224	00/05-17-089-04W5/0	1994/06/23	20	1509.2	0000	7880	N	0.01	
225	00/05-19-073-03W5/0	1993/06/08	1500	1595	7440	7820	N	0.94	
226	00/05-20-098-01W/5/0		762	1132	7440	7940	N	0.67	
227	00/05-22-072-04W5/0	1991/02/09	1612	[655,9	7620	7820	N	0.97	
228	00/05-22-089-03W5/0	1986/02/07	458	1517,8	0000	9800	Ŷ	0.30	
229	00/05-25-092-05W5/0	1987/09/06	20	1357	0000	9800	Y	0.01	Y
230	00/05-27-070-04W5/0	1994/01/23	857.2	1866.5	0000	7820	N	0.46	
231	00/05-29-073-03W5/0	1994/01/18	560	1747.6	2480	7960	N	0,32	
232	00/05-29-091-02W5/0	1985/03/30	780.8	1289,4	7170	9800	Y	0.61	
233	00/05-30-094-04W5/0		334	¥363.7	0000	9800	Y	0.24	
234	00/05-32-017-02W4/0	1986/11/03	339	1716,3	0000	7700	N	0.20	
235	00/05-32-071-03W5/0		1222	1651	7100	7820	N	0.74	
236	00/05-32-089-03W5/0	1988/02/29	1033	1479	7170	9800	Y	0.70	
237	00/05-35-072-04W5/0	1990/06/14	299	1631.4	0000	7820	N	0.18	
238	00/05-36-089-04W5/0	1993/09/03	1416	1464.4	7820	7880	N	0.97	
239	00/06-01-034-24W4/0	1992/10/05	385.2	2525.2	0000	7700	N	0.15	
240	00/06-02-070-03W5/0		185.9	1669.7	0000	7820	N	0.13	
241	00/06-02-090-05W5/0	1987/10/29	17	1533	0000	9999	Y	0.01	
242	00/06-02-091-03W 5/0	1985/02/22	41	1397	0000	9999	Ŷ	0,03	
243	00/06-02-097-19W4/0	1986/02/21	238	1770	0000	9999	Ŷ	0.13	Y
244	00/06-03-087-22W4/0	1988/03/01	845	1238	7540	9800	Y	0.68	Y
245	00/06-03-090-03W5/0	1985/08/26	1000	1526	7170	9800	Y	0,66	
246	00/06-04-037-16W4/0	1989/12/13	10	2048	0000	9000	Y	0.00	Y
247	00/06-04-087-03W5/0	1989/03/15	3	1622.9	0000	9800	Ŷ	0.00	Y
248	00/06-05-074-04W5/0	1988/02/15	1172.4	1638.3	7160	7820	X	0.72	
249	00/06-06-098-01W5/u		812.9	1201.5	7540	9800	Y	0.68	
250	00/06-07-065-23\V4/0		406.2	1520	0000	7720	N	0.27	
251	00/06-07-095-02W5/0	1985/03/16	679.6	1323	7170	7940	N	0.51	
252	00/06-07-097-23W4/0		888.8	1438.4	7480	7960	N	0.62	
253	00/06-08-089-04W5/0	1989/04/04	5	1528,6	0000	9800	Ŷ	0.00	
254	00/06-09-090-03W/5/0	1993/02/09	15	1503	0000	7880	N	0.01	
255	00/06-09-091-02W5/0		1005,8	1354.8	7440	7940	N	0.74	
256	00/06-11-033-24W4/0	1987/01/22	1800	2553.5	6440	7700	N	0,70	
257	00/06-11-090-03W5/0	1987/12/05	19.5	1526.5	0000	9800	Y	0,01	
258	00/06-11-096-01W'5/0	1986/01/06	305	1444.5	0000	9800	Y	0.21	Y

Table C.1: Bulk density log data available in the expanded study area for theElk Point Group (source: AEUB well database)

No.	UWI	Run Date	Top Log	Bottom Log	Тор	Bottom	Top and Bottom	Fraction of Unknown Bulk	Wells
			Interval (m KB)	interval (m KB)	Formation Code	Formation Code	Coverage in Elk Point Group	Density Data from Surface to Bottom Log Interval	Proposed for Analysis
259	00/06-12-070-04W5/0	1993/07/28	1700	1789.9	7440	7820	N	0,95	
260	00/06-12-090-03W5/0	1985/11/01	455	1485.7	0000	9800	Y	0.31	
261	00/06-12-093-02W5/0	1994/02/27	25	1307.5	0000	9800	Y	0.02	Y
262	00/06-14-090-05W5/0	1988/05/15	1053	1520	7170	9800	Y	0.69	
263	00/06-14-091-02W5/0		944,3	1254.9	7440	7940	N	0.75	
264	00/06-14-101-01W5/0		609,6	1082	7440	9800	Y	0.56	
265	00/06-19-092+03W5/0		1280.2	1350.9	7820	7940	N	0.95	
266	00/06-21-089-01W5/0		932.1	1487.4	7170	9800	Y	0.63	
267	00/06-21-089-03W5/0	1987/01/26	1100	1554.5	7440	9800	Y	0.71	
268	00/06-22-033-25W4/0	1992/08/26	449	2643.2	0000	7700	N	0.17	
269	00/06-23-089-04W5/0	1987/09/02	408.5	1522.6	0000	9800	Y	0.27	
270	00/06-25-019-04W4/0		898.6	1691.6	6420	9160	Y	0.53	Y
271	00/06-25-072-05W5/0	1994/03/17	1590	1674,2	7440	7820	N	0.95	
272	00/06-26-090-03W5/0	1985/09/26	180	1385	0000	9999	Ŷ	0.13	
273	00/06-26-093-02₩5/0	1996/03/17	10	-1308	0000	7880	N	0_01	
274	00/06-26-094-05W5/0	1985/03/07	352	1345	0000	9999	Y	0.26	
275	00/06-28-016-05W4/0		914,4	1768,1	6420	9160	Y	0.52	Y
276	00/06-28-018-05W4/0		835	1697	2480	9160	Y	0.49	
277	00/06-28-042-02W4/0		290	1942	0000	9800	Ŷ	0.15	Y
278	00/06-28-089-03W5/0	1992/03/04	1053	1589	0000	9999	N	0.66	
279	00/06-29-092-04W5/0	1987/09/05	15	1294.1	0000	9800	Ŷ	0.01	Y
280	00/06-30-016-06W4/0		975.4	1755	3000	9160	Y	0.56	Y
281	00/06-30-039-11W4/0		1005,8	1581	2480	7700	N	0.64	
282	00/06-30-086-13W'4/0		96.9	779.7	2800	9800	Y	0.12	Y
283	00/06-31-089-03W5/2	1995/06/27	1015.5	1469,5	0000	7820	N	0.69	
284	00/06+31+098-22W4/0		762	1213.1	7520	9800	Y	0.63	
285	00:06-33-089-02W5/0	1993/03/13	968	1446	7170	9999	Y .	0.67	
286	00/06-33-094-03W5/0	1994/12/31	150	1319.3	0000	7880	N	0.11	
287	00-06-35-091-05W5/0	1988/08/07	20	1356:5	0000	9800	Y	0,01	
288	00/06-36-018-05W4/0		367.7	1662.1	0000	9160	Y	0.22	Ŷ
289	00;00-36-019-01W4/0		852	2226.8	2480	9800	Y	0.38	Y
290	00/06-36-092-04W5/0		1188.7	1362.2	7820	9800	Y	0.87	
291	00.00-36-096-02W5/0	1988/02/03	400	1333.2	0000	9800	Y	0.30	Y
292	00/07-01-087-05W5/0	1991/01/24	11613	1625.9	7170	9800	Y	0.68	
293	00/07-01-096-05W5/0	1984/02/10	628	1145	0000	9800	Y	0.55	
294	06/07-02-073-05W5/0	1989/03/01	1635 5	1068,4	7620	7820	N	0.98	
295	00/07-02-095-04W5/0	1995/01/26	10	1268.3	0000	7880	N	0.01	
296	00/07-03-098-25W4/0		882.1	1272.5	7440	7940	N	0,69	
297	00/07-04-090-04W5/0	1990/12/08	1074.3	1503,1	7170	7880	N	0.71	
298	00:07-05-070-02W5/0		10 ⁺ e	1783.1	0000	7880	N	0.09	
299	00/07-05-094-03W5/0	1993/01/24	15	1324-1	0000	7940	N	0.01]
300	00.07-06-093-04W5/0	1988/01/07	15	1327.8	0000	9800	Y	0.01	Y
301	00/07-06-100-17W4/0		518.2	1044.5	7440	9800	Ŷ	0.50	Ŷ
						•			

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
302	00/07-08-089-03W5/0	1987/09/11	40	1541.5	0000	9800	Y	0.03	
303	00/07-08-089-04W5/0	1993/12/15	10,8	1512.5	0000	7820	N	0.01	
304	00/07-08-093-01W5/0	1986/01/26	15	1385.4	0000	9800	Y	0.01	Y
305	00/07-09-092-04W5/0	1986/09/21	300	1299	0000	9800	Y	0.23	
306	00/07-10-091-04W5/0	1985/02/05	50	1396	0000	9800	Y	0.04	
307	00/07-11-019-05W4/0		821.7	2131.2	6420	9800	Y	0.39	Y
308	00/07-11-098-03W5/0		91.4	1220,1	0000	7940	N	0.07	
309	00/07-12-022-01W4/0		906.5	1759	6440	9160	Y	0.52	Y
310	00/07-13-090-03W5/0	1984/01/31	. 180	1421	0000	9800	Y	0.13	
311	00/07-13-092-24W4/0		300	1185	0000	7960	N	0.25	
312	00/07-13-093-05W5/0	1992/12/24	807	1311	7170	7880	N	0.62	
313	00/07-14-093-02W5/0	1995/02/13	794.5	1290,5	0000	7880	N	0.62	
314	00/07-15-040-02W4/0	1994/05/19	823	1500	7200	7880	N	0.55	
315	00/07-15-064-25W4/0		296	1665	0000	7720	N	0.18	
316	00/07-16-092-04W5/0	1988/02/04	21	1290.2	0000	9800	Y	0.02	
317	00/07-17-056-21W4/0		187,5	1781.6	0000	8040	N	0,11	
318	00/07-17-094-03W5/0	1995/02/15	810	(318.4	0000	7880	N	0,61	
319	00/07-18-019-03W4/0		420	1734	1600	9160	Y	0.24	Y
320	00/07-19-061-01W5/0		216	2249.5	0000	9000	Y	0.10	
321	00/07-21-072-04W5/0	1994/07/06	300	1659,3	0000	7820	N	0.18	
322	00/07-22-017-05W4/0	1984/12/30	828	1640	6420	9160	Ŷ	0.50	
323	00/07-22-074-22W4/0		562.4	1446.3	6580	7960	N	0.39	
324	00/07-25-034-21W4/0	1986/01/06	- 337	2279.2	0000	9040	Ŷ	0.15	Y
325	00/07-26-021-11W4/0		189.5	1899.5	0000	9160	Y	0.10	Y
326	00/07-26-093-02W5/0	1996/02/19	793	1306.8	7170	7880	N	0.61	
327	00/07-27-070-04W5/0	1993/06/26	1830	1877	7580	7820	N	0.97	
328	00/07-27-092-04W5/0		990.6	1297.8	7440	7940	N	0.76	
329	00/07-28-091-03W5/0		1005.8	1349	7540	7940	N	0.75	
330	00/07-29-017-06W4/0	1984/12/05	1006.5	1750.8	6420	9160	Y	0.57	
331	00/07-29-101-01W5/0		579.1	974.8	7440	7940	N	0.59	
332	00/07-31-016-08W4/0	1979/10/20	780.9	1770.9	2130	9160	Y	0.44	
333	00/07-31-092-04W'5/0	1987/03/15	20	1320	0000	9800	Ŷ	0.02	Ŷ
334 (00/07-31-093-04W5/0		720.5	1341,1	7170	9800	Y	0.54	
335 (00/07-34-055-21W4/0		207	1873.7	0000	\$069	N	0.11	
336	00/07-34-071-04W5/0	1992/11/14	1758.1	1791	7440	7820	N	0.98	
337 (90/07-34-088-02W5/0		947.5	1599	7160	9800	Ŷ	0.59	
338	0007-34-092-04 W5/0		712 0	1268	7170	7580	N	0.56	
324 (00/07-36-084-23W/4/0		584 9	1051	7104	7820	N	0.56	
340-0	00/07-36-100-04W5/0		376.7	1060-7	7170	980c	Y	0.36	
341 0	00/08-01-019-04W4/0		422	1716	1600	9160	Y	0.25	
342	0/08-01-092-04W5/0		914-1	1300.9	7170	7889	N	0.70	
343 0	90/08-02-046-14W4/0	1984/12/12	650	1664	1860	9994	Ŷ	0 39	Y
344 (00/08-02-093-04W5/0	1988/03/14	806	1314	7170	7880	N	0.61	

- miles

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
345	00/08-03-063-27W4/0		1066.8	1938.2	6780	7960	N	0.55	
346	00/08-03-088-05W5/0	1989/03/31	500	1538	0000	9800	Y	0.33	
347	00/08-03-094-01W5/0	1997/08/21	796.5	1375.7	7170	7940	N	0.58	
348	00/08-03-094-02W5/0	1996/12/22	797	1340.2	7170	9999	Ŷ	0.59	
349	00/08-07-093-02W5/0	1997/03/28	801	1327.2	7170	9800	Y	0_60	
350	00/08-08-020-09W4/2		1500	2209	7320	9800	Y	0,68	Y
351	00/08-08-090-03W5/0	1986/01/19	25	1535	0000	9800	Y.	0.02	
352	00/08-10-089-03W5/0	1987/11/14	590	1488	0000	9999	Y	0.40	
353	00/08-11+093-02W5/0	1995/09/19	28	1255	0000	7880	N	0.02	
- 354	00/08-12+090-03W5/0	1985/03/01	50	1477.9	0000	9760	٢	0,03	
355	00/08-14-040-03W4/2	1994/05/3 I	874	1488.6	7040	7880	N	0.59	
356	00/08-14-090-03W5/0		.10	1464	0000	9800	Y	0.01	
357	00/08-14-093-02W5/0	1995/10/02	766	1284.1	7170	7880	N	0,60	
358	00/08-15-096-04W5/0	1985/02/10	303.6	1280	0000	9999	Y	0.24	
359	00/08-16-098-22W4/0	1985/02/23	220	1229	0000	8020	N	. 0.18	
360	00/08-17-020-04W4/0		455.1	2202.8	1600	9800	Y	0.21	Y
361	00/08-17-085-25W4/0	1986/02/13	25	1407.1	0000	9800	Ŷ	0.02	Y
362	00/08-17-105-01W5/0		104.9	848.6	7100	9800	Y	0.12	Y
363	00/08-18-090-03W/5/0	1985/01/09	15	1499	0000	9800	Y	0.01	
364	00/08+21-089-03W5/0	1988/01/14	1106	1526	7440	9800	Y	0.72	
365	00/08-22-019-05W4/0		975.4	1759.9	2480	9160	Y	0.55	Y
366	00/08-23+017-04W4/0	1985/01/05	935.5	1780.5	6420	9160	Y	. 0.53	Y
367	00/08-23-043-16W4/0	1984/07/09	329	1802	0000	7920	N	0.18	
368	00/08-25-087-03W5/0		929	1478	7170	9800	Y	0,63	
369	00/08+25+090-03W5/0	1986/02/14	20	1353	0000	9800	Y	0.01	
370	00/08-28-091-02W5/0	1984/03/19	738	1286	7170	9800	Y	0,57	
371	00/08-29-093-04W5/0	1988/03/03	1000	(299.2)	7440	9800	Y	0.77	
372	00/08-14-055-20W4/0	1990/04/02	251	1760.9	0000	8040	N	0.14	
373	00/08-36-092-05W5/0	1987/08/04	15	1331	0000	9800	Y	0.01	Y
374	00/09-01-074-05W5/0	1992/06/24	650,5	1655.7	6440	7820	N	0.39	
375	00/09-03-055-22W4/0	1986/05/03	216	1912	0000	\$040	N	0.11	
376	00/09-03-089-03W5/0	1987/03/28	1013	1462.2	7170	7880	N	0.69	
377	00/09-03-094-02W5/0	1997/08/01	798,2	1349.3	7170	7940	N	0,59	
378	60/09-35-074-04W5/0	1989/05/20	1380	1625.4	7100	7820	N	0.85	
329	00/09-05-091-04W5/0	1986/12/25	25	1362.2	0000	9800	Y	0.02	
380	00/09-05-095-04W5/0	1986/03/12	699.5	1277.5	7170	9800	Y	0.55	
381	://///0-07-090-03W5/0		849.2	1516,1	7160	2800	Y	0,56	
382	eu/09-67-093-02W5/0	1997/07/10	742.5	1305.2	7170	9999	Y	0.61	
383	00/69-08-094-03W5/0	1994/11.22	820 5	1339	7170	7880	N	0:61	
384	00/09-10-088-03W5/0	1985/09.09	952	1490	7160	9800	Y	0.64	
385	00/09-10-089-03W5/0	1987/02/19	352	1539	0000	98(II)	Y	0.23	
386	(R):09-10-095-04W5/0	1987/03/13	15	1290	0000	9800	Y	0.01	Ň
387	(H)/09-11-091-05W5/0	1987/07/24	390	1337.9	0000	9800	Y	0 29	

Table C.1: Bulk density log data available in the expanded study area for the Elk Point Group (source: AEUB well database)

is a is a	No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
jasj	388	00/09-12-090-03W5/0	1993/11/30	960.5	1437	7170	9800	Y	0.67	
3003019094-4090-2004/S09094/102914014103914009170091700918009170910019100	389	00/09-13-090-03W5/0	1993/12/26	911.2	1396.7	7170	7880	N	0.65	
31 32 93 93 93 94	390	00/09-14-090-03W5/0	1984/12/22	40	1438,8	0000	9800	Y	0.03	
jac jac <thjac< th=""> <thjac< th=""> <thjac< th=""></thjac<></thjac<></thjac<>	391	00/09-14-093-02W5/0	1995/01/10	772.5	1331	7170	9800	Y	0,58	
333 00091-0409-040450 1950/020 1427 1454 7800 7800 N 0.098 349 00071-072-047560 1950/020 1255 0009 7700 N 0.017 1 350 00091-1432:17940 1980/040 1352 0700 7700 N 0.017 1 360 00071-0430-0300 19870/07 1355 0700 7700 N 0.021 0.01 1 370 00091-1640-030500 19870/07 1016 1385 7440 9800 Y 0.01 1 370 00092-14694-030500 19870/16 1015 1215 0000 9990 Y 0.01 1 400092-2408-5404-5000 197071 115 1215 0000 9990 Y 0.01 0.01 1 400092-2408-5404-50000 197070 19710 6400 9990 Y 0.01 1 40000-250-204-01-03050 197070 19720 1810 7700 <th< td=""><td>392</td><td>00/09-15-073-04W5/0</td><td>1993/01/21</td><td>250</td><td>1619.9</td><td>0000</td><td>7820</td><td>N</td><td>0.15</td><td></td></th<>	392	00/09-15-073-04W5/0	1993/01/21	250	1619.9	0000	7820	N	0.15	
338 8000-17-072-04WS0 1921275 1250 1160 0000 7700 N 0.15 305 0000-14-385-33WS0 10870400 727 1210 0000 7700 N 0.17 1 305 0000-14-385-33WS0 10870407 1020 1338 0704 6700 770 N 0.01 1 307 000-1-045-33WS0 10870776 1020 10325 1000 7900 7900 N 0.011 1 307 000-1-045-33WS0 10870776 1010 11285 1000 1900 1700 0.011 1 40 000-2-204-545-53WS0 1990/075 12285 10315 7400 7800 740 0.011 1<000 40 000-2-204-55-53WA0 1990/075 12285 13155 7400 7800 740 740 740 740 40 000-2-204-55-53WA0 1990/075 12285 1710 740 740 740 740 740	393	00/09-16-089-04W5/0	1995/09/30	1427	1454.1	7820	7880	N	0.98	
938 0009-18-032-1719400 9800809 0.361 0.2155 0.0000 9700 N 0.017 0.002 938 0009-18-084-0349X 19970401 10.05 1355 0.000 9760 V 0.002 0.002 938 0009-18-084-0349X 19940121 10.15 10.05 17400 9700 V 0.01 1710 939 0009-14-084-034X0 19841228 1895 11.645 6420 9700 V 0.01 1710 94009-14-084-034X0 19870731 1.15 1.151 0.000 9700 V 0.01 1710 94009-24045040 19870732 1.015 1.121 0.000 9800 V 0.01 1710 9400-24045050 19870730 1.015 1.121 0.000 9800 V 0.01 1710 9400-02404500 19870730 1.015 1.015 0.000 9800 V 0.01 1710 9400-0241450-0341763 1987070 1.015	394	00/09-17-072-04W5/0	1992/12/15	250	1666	0000	7820	N	0.15	
3980099-8-089-034W51970-007107115000009760Y0.0211070007-8-049-03W50198002/110101588.574409800Y0.7611080007-14-09-089-03W50198707161021515600019400N0.01110800072-14-02-04W5019870716101151560009990Y0.01110100092-2-06-03W5019870715101151560009800Y0.01110100092-2-06-03W5019870715111511160.0009800Y0.01Y10100092-2-06-03W5019870715111511160.0009800Y0.01Y10100092-2-06-03W501987071711151116111611161117 <t< td=""><td>395</td><td>00/09-18-032-17W4/0</td><td>1988/08/09</td><td>361</td><td>2158</td><td>0000</td><td>7700</td><td>N</td><td>0.17</td><td></td></t<>	395	00/09-18-032-17W4/0	1988/08/09	361	2158	0000	7700	N	0.17	
1971009-18-094-03445019400217101361358.5744098800Y0.0111980009-1-048-0345501987071620155400007940NN0.0111990009-1-048-034500198707161151114156000YN0.0111010009-2-091-048-0345001987071210151141560009800YN0.0111010009-2-091-048-0345001987072619101151560009800YN0.0111010009-2-091-048-0345001987072619101151567407880NN0.0711010009-2-091-048-03450019870770116060009800YN0.061YN0.011010009-2-091-048-034198708748055110071707940NN0.0270.02YN0.0271010009-2-091-048-034198708748055110371707940NN0.01YN0.0271010009-2-091-034-034198708748055110371707940NN0.01YN0.0271010009-2-091-034-034198708748055110371642800YN0.01YN0.011010009-2-091-034-03419870870197015160771687160YN0.01YN0.01YN0.01YN0.01YN0.01YN100YN100YN100 </td <td>396</td> <td>00/Q9-18-089-03W5/0</td> <td>1987/04/07</td> <td>27</td> <td>1536</td> <td>-0000</td> <td>9760</td> <td>Y</td> <td>0.02</td> <td></td>	396	00/Q9-18-089-03W5/0	1987/04/07	27	1536	-0000	9760	Y	0.02	
398 3090 9400 7400 NN 0.01 1 309 000921-015-05W-00 16441/208 6429 6420 9160 Y 0.0,1 1 400 000921-005-05W-00 168707/01 1.15 13145 0000 9990 Y 0.0,01 1 400 000921-005-05W-00 1910/1/5 924.8 11315 0000 9990 Y 0.0,01 Y 400 000927-015-05W-00 1910/1/5 924.8 11315 7440 7880 Y 0.0,01 Y 400 000927-015-05W-00 1970/1/0 11515 7440 7880 Y 0.0,01 Y 0.0,01 Y 400 000927-015-05W-00 1970/1/0 11315 7170 P300 Y 0.0,01 Y Y 0.0,01 Y 400 00092-04954W/9 19870/7 11405 11762 2000 7200 N 0.0,15 Y 400 00092-0552W/9 19	397	00/09-18-094-03W5/0	1994/02/17	1036	1358.5	7440	9800	Y	0.76	
399 90692-1.052-04W300 954/1268 0469 9460 97 0.54 1 401 000921-052-04W300 19707/11 1.5 1264.5 00000 9999 Y 0.01 1 401 000921-052-04W300 19707/28 1.01 1.151.5 7640 9780 Y 0.01 1 401 00092-0691-05W500 1971.4 1.115.5 7640 9780 Y 0.01 Y 405 00092-0691-05W500 1971.4 1.115.5 7740 P400 Y 0.01 Y 405 00092-0691-05W500 1970.4 475 1.732 2.660 Y 0.61 Y 1.62 405 00092-04W500 19707/04 475 1.732 2.600 5.020 N 0.01 Y 0.61 Y 406 00092-04W500 19707/04 476 1.732 1.602 Y 0.61 Y 0.61 Y 0.61 Y 0.61 Y	398	00/09-19-089-03W5/0	1987/07/16	20	1534	0000	7940	N	0.01	
4000009-21-09-24-08-050001987077311151284.50000099900Y0.0114010009-22-09-05-050750019870775810015150000098000Y0.0114030009-22-09-05-087500199107072922.81315171078800NN0.7014030009-22-09-05-08750019970179110642091600Y0.03.1Y14040009-21-09-08700198701791005.5113971707940NN0.075Y4050009-30-092-087500198707704865113922060077200NN0.027Y4050009-32-070-2878001987077010011055200009990Y0.015Y4060009-32-070-2878001987077010111055200009990Y0.016Y4070009-32-070-28780019870770102110552000017200NN0.017Y4100009-32-070-2878001987077010211055200007700NN0.100Y10064110009-32-070-2878001987077010211055200007700NN0.1001004110009-32-070-28780011001601717189800Y0.04410104120010-01-075-887800199172712725160077720NN0.05810114130010-01-075-8878001991	399	00/09-21-018-05W4/0	1984/12/08	895	1645	6420	9160	Y	0.54	
401 0000-22-090-38/95/00 19870728 100 1515 0000 9800 Y 0.01 1 402 0009-26-091-08/95/01 199101/25 926.8 1315.5 7.400 7880 N 0.01 7.00 403 0009-26-095-08/95/01 198704/19 15 110 0000 9800 Y 0.01 Y 404 0009-26-095-08/95/01 198704/19 155 1710 7460 N 0.057 Y 405 0009-26-095-08/95/01 19870720 100 1703 7700 N 0.052 1 1 406 0009-32-070-39/95/01 19900164 4715 17492 2060 7220 N 0.027 1 1 401 0009-32-070-39/95/01 19800/97 201 1765 20000 7220 N 0.01 1 1 401 0009-32-070-39/95/01 19800 Y 0.01 1 1 1 1<0	400	00/09-21-092-04W5/0	1987/07/31	15	1284.5	0000	9999	Y	0.01	
44200/09-26-09-L69KV5001997/01/19924.81315.574407880N0.70140300/09-26-095-05KV5001987/01/1915121000009800Y0.01Y40400/09-26-095-05KV5001987/01/19171064209160Y0.57Y40500/09-36-09-24KV501987/03/241005.8133371707940N0.73140600/09-30-09-24KV501987/03/2444751749226607820N0.027140800/09-36-09-24K501987/07/01010130300009999Y0.01Y40900/09-36-095-20K401987/07/01010130300009999Y0.01Y41000/09-36-095-20K401987/07/01020176200007700N0.16Y41100/09-36-095-20K401987/07/06669131861007720N0.16Y41200/00-107-0KK401991/12/12756169770607820N0.64Y41300/00-2042-0KK401994/05051114671709800Y0.51Y41401/00-2042-0KK401994/05051114671709800Y0.54Y41500/00-2042-0KK401994/0501132874409500Y0.54Y41600/10-2042-0KK401994/0501116671709800Y0.54 <td>401</td> <td>00/09-22-090-05W5/0</td> <td>1987/07/28</td> <td>10</td> <td>1515</td> <td>0000</td> <td>9800</td> <td>Ŷ</td> <td>0.01</td> <td></td>	401	00/09-22-090-05W5/0	1987/07/28	10	1515	0000	9800	Ŷ	0.01	
40300.09-26-095-05W5001987/01/19115121000009800Y0.01Y40400/09-27-015-05W400971.41005.8133571707940N0.577Y40500/09-30-09-103W5001987/03/24805.5130071709800Y0.622140600/09-30-09-04W5001987/03/24805.5130071709800Y0.622140600/09-31-09-04W5001987/03/24805.5130071709800Y0.612140800/09-31-09-24W5001987/07.00100130300009999Y0.01Y40800/09-31-09-24W5001990/08/082011176.500009800N0.10141000/09-31-09-24W5001990/08/082011175.500007700N0.10141100/09-36-09-24W5001990/08/082011175.51660.771609800Y0.44141200/10-01-03-56W501991/1212751660.770007820N0.16141300/10-01-03-56W501991/1212751660.771707820N0.681141400/10-01-03-56W501991/12011091660.771707820N0.681141500/10-03-75-6W501991/12011021138.874409800Y0.73N0.6811416	402	00/09-25-091-05W/5/0	1991/01/25	924.8	1315.5	7440	7880	N	0.70	
444 00/9-27-015-48/W4/0 Image: marked state s	403	00/09-26-095-05W5/0	1987/01/19	15	1219	0000	9800	Y	0.01	Ŷ
445 50/09-30-091-03W5/0 1987/03/24 1005.8 1133 7170 7940 N 0.075 406 00/09-30-092-04W5/0 1987/03/24 805.5 11309 7170 9800 Y 0.062 1 407 00/09-32-070-03W5/0 19901/04 475 17492 2060 7820 N 0.027 1 408 00/09-32-070-03W5/0 19777/0 10 1303 0000 9999 Y 0.01 Y 409 00/09-32-070-03W5/0 197707/0 10 1303 0000 7820 N 0.16 1 410 00/09-36-055-20W4/0 1955/02/0 1020 1715 6420 9160 Y 0.44 1 410 00/09-60W5/0 1991/271 275 1667 0000 7820 N 0.16 1 414 0/10-01-073-08W5/0 1991/271 275 1667 7170 7820 N 0.68 1 1<16	404	00/09-27-015-08W4/0		971.4	1710	6420	9160	Y	0.57	Y
446 60/09-30-092-04WS/0 197/03/24 805.5 1300 7170 9800 Y 0.62 447 60/09-32-070-03WS/0 199001/04 475 17492 2060 7820 N 0.27 448 60/09-32-070-03WS/0 1987/07/00 100 1303 6000 9999 Y 0.01 Y 449 60/09-32-070-03WS/0 1987/07/00 100 1303 6000 9999 Y 0.01 Y 440 60/09-33-055-20W4/2 199008/08 261 1755 0.000 85020 N 0.15 411 60/09-35-05-20W4/2 199008/08 261 1718 6420 9160 Y 0.44 412 60/10-10-70-5W5/0 1991/12/31 275 1669.7 7170 9800 Y 0.51 413 60/10-01-07-05W5/0 1991/12/31 275 1669.7 7170 7820 N 0.68 414 60/10-02-073-04W5/0 1993/02/25 1002 1435	405	00/09-30-091-03W5/0		1005.8	1335	7170	7940	N	0.75	
407 00/09-32-070-03W5/0 199001/04 475 1749.2 2060 7820 N 0.27 408 00/09-32-092-04W5/0 198707700 10 1305 0000 9999 Y 0.01 Y 409 00/09-32-092-04W5/0 198707700 10 1305 0000 8020 N 0.15	406	00/09-30-092-04\\'5/0	1987/03/24	805.5	1309	7170	9800	Y	0.62	
448 0009-32-092-04W5/0 1987/07/0 10 1305 0000 9999 Y 0.01 Y 409 0009-33-055-20W4/2 1990/08/08 261 1765.2 0000 5020 N 0.15 410 0009-36-055-26W4/0 202 1972.5 0000 7700 N 0.10	407	00/09-32-070-03W5/0	1990/01/04	475	1749.2	2060	7820	N	0.27	
449 00/09-33-655-20W4/2 1990/08/08 261 1765.2 0000 8020 N 0.15 410 00/09-36-055-26W4/0 202 1972.5 0000 7700 N 0.10 411 00/09-36-055-26W4/0 601.7 1378 7168 9800 Y 0.44 412 00/10-01-017-08W4/0 1985/02/03 1020 1718 6420 9160 Y 0.59 Y 413 00/10-01-073-05W5/0 1991/12/31 2735 1669.7 0000 7820 N 0.16 414 00/10-02-03-05W5/0 1991/12/31 2735 1669.7 6700 7820 N 0.68 415 00/10-02-03-05W5/0 1994/03/05 1100 1607.5 6700 7820 N 0.68 415 00/10-02-03-05W5/0 1994/02/25 1027 1481.1 7170 7820 N 0.69 416 00/10-04-070-03W5/0 1993/02/25 1027	408	00/09-32-092-04W5/0	1987/07/30	10	1303	0000	9999	Y	0.01	Y
410 00/09-36-055-26W4/0 202 1972 5 0000 7700 N 0.10 411 00/09-36-095-02W5/0 601.7 1378 7168 9800 Y 0.44 412 00/10-01-075-02W5/0 1985/02/03 1020 1718 6420 9160 Y 0.59 Y 413 00/10-01-073-05W5/0 1991/12/31 275 1669.7 0000 7820 N 0.16 414 00/10-01-095-05W5/0 1991/12/31 275 1669.7 0000 7820 N 0.68 415 00/10-02-03W5/0 1994/05/05 1100 1607.5 6700 7820 N 0.68 416 00/10-02-03W5/0 1994/05/05 1102 1481.4 7170 7820 N 0.69 417 00/10-03-03W5/0 1993/02/25 1027 1481.4 7170 7820 N 0.23 418 00/10-04-075-03W5/0 1993/12/06	409	00/09-33-055-20W'4/2	1990/08/08	261	1765.2	0000	8020	N	0.15	
411 00/09-36-095-02W\$00 601.7 1378 7168 9800 Y 0.44 412 00/10-01-073-05W\$40 1985/02/03 1020 1718 6420 9160 Y 0.59 Y 413 00/10-01-073-05W\$40 1991/12/31 275 1669.7 0000 7820 N 0.16 414 00/10-01-095-05W\$40 1994/05/05 1100 1607.5 6700 7820 N 0.68 415 00/10-02-034W\$40 1994/05/05 1100 1607.5 6700 7820 N 0.68 416 00/10-02-034W\$40 1994/05/05 1100 1607.5 6700 7820 N 0.68 417 00/10-03-030-05W5/0 1993/02/25 1027 1481.1 7170 7820 N 0.23 418 00/10-04-075-03W5/0 1993/12/06 700 1885 6440 9760 Y 0.38 Y 420 00/10-04-089-04W5/0 1995/07/	410	00/09-36-055-26W4/0		202	1972.5	0000	7700	N	0,10	
412 00/10-01-017-08W400 1985/02/03 1020 1718 6420 9160 Y 0.59 Y 413 00/10-01-073-05W5/0 1991/12/31 275 1669.7 0000 7820 N 0.16 1 414 00/10-01-095-05W5/0 1991/12/31 275 1669.7 0000 7820 N 0.16 1 415 00/10-01-095-05W5/0 1994/05/05 1100 1607.5 6700 7820 N 0.68 1 416 00/10-02-094-05W5/0 1994/05/05 11318.4 7440 9800 Y 0.73 1 1 417 00/10-02-094-05W5/0 1994/05/05 1032.7 1033.4 7440 9800 Y 0.73 1 418 00/10-02-094-05W5/0 1994/05/25 1037 1481.1 7170 9899 Y 0.69 1 1 419 00/10-04-070-03W5.0 1991/11/09 400 1718.6 6440 9760 Y 0.38 Y 1 420 00/10-04-045-094-03W5/0 1995/07/31 802.8 1	411	00/09-36-095-02W5/0		601.7	1378	7168	9800	Y	0,44	
413 00/10-01-073-05W5/0 1991/12/31 275 1669.7 0000 7820 N 0.16 414 00/10-01-095-05W5/0 100 666.9 1314.6 7170 9800 Y 0.51 415 00/10-02-073-04W5/0 1994/03/05 1100 1607.5 6700 7820 N 0.68 416 00/10-02-094-05W5/0 1994/03/05 1100 1607.5 6700 7820 N 0.68 417 00/10-03-073-04W5/0 1993/02/25 1027 148.1 7170 7820 N 0.81 418 00/10-03-090-03W5:0 1993/02/25 1027 148.1 7170 9999 Y 0.69 419 00/10-04-076-03W5:0 1993/12/06 700 1855 6440 9760 Y 0.33 Y 421 00/10-04-089-04W5/0 1995/07/11 1455 1462.3 7820 7880 N 1.00 422 00/10-04-089-04W5/0 1995/07/31 802.8 13/42 7170 7880 N 0.62	412	00/10-01-017-0SW-4/0	1985/02/03	1020	1718	6420	9160	Y	0,59	Y
414 00/10-01-095-05W5/0 1994/03/05 1100 1607.5 6700 7820 N 0.68 415 00/10-02-073-04W5/0 1994/03/05 1100 1607.5 6700 7820 N 0.68 416 00/10-02-094-05W5/0 975.4 1338.4 7440 9800 Y 0.73 417 00/10-02-094-05W5/0 1932/02-25 1630.7 7170 7820 N 0.81 418 00/10-03-090-03W5/0 1933/02-25 1027 1481.1 7170 9999 Y 0.69 419 00/10-04-070-03W5.0 1991/14/09 400 1719.6 0000 7820 N 0.23 420 00/10-04-070-03W5.0 1991/14/09 400 1719.6 0000 7820 N 0.23 421 00/10-04-090-04W5/0 1995/07/31 802.8 1462.3 7820 N 1.00 422 00/10-05-094-03W5.0 1995/07/31 802.8 130.42 7170 7880 N 0.62 423 00/10-06-015-08W4.0 953.5 1680 6420 916	413	00/10-01-073-05W5/0	1991/12/31	275	1669.7	0000	7820	N	0,16	
415 00/10-02-073-04W5/0 1994/03/05 1100 1607.5 6700 7820 N 0.68 416 00/10-02-094-05W5/0 975.4 1338.4 7440 9800 Y 0.73 417 00/10-02-094-05W5/0 1993/02/25 1630.7 7170 7820 N 0.81 418 00/10-03-090-03W5/0 1993/02/25 1027 1481.4 7170 9999 Y 0.69 419 00/10-04-070-03W5/0 1993/02/25 1027 1481.4 7170 9999 Y 0.69 419 00/10-04-070-03W5/0 1991/17/09 400 1719.6 0000 7820 N 0.23 420 00/10-04-075-03W5/0 1993/02/26 700 1853 6440 9760 Y 0.38 Y 421 00/10-04-089-04W5/0 1995/07/31 802.8 13/42 7880 N 1.009 422 00/10-05-094-03W5/0 1995/07/31 802.8 13/42 7170 7880 N 0.62 423 00/10-06-015-08W4/0 953.5 1680 6200	414	00/10-01-095-05W5/0		666.9	1314.6	7170	9800	Y	0.51	
416 09/10-02-094.05W5/0 0 975.4 1338.4 7440 9800 Y 0.73 417 09/10-03-073-04W5/0 1332.9 1630.7 7170 7820 N 0.81 418 09/10-03-073-04W5/0 1993/02/25 1027 1481.1 7170 9999 Y 0.69 419 09/10-04-070-03W5.0 1993/02/25 1027 1481.1 7170 9999 Y 0.69 419 09/10-04-070-03W5.0 1993/02/25 1027 1481.1 7170 9999 Y 0.69 420 09/10-04-070-03W5.0 1993/12/06 700 1855 6440 9760 Y 0.38 Y 421 09/10-04-089-04W5/0 1995/09/19 1455 1462.5 7820 7880 N 1.00 1.00 422 09/10-05-093-03W5.0 1995/09/19 1455 1462.5 7820 9800 Y 0.37 Y 0.37 423 09/10-06-015-08W450 1995/07/31 802.8 1304 2 7170 7880 N 0.62 0.57 1.00	415	00/10-02-073-04W5/0	1994/03/05	1100	1607.5	6700	7820	N	0.68	
417 00/10-03-073-04W5/0 1325.9 1630.7 7170 7820 N 0.81 418 00/10-03-090-03W5/0 1993/02/25 1027 1481.1 7170 9999 Y 0.69 419 00/10-04-070-03W5/0 1993/02/25 1027 1481.1 7170 9999 Y 0.69 419 00/10-04-070-03W5/0 1993/12/06 700 1853 6440 9760 Y 0.38 Y 420 00/10-04-075-03W5/0 1993/12/06 700 1853 6440 9760 Y 0.38 Y 421 00/10-04-089-04W5/0 1995/69/19 1455 1462.3 7820 7880 N 1.00 1.00 422 00/10-05-093-03W5/0 1995/69/19 1455 1462.3 7820 7880 N 0.62 1.00 423 00/10-05-093-03W5/0 1995/07/31 802.8 1304 2 7170 7880 N 0.62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<	416	00/10-02-094-05W5/0		975.4	1338.4	7440	9800	Y	0.73	
418 00/10-03-090-03W5/0 1993/02/25 1027 1481.1 7170 9999 Y 0.69 419 00/10-04-070-03W5.0 1991/11/09 400 1719.6 0000 7820 N 0.23 1 420 00/10-04-075-03W5/0 1993/12/06 700 1853 6440 9760 Y 0.38 Y 421 00/10-04-089-04W5/0 1995/09/19 1455 1462.3 7820 7880 N 1.09 422 00/10-05-093-03W5.0 1995/07/31 802.8 13/04.2 7170 7880 N 0.62 1 423 00/10-06-015-08W4/0 1995/07/31 802.8 13/04.2 7170 7880 N 0.62 1 424 00/10-06-015-08W4/0 1995/07/31 802.8 13/04.2 7170 7880 N 0.62 1 425 00/10-06-015-08W4/0 1995/07/31 802.8 15/93 0000 9800 Y 0.03 1 426 00/10-06-015-08W4/0 1995/07/03 50 1559.3 00000 9800 Y	417	00/10-03-073-04W5/0		1325.9	1630.7	7170	7820	N	0.81	
419 00/10-04-070-03W5/0 1991/11/09 400 1719.6 0000 7820 N 0.23 420 00/10-04-075-03W5/0 1993/12/06 700 1852 6440 9760 Y 0.38 Y 421 00/10-04-089-04W5/0 1995/09/19 1455 1462.3 7820 7880 N 1.00 422 00/10-05-093-03W5/0 1995/09/19 1455 1462.3 7820 7880 N 1.00 423 00/10-05-093-03W5/0 1995/07/31 802.8 13/04.2 71/70 7880 N 0.62	418 (00/10-03-090-03W5/0	1993/02/25	1027	1481.1	7170	9999	Y	0.69	
420 00/10-04-075-03W5/0 1993/12/06 700 1853 6440 9760 Y 0.38 Y 421 00/10-04-089-04W5/0 1995/09/19 1455 1462.5 7820 7880 N 1.00 1.00 422 00/10-05-093-03W5.0 1995/09/19 1455 1462.5 7820 7880 N 1.00 1.00 423 00/10-05-093-03W5.0 488 13(9.4 6700 9800 Y 0.37 Y 423 00/10-05-094-03W5.0 1995/07/31 802.8 1304.2 7170 7880 N 0.62 1 424 00/10-06-015-08W4.0 953.5 1.60 6420 9160 Y 0.57 1 425 00/10-06-015-08W4.0 953.5 1.650 1723.9 7440 7820 N 0.96 1 426 00/10-08-073-04W5/0 1989/03/20 1602.8 1645 7620 7820 N 0.97 1 427 00/10-08-073-04W5/0 1989/03/20 1602.8 1645 7620 7820 N 0.93	419	00/10-04-070-03W5-0	1991/18/09	400	1719.6	0000	7820	N	0.23	
421 00/10-04-089-04W5/0 1995/09/19 1455 1462.3 7820 7880 N 1.00 1.00 422 00/10-05-093-03W5.0 488 13(9.4 6700 9800 Y 0.37 Y 423 00/10-05-093-03W5.0 1995/07/31 802.8 1304.2 7170 7880 N 0.62 424 00/10-06-015-08W4/0 953.5 1680 6420 9160 Y 0.57 1 425 00/10-06-015-08W4/0 953.5 1680 6420 9160 Y 0.57 1 426 00/10-06-015-08W4/0 1985/03/03 50 1559.3 06000 9800 Y 0.03 425 00/10-08-070-03W5/0 1991/11/30 1650 1723.9 7440 7820 N 0.966 427 00/10-08-073-04W5/0 1989/03/20 1602.8 1645 7620 7820 N 0.977 1 428 00/10-08-073-04W5/0 1995/02/07 1235.7 130.1 7820 8060 N 0.93 1 429 00/10-0	420 (00/10-04-075-03W5/0	1993/12/06	700	1853	6440	9760	Y	0.38	Y
422 00/10-05-093-03W5 0 488 13(9.4) 6700 9800 Y 0.37 Y 423 00/10-05-094-03W5:0 1995/07/31 802.8 13(9.4) 7170 7880 N 0.62 1 424 00/10-06-015-08W4:0 953.5 1680 6420 9160 Y 0.57 1 425 00/10-06-015-08W4:0 953.5 1680 6420 9160 Y 0.57 1 426 00/10-06-015-08W4:0 1985/03/03 50 1559.3 0000 9800 Y 0.03 1 426 00/10-08-070-03W5:0 1991/11/30 1650 1723.9 7440 7820 N 0.996 1 427 00/10-08-073-04W5:0 1989/03/20 1602.8 1645 7620 7820 N 0.97 1 428 00/10-08-073-04W5:0 1995/02/07 1235.7 1330.1 7820 8060 N 0.93 1 428 00/10-09-069-24W4 0 722.1 1603 2620 7920 N 0.43 1 430<	421 0	00/10-04-089-04W5/0	1995/09/19	1455	1462.3	7820	7880	N	1.09	
423 00/10-05-094-03WS:0 1995/07/31 802.8 1304 2 7170 7880 N 0.62 424 00/10-06-015-08W4:0 953.5 1680 6420 9160 Y 0.57 0.57 425 00/10-06-088-01W5:0 1985/03/03 50 1559.3 0600 9800 Y 0.03 426 00/10-08-070-03W5/0 1991/11/30 1650 1723.9 7440 7820 N 0.966 427 00/10-08-073-04W5/0 1999/03/20 1602.8 1645 7620 7820 N 0.97 428 00/10-08-073-04W5/0 1999/03/20 1602.8 1645 7620 7820 N 0.97 429 00/10-08-073-04W5/0 1995/02/07 1235.7 1330.1 7820 8060 N 0.93 429 00/10-09-069-24W4 0 722.1 1665 2620 7920 N 0.43 430 00/10-09-069-24W4 0 722.1 1665 2620 7920 N 0.43	422 0	00/10-05-093-03W5-0		488	13(+9-4	6700	9800	Y	0.37	Y
424 00/10-06-015-08W4/0 953.5 1e80 6420 9160 Y 0.57 425 00/10-06-088-01W5/0 1985/03/03 50 1559.3 0000 9800 Y 0.03 426 00/10-08-070-03W5/0 1991/11/30 1650 1723.9 7440 7820 N 0.966 427 00/10-08-073-04W5/0 1989/03/20 1602.8 1645 7620 7820 N 0.97 428 00/10-08-073-04W5/0 1989/03/20 1602.8 1645 7620 7820 N 0.97 428 00/10-08-095-03W5/0 1995/02/07 1235.7 1330.1 7820 8060 N 0.93 129 00/10-09-069-24W4 0 722.1 1665 2620 7920 N 0.43 140 00/10-09-075-24W4 0 722.1 1605 2620 7920 N 0.43	423 0	00/10-05-094-03W5/0	1995/07/31	802,8	1304.2	7170	7880	N	0.62	
425 00/10-06-088-01W5 (0) 1985/03/03 50 1559 3 0000 9800 Y 0.03 426 00/10-08-070-03W5/0 1991/11/30 1650 1722.9 7440 7820 N 0.96 427 00/10-08-073-04W5/0 1999/03/20 1602.8 1645 7620 7820 N 0.97 428 00/10-08-095-03W5/0 1995/02/07 1235.7 1330.1 7820 8060 N 0.93 129 00/10-09-069-24W4 0 722.1 1663 2620 7920 N 0.43 130 0/00-09-055-23W3 0 1417.3 1605.0 7620 7000 N 0.43	424 0	00/10-06-015-08W/4/0		953.5	1050	6420	9160	Y	0.57	
426 00/10-08-070-03W5/0 1991/11/30 1650 1723-9 7440 7820 N 0.96 427 00/10-08-073-04W5/0 1989/03/20 1602.8 1645 7620 7820 N 0.97 428 00/10-08-095-03W5/0 1995/02/07 1235.7 1330.1 7820 8060 N 0.93 129 00/10-09-069-24W4 0 722.1 1603 2620 7920 N 0.43 140 00/10-09-055-24W4 0 1417.3 160.84 7620 7040 N 0.93	425 0	0/10-06-0\$8-01W510	1985/03/03	50	1559.3	0000	9800	Y	0.03	
427 00/10-08-073-04W5/0 1989/03/20 1602.8 1645 7620 7820 N 0.97 428 00/10-08-095-03W5/0 1995/02/07 1235.7 1330.1 7820 8060 N 0.93 429 00/10-09-069-24W4 0 722.1 1663 2620 7920 N 0.43 130 00/10-09-075-24W4 0 1417 1605 2620 7920 N 0.43	426 0	0/10-08-070-03W5/0	1991/11/30	1650	1723.9	7440	7820	N	0.96	
428 00/10-08-095-03W5/0 1995/02/07 1235.7 1330.1 7820 8060 N 0.93 429 00/10-09-069-24W4 0 722.1 1003 2620 7920 N 0.43 130 00/10-09-055-23W3 0 1417 1648 0 7620 7040 N 0.43	427 0	0/10-08-073-04W5/0	1989/03/20	1602.8	1645	7620	7820	N	0.97	
129 00/10-09-069-24W4 ψ 722.1 1co3 2620 7920 N 0.43 B0 00/10-09-069-24W4 ψ 1417.3 16.05.4 7620 27.40 N 0.43	428 0	0/10-08-095-03W5/0	1995/02/07	1235.7	1330.1	7820	8060	N	0.93	
B0 00/10.09.075.24W39 1417.3 16.18.1 7620 7040 N1 40.0	42% 0	0/10-09-069-24W4 @		722.1	1003	2620	7920	N	0.43	
(20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1	430 0	0/10-09-075-24W4/0		1417.3	1645 1	7620	7940	N	0.86	

. .

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
431	00/10-09-090-03W5/0	1985/06/12	1076	1540	0000	9800	Y	0.70	
432	00/10-10-055-22W4/0		579.1	1881.5	1860	8040	N	0.31	
433	00/10-10-074-05W5/0		192	1730	0000	7820	N	0.11	
434	00/10-11-072-05W5/0	1984/12/08	1600	1736	7440	7820	N	0.92	
435	00/10-12-066-15W4/0		615.7	1591.1	7160	9800	Y	0.39	Y
436	00/10-13-073-04W5/0	1991/02/27	1525	1604.2	7440	7820	N	0.95	
437	00/10-13-092-05W5/0	1987/03/19	324	1337	0000	9800	Y	0.24	
438	00/10-14-100-23W4/0	1985/02/27	319	1248	2640	9999	Y	0.26	Y
439	00/10-15-038-21W4/0		1371.6	2870	6440	9800	Y	0.48	Y
440	00/10-15-085-22W4/2		944.9	1321.9	7580	9800	Y	0.71	
441	00/10-16-027-08W4/0		183	1704	0000	7700	N	0.11	
442	00/10-16-073-04W5/0	1991/03/07	1587.7	1630.2	7620	7820	N	0.97	
443	00/10-16-088-03W5/0	1987/10/26	540	1515.5	-0000	9800	Y	0.36	
444	00/10-16-088-18W4/0		333.8	993	7160	8020	N	0.34	
445	00/10-16-089-20W4/0		609	1048,2	7500	8020	N	0.58	
446	00/10-16-091-18W4/0		187,5	970.8	0000	9800	Y	0.19	Y
447	00/10-17-073-04W5/0		185	1650	0000	7820	N	0.11	
448	00/10-17-094-03W5/0	1993/02/26	819,8	1337.6	7170	7880	N .	0.61	
449	00/10-18-070-03W5/0	1989/12/13	650	1752.5	2480	7820	N	0.37	
450	00/10-18-091-01W5/0	1988/03/16	14	1271.4	0000	9800	Y	0.01	
451	00/10-18-092-04W5/0	1994/01/21	812.5	1294:6	7170	7880	N	0.63	
452	00/10-19-072-04W5/0	1993/07/18	1893,5	1936.3	7580	7820	N	0.98	
453	00/10-19-094-03W5/0	1994/11/05	822	1362	7170	9800	Y	0.60	
454	00/10-20-073-04W5/0		188.5	1625,5	0000	7820	N	0.12	
455	00/10-21-089-03W/5/0	1994/01/17	1436.9	1447.5	7820	7880	N	0.99	
456	00/10-22-073-04W5/0	1984/02/10	180	1614	0000	7820	N	0.11	
457	00/10-22-098-03W5/0	1991/01/23	258.5	1251	0000	9760	Y	0.21	Y
458	00/10-25-072-04W5/0		289	1627	0000	7820	N .	0.18	
459	00/10-25-089-04W5/0	1993/03/02	1457	1486	7820	7880	N	0,98	
460	00/10-26-073-05W5/0	1984/12/10	183.4	1724	0000	7820	N	0.11	
461	00/10-26-097-01W5/0		152,4	1232.3	0000	7940	N	0.12	
462	00/10-27-069-03W5/0	1987/02/03	1350	1688.1	7100	7820	N	0.80	
463	00/10-27-073-05W5/0	1984/02/03	180	0661	0000	7820	N	0.11	
464 (00/10-27-089-03W5/0	1992/10/23	1028	-1486,7	7170	9800	Y .	0.69	
46.5	00/10-27-092-04W5/0		853	1281	0000	7880	N	0.67	
466 (00/10-28-107-03W5/0		377.3	859,8	7520	8020	N	0,44	
467 0	00/10-29-077-18W4/0		877.8	1331.7	7540	8060	м	0.66	
468 0	00/10-2-1-089-23W4/0		262	1161	6960	7960	N	0.23	
469 (20/10-30-032-23W(4/0	1988/09/19	392.2	2560-4	0000	7700	N	0.15	
470 0	90/10-30-036-16W4/0		203.3	2004 7	0000	7700	N	0.10	
471 0	00/10-30-070-03W5/0	1988/03/17	1739	1798	7620	7820	N	0.97	
472 0	00/10-32-069-03W/5/0	1991/11/23	473	1720	2180	7820	N	0.28	
473 0	00/10-32-073-04W5/0	1984/01/25	187.5	1625	0000	0999	N	0.12	

Table C.1: Bulk density log data available in the expanded study area for theElk Point Group (source: AEUB well database)

No	. UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
474	00/10-32-090-04₩5/0	1986/12/23	25	[412.4	0000	9800	Y	0.02	
475	00/10-33-061-27W4/0		220.7	2087.3	0000	8040	N	0.11	
476	00/10-33-072-04W5/0	1990/01/30	1575	1638	7440	9999	Y	0.96	
477	00/10-33-087-25W4/0	1986/02/25	20	1405,1	0000	9800	Y	0.01	Y
478	00/10-33-089-04W5/0	1993/06/29	10	1459.3	0000	7880	N	0.01	
479	00/10-33-093-25W4/0		610,5	1424.6	7167	9800	Y	0.43	Y
480	00/10-34-071-04W5/0	1991/07/21	420	1807.8	0000	7820	N	0.23	
481	00/10-34-073-05W5/0	1991/02/18	604	1660	2480	7820	N	0.36	
482	00/10-34-089-04W5/0	1991/11/17	1089.8	1525	7440	9800	Y	0.71	
483	00/10-34-091-18W4/0		189.9	920.2	0000	7960	N	0.21	
484	00/10-34-091-24W4/0		1027,8	1222.9	7720	7940	N	0.84	
485	00/10-34-093-02W5/0	1997/02/20	773	1333.9	7170	7940	N	0.58	
486	00/10-35-073-05W5/0	1989/02/14	237	1659.5	0000	7820	N	0.14	
487	00/10-35-090-05W5/0		259.1	1499	0000	9760	Y	0.17	
488	00/10-36-098-21W4/0		228.3	1 197 3	0000	9800	Y	0.19	Y
489	00/11-01-094-05W5/0	1986/03/02	331	1300.7	0000	9800	Y	0.25	
490	00/11-03-072-04W5/0	1992/07/11	275	1808	0000	7820	N	0.15	
491	00/11-05-015-06W4/0		942	1747	2480	9160	Y	0.54	Y
492	00/11-05-089-03W5/0	1987/10/07	30	1543	0000	9800	Y	0.02	
493	00/11-05-095-03W5/0	1996/02/28	1242.3	1282.9	7820	7880	N	0.97	
494	00/11-07-089-03W5/0	1987/07/19	20	1576	0000	9800	Y	0.01	
495	00/11-08-089-04W5/0	1990/11/27	£143	1514	7440	9800	Y	0.75	
496	00/11-08-092-03W5/0		1219.2	1321.3	7820	9800	Y	0.92	
497	00/11-08-095-22W4/0	1985/03/09	45	1380.2	0000	9800	Y	0,03	Y
498	00/11-09-074-04W5/0	1990/01/25	305.8	1644	0000	7820	N	0.19	
499	00/11-10-073-04W5/0	1994/03/05	1590	1627	7620	7820	N	0.98	
500	00/11-10-075-22W4/0		1224.7	1654.5	7860	8060	N	0.74	
501	00/11-10-089-03W5/0	1987/10/18	19.3	1543 8	0000	9800	Y	0.01	
502	00/11-10-089-03W5/2	1987/10/30	1069.4	1533.4	7170	9800	Y	0,70	
563	60/11-10-093-04W 5/0		1219.2	1317.3	7820	9800	Y	0.93	
504	00/11-12-089-04W5/0	1988/07/02	10	1568	0000	9800	Y	0.01	
505	00/11-13-015-09W4/0		952.9	2186	6420	9800	Y	0.44	
506	00/11-13-073-04W5/0	1991/01/15	1525	1610	7440	7820	N	0.95	
50*	00/11-13-098-01W5/0	1989/02/22	365	1243,1	0000	7940	N	0.29	
508	00/11-14-018-08W4/0	1985/02/22	1040	1749	6420	9160	Y	0.59	Y
500	99/31-14-090-05W5/0	1985/11/10	932	1430	7170	9800	Y	0,65	
510	00/14+15+03 4-15W4/0	1992/12/31	296	1974.4	0000	7920	N	0.15	
511	96/11-15-085-17 W4/0		609.6	1027.8	7540	9800	Y	0.59	
512 (80/11-15-089-03 W5/0	1986/12/31	352	1538.5	0006	99999	Y	0.23	
513 U	00/11-15-092-04W5/0	1988/02/07	360	1322.2	0000	9800	Y	0.27	
514 (N/11-16-044-16W4/0	1983/12/22	321	1807	6000	7960	N	0.18	
515 4	0/11-1 7-072-04W5/0		1615	1073 8	0000	7820	N	0.96	
510 0	W11-17-089-04W5/0	1995/09/07	25	1594.6	0000	7880	N	0.02	

Image: section of the section of th	No.	UWI	Run Date	Top Log Interval	Bottom Log Interval	Top Formation	Bottom Formation	Top and Bottom Coverage in Elk	Fraction of Unknown Bulk Density Data from Surface	Wells Proposed for
1371371371389.81399.8 <t< td=""><td></td><td></td><td>1</td><td>(m KB)</td><td>(m KB)</td><td>Code</td><td>Code</td><td>Point Group</td><td>to Bottom Log Interval</td><td>Analysis</td></t<>			1	(m KB)	(m KB)	Code	Code	Point Group	to Bottom Log Interval	Analysis
151 151 152 2000 7700 N 0.17 151 0011-84094.44240 1940 <	517	00/11-18-018-08W4/0	1985/01/13	1039.8	2241.5	6420	9800	Y	0.46	Y
19 19 19 10 1942 1448 740 9800 Y 0.6.7 19 0011-16-00-042W50 1 9865 722114 2408 9000 N 0.6.10 1 122 0011-13-06-04W50 19665 100 1.737 0.6000 Y 0.6.13 0.1.104 123 0011-23-06-04W50 19661/9 11756 0.6000 Y 0.6.1 1.7756 125 0011-23-06-04W50 1960/19 1180 14475 0.000 Y 0.6.1 1.7756 126 0011-23-06-04W50 1960/19 1180 1189 7440 7220 N 0.6.1 1.775 129 0011-24-06-04W50 1961/12 1665 1155 0.000 Y 0.6.2 1.775 120 011-44-06-04W50 1961/12 1615 1155 0.000 Y 0.77 0.77 121 011-46-06-04W50 1961/12 1615 1155 0.000 Y	518	00/11-18-028-14W4/0	1989/08/19	351	2039.2	0000	7700	N	0.17	
Instructure	519	00/11-18-090-02W5/0	1	947.6	1404.8	7440	9800	Y	0.67	
121 001121-071-06-08-050 1980 1136 0000 71300 N 0.10 122 001121-071-06-08-00 1980 1130 00000 1980 N 0.07 1 123 001121-106-08-08-00 19827 1773-5 6440 19800 N 0.057 1 125 00112-2006-08-08-00 19900/10 116 16457 0.000 7880 N 0.0930 1 125 00112-2006-08-08-00 19900/10 1160 14657 0.000 7820 N 0.0930 1 120 00112-2006-08-08-00 19900/121 8105 11356 0.000 7920 N 0.0930 1 120 00112-2006-08-08-00 19901/211 8105 11325 0.000 7920 N 0.001 2010 121-002-08-02-08-00 19901/214 300 11325 0.000 7880 N 0.011 0.011 123 00112-20-02-02-04-04-05 19991/214 30	520	00/11-20-016-07W4/0		986,8	2211.4	2480	9800	Y	0.45	
122 0010 1379 0000 9800 V 0.07 133 0011-21-01-04-0W500 1426.7 925.5 744.0 886.0 N 0.645 1 125 0011-22-016-0W50 19401/11 100 1467.5 6050 7880 N 0.011 1 126 0011-23-070-0W50 199401/11 100 1467.5 6050 7880 N 0.011 1 126 0011-23-070-0W50 199401/121 1185 7440 7820 N 0.050 1 120 0011-24-070-0W50 19950 1195 0.000 9800 V 0.660 1 130 0011-24-070-0W50 19971/223 8413 1292 9720 N 0.663 1 130 0011-24-070-0W50 19971/223 8413 11925 0000 7800 N 0.663 1 130 0011-24-070-0W50 19971/223 1452 10010 7400 N 0.633	521	00/11-21-071-04W5/0	<u> </u>	190	1836	0000	7820	N	0.10	
121 0011-21-10-43W360 (mode) 04267 996.5 7440 80600 N 0.453 124 0011-22-016-0W360 1940/1/1 10 1475 6000 7880 N 0.010 1 125 0011-22-016-0W360 1940/109 1780 1835 7440 7820 N 0.061 1 126 0011-23-070-0W350 1940/109 1800 17325 7440 7820 N 0.053 1 128 0011-23-070-0W350 1940/121 8105 11325 0000 7820 N 0.661 1 129 0011-24-070-0W350 1951/123 8415 11842 0000 7820 N 0.663 1 130 0011-24-070-0W350 1951/124 20 11852 0000 7880 N 0.616 1 131 0011-24-070-0W350 1951/124 20 11352 0000 7880 N 0.011 1 1 1353 0112-070-01W36	522	00/11-21-091-03W5/0	1986/02/28	100	1379	0000	9800	Y	0.07	
524 6011-32-016-68W-80 (m) (m) (m) (m) (m) (m) 535 6011-32-016-68W-80 10940/09 17860 NM (m) (m) (m) 527 6011-32-000-02W-80 10940/09 17860 17800 NM (m) (m) (m) 528 6011-32-000-02W-80 19840/21 18105 1736 (m)	523	00/11-21+104-03W5/0		426,7	956,5	7440	8060	N	0.45	
125 001122-009-03W30 19401/01 10 1407.5 0000 7880 N 0.01 136 0011-23-070-04W50 199401/00 1780 1839 7440 7830 N 0.953 1 138 0011-23-070-04W50 19841221 8105 11356 0000 9800 Y 0.661 1 139 0011-23-070-04W50 19811223 8115 11827 1023.5 7820 7830 N 0.927 1 130 0011-23-070-04W50 19811223 8115 11827 0000 7830 N 0.63 1 130 0011-23-070-04W50 19811223 8115 11635 0000 7830 N 0.63 1 130 0011-23-070-04W50 1995/12/4 20 11635 0000 7830 N 0.63 1 131 0112-6070-04W50 1997/12/4 100 1635 7460 N 0.61 1 132 0112-2070-04W50	524	00/11-22-016-08W4/0		987.1	1734.9	6420	9160	Y	0.57	
526 00/11-32-07-04/WS0 1994/01/09 1780 1880 7440 720 N 0.96 1 527 00/11-32-071-05/WS0 1995/03/19 1800 1933.5 7440 7220 N 0.931 1 529 00/11-25-06/WS0 1994/1221 1810.5 1335 0000 7820 N 0.960 Y 0.960 Y 0.971 Y 530 00/11-24-070-04/W50 1993/1223 1841.5 11842 0000 7820 N 0.46 7 531 00/11-24-070-04/W50 1986/0227 356.5 1132.5 0000 7820 N 0.663 7 532 00/11-26-092-03/W50 1986/0271 1368 13125 0000 7880 N 0.01 127 535 00/11-26-092-03/W50 1987/01/28 1301.5 5000 7880 N 0.01 127 536 00/11-26-092-03/W50 1987/01/28 1301.5 15000 7880 N 0.01 </td <td>525</td> <td>00/11-22-089-03W5/0</td> <td>1994/01/11</td> <td>10</td> <td>1467.5</td> <td>0000</td> <td>7880</td> <td>N</td> <td>0.01</td> <td></td>	525	00/11-22-089-03W5/0	1994/01/11	10	1467.5	0000	7880	N	0.01	
527 0011-32-071-03X-50 1995/03/19 1500 1933.5 7-440 7820 N 0.93 (1) 528 0011-32-062-02X/S0 194/1221 810.5 1358.6 0000 9800 Y 0.660 1 539 0011-32-062-02X/S0 1993/1223 841.5 1882 0000 7820 NN 0.946 1 531 0011-24-062-03X/S0 1993/1223 841.5 1882 0000 7820 NN 0.663 1 532 0011-26-062-03X/S0 1993/1212 848 1297 0.060 7880 NN 0.661 1 533 0011-26-062-03X/S0 1994/1211 15 1301.5 0.000 7880 NN 0.011 1 535 0011-26-040-33X/S0 1994/1211 15 1301.5 0.000 7880 NN 0.012 Y 535 0011-32-040-33X/S0 1994/1211 15 1301.5 0.000 7880 NN 0.012 Y	526	00/11-23-070-04W5/0	1994/01/09	1780	1859	7440	7820	N	0,96	
128 00/11-32-093-02/W30 1940/1221 810.5 17356 0000 9800 Y 0.60 1 139 00/11-32-073-04W50 1031 111887 129359 7820 7940 N 0.92 N 130 00/11-24-070-4W50 1980/0227 3564 113125 0000 7860 N 0.63 1 133 00/11-24-070-3W400 1986/0227 3565 11325 6600 7920 N 0.63 1 133 00/11-26-093-3W400 1987/01/28 1006 1585 1000 7860 N 0.63 1 134 00/11-26-093-3W450 1997/01/8 103 1512 0000 7880 N 0.61 1 135 00/11-26-093-3W450 1997/01/8 110 12835 0000 7880 N 0.61 1 136 00/11-26-093-3W50 1996/01/9 110 12835 0000 7880 N 0.61 1 136	527	00/11-23-071-05W5/0	1995/03/19	1800	1933.5	7440	7820	N	0.93	
125 00/1-23-092-04W50 995/12/23 041.5 1293.9 720 740 N 0.92 130 00/1-24-093-25W40 1986/22/3 164.5 113.2 0000 7220 N 0.04 7 131 00/1-24-093-25W40 1986/22/3 1655 113.2 0000 7220 N 0.65 1 133 00/1-24-093-25W40 1986/22/3 1655 1312/5 0000 7280 N 0.66 1 133 00/1-26-093-02W50 1995/12/14 20 1362 0000 7840 N 0.66 1 135 00/1-26-094-03W50 1997/12/8 120 1532 7400 9800 Y 0.79 2 136 011-26-094-03W50 1997/12/8 120 1232 0000 7840 N 0.12 Y 138 011-32-070-01W50 1981/11/9 1271 0000 7880 N 0.01 2 143 011-32-070-01W50 1980/17<	528	00/11-23-090-02W5/0	1984/12/21	810.5	1356	0000	9800	Y	0.60	
510 00/11-32-070-04W500 1993/1223 84.15 1842 0000 7820 N 0.46 511 00/11-25-032-53W400 19660227 55.65 1132.5 0000 7820 N 0.0.17 9.0.7 Y 513 00/11-25-032-03W400 10 6000 7830 N 0.6.6.3 1 513 00/11-26-092-04W500 1995/12/14 20 1535 7440 9800 Y 0.0.1 1 515 00/11-26-092-04W500 1995/12/14 120 1535 7440 9800 Y 0.0.1 1 515 00/11-26-094-03W500 1995/12/14 120 1535 0000 7880 N 0.0.1 1 517 011-12-094-03W500 1996/01/29 125 1325 0000 7880 N 0.0.1 1 518 011-12-094-03W500 1980/017 1216 1265 0.000 7880 N 0.01 1 514 011-13-070-03W500	529	00/11-23-092-04W5/0	I	188.7	1293.9	7820	7940	N	-0.92	
51 00/1-24-093-53W40 1986/02/27 356.5 1312.5 0000 9800 Y 0.27 Y 532 00/1-25-024-02W40 0 1056 1675 6600 7920 N 0.653 0.11 533 00/11-26-092-04W50 1995/12/1 0 1582 0.000 7880 N 0.01 0.11 535 00/11-20-092-04W50 1995/12/1 115 1301.5 0.000 7880 N 0.01 0.01 535 00/11-20-094-03W50 1995/12/1 115 1301.5 0.000 7880 N 0.01 0.11 537 00/11-32-094-03W50 1995/01/05 110 1288.5 0.000 7820 N 0.01 0.12 539 00/11-32-094-03W50 1995/01/05 110 1288.5 0.000 7820 N 0.01 0.12 540 00/11-32-094-03W50 1995/01/05 110 1288.5 0.000 7800 N 0.01 0.12 0.12 <td>530</td> <td>00/11-24-070-04W5/0</td> <td>1993/12/23</td> <td>841.5</td> <td>1842</td> <td>0000</td> <td>7820</td> <td>N</td> <td>0.46</td> <td></td>	530	00/11-24-070-04W5/0	1993/12/23	841.5	1842	0000	7820	N	0.46	
532 ov/11-25-024-02W40 (050 1675 6600 7920 N 0.63 533 00/11-26-092-04W50 880 1297 0000 7880 N 0.63 534 00/11-26-093-02W50 1995/12/14 20 1568.2 0000 7940 N 0.01 535 00/11-20-093-04W500 1997/12/18 1200 1538 0000 7800 N 0.01 536 00/11-20-093-04W500 1997/12/18 1200 1538 0000 7800 N 0.01 537 00/11-30-034W500 1996/12/11 15 1301.5 0000 7820 N 0.012 Y 538 00/11-32-070-03W500 1995/01/05 110 1288.5 0000 7880 N 0.016 540 00/11-32-070-03W500 1994/08/1 10 127.1 0000 7880 N 0.016 541 00/11-32-070-03W500 1992/08/15 10	531	00/11-24-093-25W4/0	1986/02/27	356,5	1312.5	0000	9800	Y	0.27	Y
533 00/11-36-092-04W5/0 1995/11/4 200 1368 0000 7880 N 0.08 534 00/11-36-093-02W5/0 1995/11/12 120 1358 7440 9800 Y 0.01 535 00/11-29-094-03W5/0 1994/12/11 115 1301.5 0000 7880 N 0.01 536 00/11-29-094-03W5/0 1994/12/11 115 1315.5 0000 7880 N 0.01 537 00/11-31-092-04W5/0 1986/01/92 225 1323.5 0000 7880 N 0.02 Y 538 0/11-32-092-03W5/0 1995/01/05 110 1288.5 0000 7880 N 0.01 540 0/11-32-093-03W5/0 1994/01/19 10 1277.1 0000 7880 N 0.01 541 0/11-32-093-03W5/0 1994/01/19 10 1277.1 0000 7880 N 0.69 542 0/11-36-087-050	532	00/11-25-024-02W4/0		1050	1675	6600	7920	N	0.63	
534 09/11/26-093-02W50 199/12/14 20 1368 0000 7940 N 0.01 535 09/1-30-083-04W50 198/10/78 1200 1528 7440 9800 Y 0.79 0.79 536 00/11-20-094-03W50 199/10/178 1200 1325 0000 7880 N 0.011 0.79 538 00/11-32-094-03W50 199/00/179 25 1325.5 0000 7880 N 0.012 Y 538 00/11-32-094-03W50 199/00/179 100 1227.1 0000 7880 N 0.010 1 540 00/11-32-094-03W50 199/00/17 109 1227.1 0000 7880 N 0.016 1 541 00/11-32-094-03W50 199/00/15 1040 1495.7 7170 7880 N 0.016 1 541 00/11-32-090-03W50 199/00/17 109 1556 7170 7880 N 0.16 1 1 1 1	533	00/11-26-092-04W5/0	1	\$80	1297	0000	7880	N	0.68	
535 60/11-29-088-04W5/0 1987/01/28 1200 1328 7440 9800 Y 0.79 1 556 60/11-32-094-03W5/0 1994/12/11 15 1301.5 0000 7880 N 0.011 1 537 60/11-32-094-03W5/0 1986/03/29 25 1325.5 0000 7820 N 0.012 Y 538 60/11-32-070-01W5/0 1985/01/05 110 1288.5 0000 7820 N 0.012 1 539 00/11-32-090-03W5/0 1995/01/05 110 1287.5 00000 7830 N 0.011 1 540 00/11-32-090-03W5/0 1994/01/9 100 1272.4 0000 7830 N 0.016 1 541 00/11-32-090-03W5/0 1984/05/7 1704 1860 9999 Y 0.33 Y 542 00/11-35-038-10W4/0 1992/01/6 750 2140 1860 9999 Y 0.33 Y 543	534	00/11-26-093-02W5/0	1995/12/14	20	1368.2	0000	7940	N	0.01	
556 00/11-29-094-03WS00 1994/12/11 15 1301,5 0000 7880 N 0,01 537 00/11-31-092-04WS00 1986/03/29 25 1325.5 0000 9800 Y 0.02 Y 538 00/11-32-070-01W5/0 1 181.3 1532 0000 7850 N 0.012 1 539 00/11-32-093-03W5/0 1995/01/05 110 1288.5 0000 7850 N 0.069 1 540 00/11-32-094-03W5/0 1995/01/05 110 1277.1 0000 7850 N 0.01 1 541 00/11-34-094-03W5/0 1984/08/07 275 1724.5 0000 7999 N 0.16 1 1 542 00/11-34-089-03W5/0 1992/01/17 1099 1535 7170 7880 N 0.13 1 1 543 00/11-34-089-03W5/0 1982/01/17 1099 1535 7400 N 0.13 1 1 1 <td>535</td> <td>00/11-29-089-04W/5/0</td> <td>1987/01/28</td> <td>1200</td> <td>1528</td> <td>7440</td> <td>9800</td> <td>Y</td> <td>0.79</td> <td></td>	535	00/11-29-089-04W/5/0	1987/01/28	1200	1528	7440	9800	Y	0.79	
537 60/11-31-092-04WS/0 1966/03/29 25 1325.5 0000 9800 Y 0.02 Y 538 60/11-32-070-01WS/0 181.3 1532 0000 7820 N 0.12 1 539 00/11-32-094-03WS/0 1995/01/05 110 1288.5 0000 7880 N 0.069 1 540 00/11-32-094-03WS/0 1994/01/19 10 1277.1 0000 7880 N 0.01 1 541 00/11-33-070-03WS/0 1994/06/07 275 1724.5 0000 7999 N 0.16 1 542 00/11-33-070-03WS/0 1992/01/06 750 2140 1860 9999 Y 0.35 Y 544 00/11-35-087-05WS/0 1988/03/17 1099 1536 7100 9800 Y 0.72 1 545 00/11-36-093-04WS/0 1988/03/11 210 1647.5 0000 7820 N 0.13 1 1 546<	536	00/11-29-094-03W'5/0	1994/12/11	15	1301.5	0000	7880	N	0.01	
538 00/11-32-070-01W5/0 181.3 1532 0000 7820 N 0.12 539 00/11-32-093-03W5/0 1995/01/05 110 1288.5 0000 7880 N 0.09 540 00/11-32-094-03W5/0 1994/01/19 10 1277.1 0000 7880 N 0.01 541 00/11-32-094-03W5/0 1984/05/07 275 1724.5 0000 9999 N 0.16 542 00/11-32-094-03W5/0 1984/05/07 275 1724.5 0000 7880 N 0.690 543 00/11-35-03K-03W5/0 1988/01/7 1099 1536 7100 9800 Y 0.72 544 00/11-35-057-05W5/0 1988/03/1 210 1647.5 0000 7820 N 0.13 545 0/11-36-032-04W5/0 1980/170 302 1666.5 00000 7820 N 0.19 547 0/12-01-073-04W5/0	537	00/11-31-092-04W5/0	1986/03/29	25	1325.5	0000	9800	Y	0.02	Y
539 00/11-32-093-03W5/0 1995/01/05 110 1288.5 0000 7880 N 0.09 540 00/11-32-094-03W5/0 1994/01/19 10 1277.1 0000 7880 N 0.01 541 00/11-32-070-03W5/0 1984/08/07 275 1724.5 0000 9999 N 0.16 542 00/11-32-070-03W5/0 1992/08/15 1040 1496.7 7170 7880 N 0.69 543 00/11-35-038-10W4/0 1992/01/66 750 2140 1860 9999 Y 0.33 Y 544 00/11-35-087-05W5/00 1988/03/17 1099 1536 7100 9800 Y 0.72 0.72 545 00/11-36-073-05W5/00 1988/03/11 210 1647.5 0000 7820 N 0.13 0.13 546 00/11-36-073-04W5/0 1995/02/11 1230.5 1267.6 7820 7880 N 0.97 0.13 547 00/12-01-073-04W5/0 <t< td=""><td>538</td><td>00/11-32-070-01W5/0</td><td></td><td>181.3</td><td>1532</td><td>0000</td><td>7820</td><td>N</td><td>0.12</td><td></td></t<>	538	00/11-32-070-01W5/0		181.3	1532	0000	7820	N	0.12	
540 00/11-32-094-03W5/0 1994/01/19 10 1277.1 0000 7880 N 0.01 541 00/11-33-070-03W5/0 1984/08/07 275 1724.5 0000 9999 N 0.16 542 00/11-34-089-03W5/0 1992/08/15 1040 1496.7 7170 7880 N 0.69 543 00/11-35-038-10W4/0 1992/01/06 750 2140 1860 9999 Y 0.35 Y 544 00/11-35-087-05W5/0 1988/03/17 1099 1536 7100 9800 Y 0.72 545 00/11-36-073-05W5/0 1988/03/17 1099 1536 7100 7820 N 0.13 546 00/11-36-073-05W5/0 1988/03/17 1099 1536 7440 7820 N 0.035 547 00/12-01-069-02W5/0 1995/01/07 302 1666.8 0000 7820 N 0.12 548 0/12-01-069-02W5/	539	00/11-32-093-03W5/0	1995/01/05	110	1288,5	0000	7880	N	0.09	
541 00/11-33-070-03W5/0 1984/08/07 275 1724.5 0000 9999 N 0.16 542 0/11-34-089-03W5/0 1992/08/15 1040 1496.7 7170 7880 N 0.69 543 0/11-35-038-10W4/0 1992/01/06 750 2140 1860 9999 Y 0.35 Y 544 0/11-35-087-05W5/0 1988/03/17 1099 1536 7100 9800 Y 0.72 544 0/11-35-087-05W5/0 1988/03/17 1019 1647.5 0000 7820 N 0.13 544 0/12-01-069-02W5/0 1995/01/07 302 1267.6 7820 7880 N 0.03 548 0/12-01-073-04W5/0 1995/01/07 302 14651 0000 7820 N 0.12 549 00/12-01-074-04W5/0 1987/11/09 191 1651 0000 7820 N 0.12 550 0/12-01-074-04W5/0	540	00/[1-32-094-03W5/0	1994/01/19	10	1277.1	0000	7880	N	0.01	
542 00/11-34-089-03W5/0 1992/08/15 1040 1496.7 7170 7880 N 0.69 543 00/11-35-038-10W4/0 1992/01/06 750 2140 1860 99999 Y 0.35 Y 544 00/11-35-087-05W5/0 1988/03/17 1009 1536 7100 9800 Y 0.72 544 00/11-36-073-05W5/0 1988/03/11 210 1647.5 0000 7820 N 0.13 544 00/12-01-069-02W5/0 1958/02/14 1230.5 1267.6 7820 7880 N 0.97 548 00/12-01-072-04W5/0 1995/01/07 302 1668.8 0000 7820 N 0.19 549 00/12-01-072-04W5/0 1995/01/07 302 1465.5 2620 9800 Y 0.21 550 00/12-01-072-04W5/0 1997/11/12 1545 1649 7440 7820 N 0.12 551	541	00/11-33-070-03W'5/0	1984/08/07	275	1724.5	0000	9999	N	0.16	
543 00/11-35-038-10W4/0 1992/01/06 750 2140 1860 9999 Y 0.35 Y 544 00/11-35-087-05W5/0 1988/03/17 1099 1536 7100 9800 Y 0.72 1 545 00/11-36-073-05W5/0 1988/03/11 1019 1647.5 0000 7820 N 0.13 1 546 00/11-36-093-04W5/0 1995/02/11 1230.5 1267.6 7820 7880 N 0.977 1 547 00/12-01-059-02W5/0 1 1555.5 1267.6 7820 7840 N 0.977 1 1 548 00/12-01-073-04W5/0 1995/01/07 302 1606.8 0000 7820 N 0.19 1	542	00/11-34-089-03W5/0	1992/08/15	1040	1496.7	7170	7880	N	0.69	
544 00/11-35-087-05W5/0 198/03/17 1009 1536 7100 9800 Y 0.72 1 546 00/11-36-073-05W5/0 198/03/11 210 1647.5 0000 7820 N 0.13 1 546 00/11-36-093-04W5/0 1995/02/11 1230.5 1267.6 7820 7880 N 0.097 1 547 00/12-01-069-02W5/0 1995/01/07 302 1660.6 0000 9999 N 0.18 0.19 548 00/12-01-073-04W5/0 1995/01/07 302 1660.5 0000 7820 N 0.12 1 549 00/12-01-074-05W5/0 1995/01/07 302 1465.5 2620 9800 Y 0.21 1 1 550 00/12-01-073-04W5/0 1992/11/12 1545 1619 7440 7820 N 0.12 1 550 0/12-01-073-04W5/0 1992/11/12 1545 1619 7440 7820 N 0.12 1	543	00/11-35-038-10W4/0	1992/01/06	750	2140	1860	9999	Y	0.35	Y
545 00/11-36-073-05W5/0 1988/03/11 210 1647.5 0000 7820 N 0.13 1 546 00/11-36-093-04W5/0 1995/02/11 1230.5 1267.6 7820 7880 N 0.07 1 547 00/12-01-069-02W5/0 I 1554.5 1759.3 7440 7940 N 0.88 I 548 00/12-01-069-02W5/0 1995/01/07 302 1606.8 00000 9999 N 0.12 I I 549 00/12-01-073-04W5/0 1995/01/07 302 1465.5 2620 9800 Y 0.21 I I I I 0000 7820 N 0.12 I <td>544</td> <td>00/11-35-087-05W5/0</td> <td>1988/03/17</td> <td>1099</td> <td>1536</td> <td>7100</td> <td>9800</td> <td>Y</td> <td>0.72</td> <td></td>	544	00/11-35-087-05W5/0	1988/03/17	1099	1536	7100	9800	Y	0.72	
546 00/11-36-093-04W5/0 1995/02/11 1230.5 1267.6 7820 7880 N 0.97 547 00/12-01-069-02W5/0 I 1554.5 1759.3 7440 7940 N 0.88 Image: Constrained States St	545	00/11-36-073-05W5/0	1988/03/11	210	1647.5	0000	7820	N	0.13	
547 00/12-01-069-02W5/0 Instant	546	00/11-36-093-04W5/0	1995/02/11	1230.5	1267.6	7820	7880	N	0.97	
548 00/12-01-073-04W5/0 1995/01/07 302 1606.8 0000 9999 N 0.19 549 00/12-01-074-05W5/0 1989/11/09 191 1651 0000 7820 N 0.12 550 00/12-01-080-24W4.0 1987/12/15 302 14655 2620 9800 Y 0.21 1 551 00/12-02-073-04W5/0 1992/11/12 1545 1619 7440 7820 N 0.955 1 552 0/12-02-073-04W5/0 1992/11/12 1545 1619 7440 7820 N 0.955 1 553 00/12-03-070-03W5/0 1995/02/14 197 1664 0000 7820 N 0.12 1 553 00/12-03-070-03W5/0 1993/04/11 300 1719.9 0000 7820 N 0.12 1 555 00/12-04-074-04W5.0 1988/19/24 189.5 1635 0000 9800 Y 0.18 Y 555 00/12-04-073-0	547	00/12-01-069-02W5/0		1554,5	1759.3	7440	7940	N	0.88	
549 00/12-01-074-05W5/0 1989/11/09 191 1651 0000 7820 N 0.12 550 00/12-01-080-24W4/0 1987/12/15 302 1465.5 2620 9800 Y 0.21 1 551 00/12-02-073-04W5/0 1992/11/12 1545 1619 7440 7820 N 0.95 1 552 00/12-02-073-04W5/0 1992/11/12 1545 1619 7440 7820 N 0.95 1 552 00/12-02-074-05W5/0 1995/02/14 197 1664 0000 7820 N 0.12 1 553 00/12-04-074-05W5/0 1993/04/11 300 1719.9 0600 7820 N 0.17 1 554 00/12-04-074-04W5/0 1988/09/24 189.5 1635 0000 9999 N 0.12 1 555 00/12-04-074-04W5/0 1988/02/23 214.7 1177.5 0000 7820 N 0.13 1 555	548	00/12-01-073-04W5/0	1995/01/07	302	1606,8	0000	9999	N	0.19	
550 00/12-01-080-24W4-0 1987/12/15 302 1465.5 2620 9800 Y 0.21 551 00/12-02-073-04W5/0 1992/11/12 1545 1619 7440 7820 N 0.95 1 552 00/12-02-073-04W5/0 1992/11/12 1545 1619 7440 7820 N 0.95 1 552 00/12-02-074-05W5/0 1985/02/14 197 1604 0000 7820 N 0.12 1 553 00/12-03-070-03W5/0 1993/04/11 300 1719.9 0000 7820 N 0.17 1 554 00/12-04-074-04W5/0 1988/09/24 189.5 1635 00000 9890 Y 0.18 Y 555 00/12-04-099-21W4/0 1988/09/24 189.5 1635 00000 7820 N 0.12 1 556 00/12-04-099-21W4/0 1988/02/23 214.7 117.75 0000 7820 N 0.13 1 557	549	00/12-01-074-05W5/0	1989/11/09	191	1651	0000	7820	N	0.12	
551 00/12-02-073-04W5/0 1992/11/12 1545 1619 7440 7820 N 0.95 1 552 00/12-02-074-05W5/0 1985/02/14 197 1664 0000 7820 N 0.12 1 553 00/12-03-070-03W5/0 1993/04/11 300 1719.9 0000 7820 N 0.12 1 554 00/12-04-074-04W5.0 1988/09/24 189.5 1635 0000 9999 N 0.12 1 555 00/12-04-079-21W4/0 1988/02/23 214.7 1177.5 0000 9800 Y 0.18 Y 555 00/12-04-099-21W4/0 1988/02/23 214.7 1177.5 00000 7820 N 0.13 1 555 00/12-05-071-04W5/0 1992/11/15 245 1654.4 0000 7820 N 0.13 1 557 00/12-07-015-07W4/0 1992/01/15 245 1654.4 0000 7820 N 0.15 1	550	00/12-01-080-24W4/0	1987/12/15	302	1465.5	2620	9800	Y	0.21	
552 00/12-02-074-05W5/0 1985/02/14 199 1664 0000 7820 N 0.12 553 00/12-03-070-03W5/0 1993/04/11 300 1719.9 0000 7820 N 0.12 554 00/12-04-074-04W5/0 1993/04/11 300 1719.9 0000 7820 N 0.17 0 555 00/12-04-074-04W5/0 1988/09/24 189.5 1635 0000 9999 N 0.12 0 555 00/12-04-079-21W4/0 1988/09/24 189.5 1635 0000 9800 Y 0.18 Y 555 00/12-04-079-21W4/0 1988/02/23 214.7 1177.5 00000 7820 N 0.13 0 555 00/12-06-073-04W5/0 1992/01/15 245 1872.5 0000 7820 N 0.13 0 557 00/12-07-015-07W4/0 1992/01/15 245 1654.4 0000 7820 N 0.15 0 558 00/12-0	551 (00/12-02-073-04W5/0	1992/11/12	1545	1619	7440	7820	N	0,95	
553 00/12-03-070-03W5/0 1993/04/11 300 1719-9 0000 7820 N 0.17 554 00/12-04-074-04W5/0 1988/09/24 189.5 1635 0000 9999 N 0.12 555 00/12-04-099-21W4/0 1988/09/24 189.5 1635 0000 9800 Y 0.18 Y 555 00/12-04-099-21W4/0 1988/02/23 214.7 1177.5 0000 9800 Y 0.18 Y 556 00/12-05-071-04W5/0 1992/10/28 250 1872.5 0000 7820 N 0.13 557 00/12-06-073-04W5/0 1992/01/15 245 1654.4 0000 7820 N 0.15 558 00/12-07-015-07W4/0 1992/01/15 245 1654.4 0000 7820 N 0.15 558 00/12-07-015-07W4/0 920 1675 6420 9160 Y 0.55 Y 559 00/12-07-089-25W4/0 10	552 (00/12-02-074-05W5/0	1985/02/14	197	1664	0000 .	7820	N	0.12	
554 00/12-04-074-04W5/0 1988/09/24 189.5 1635 0000 9999 N 0.12 555 00/12-04-099-21W4/0 1988/02/23 214.7 1177.5 0000 9800 Y 0.18 Y 556 00/12-05-071-04W5/0 1992/10/28 250 1872.5 0000 7820 N 0.13 557 00/12-06-073-04W5/0 1992/01/15 245 1654.4 0000 7820 N 0.15 558 00/12-07-015-07W4/0 1992/01/15 245 1657.6420 9160 Y 0.55 Y 559 00/12-07-089-25W4/0 1066.8 1382.6 7440 7960 N 0.77	553	00/12-03-070-03W5/0	1993:04/11	300	1719.9	0000	7820	N	0.17	
555 00/12-04-099-21W4/0 1988/02/23 214.7 1177.5 0000 9800 Y 0.18 Y 556 00/12-05-071-04W5/0 1992/10/28 250 1872.5 0000 7820 N 0.13 557 00/12-06-073-04W5/0 1992/10/15 245 1654.4 0000 7820 N 0.15 558 00/12-07-015-07W4/0 920 1675 6420 9160 Y 0.55 Y 559 00/12-07-089-25W4/0 1066.8 1382.6 7440 7960 N 0.77	554 (00/12-04-074-04W/5/0	1988;(09/24	189.5	1635	0()(H)	9999	N	0,12	
556 00/12-05-071-04W5/0 1992/10/28 250 1872 5 0000 7820 N 0.13 557 00/12-06-073-04W5/0 1992/01/15 245 1654.4 0000 7820 N 0.15 558 00/12-07-015-07W4/0 920 1675 6420 9160 Y 0.55 Y 559 00/12-07-089-25W4/0 1066.8 1382.6 7440 7960 N 0.77	555 0	00/12-04-099-21W4/0	1988/02/23	214.7	1177,5	0000	9800	Y	0.18	Y
557 00/12-06-073-04W5/0 1992/01/15 248 1654.4 0000 7820 N 0.15 558 00/12-07-015-07W4/0 920 1675 6420 9160 Y 0.55 Y 559 00/12-07-089-25W4/0 1066.8 1382.6 7440 7960 N 0.77	556 0	00/12-05-071-04W5/0	1992/10/28	250	1872 5	0000	7820	N	0,13	
558 00/12-07-015-07W4/0 920 1675 6420 9160 Y 0.55 Y 559 00/12-07-089-25W4/0 1066.8 1382.6 7440 7960 N 0.77	557 0	00/12-06-073-04W5/0	1992/01/15	245	1654.4	0000	7820	N	0.15	
559 00/12-07-089-25W4/0 1066.8 £382.6 7440 7960 N 0.77	558 0	00/12-07-015-07W4/0		920	1675	6420	9160	Y	0.55	Y
	559 0	00/12-07-089-25W4/0		1066.8	1382 6	7440	7960	N	0 77	

March, 2001

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
560	00/12-07-090-02W5/0	1985/10/25	25	1438	0000	9800	Y	0.02	
561	00/12-07-094-23W4/0		914.4	1361.8	7440	7960	N	0.67	
562	00/12-08-094-03W5/0	1994/03/03	1038	1299,3	7620	7880	N	0,80	
563	00/12-09-038-21W4/0	1984/02/08	389	2368.5	0000	9000	Y	0.16	Y
564	00/12-09-070-03W5/0	1991/08/23	1640	1721.5	7440	7820	N	0.95	
565	00/12-09-073-04W5/0	1990/02/18	188,3	1633.2	0000	7820	N	0.12	
566	00/12-10-071-03W5/0	1993/03/29	1620	1680.5	7440	7820	N	0,96	
567	00/12-10-073-05W5/0	1993/12/29	1835.8	1862.5	7620	7820	N	0.99	
568	00/12-10-074-05W5/0		190.8	1735.8	0000	7820	N	. 0.11	
569	00/12-10-089-04W5/0	1987/11/18	545	1516	0000	9800	Y	0.36	
570	00/12-11-093-04W5/0	1987/12/18	816	1337	7170	9999	Y	0,61	
571	00/12-11-094-02W5/0	1997/03/01	1275.6	1341,3	7820	7880	Ň	0.95	
572	00/12-12-015-07W4/0		900	2152	2480	9800	Y ·	0.42	Y
573	00/12-12-071-04W5/0	1995/01/21	1765	1810	7580	7820	א	0.98	
574	00/12-12-093-02W5/0	1995/01/09	758,9	1273.9	7170	7880	N	0.60	
575	00/12-13-055-22₩4/0	1995/10/05	1700	1909.6	7860	8040	N	0.89	
576	00/12-13-070-04W5/0	1993/12/06	1790	1851	7440	7820	N	0.97	
577	00/12-13-089-03W5/0	1989/03/27	20	1467,9	0000	9800	Y ····	0.01	
578	00/12-14-070-04W5/0	1993/11/12	1829.1	1872.1	7580	7820	N	0,98	
579	00/12-14-072-04W5/0	1990/12/06	400	1718.2	0000	7820	М	0.23	
580	00/12-14-073-04W5/0	1991/02/15	250	1622.6	0000	7820	N .	0.15	
581	00/12-15-073-04W5/0	1993/02/22	240	1622	0000	7820	N	0.15	
582	00/12-16-092-04W'5/0	1988/10/11	20	1276	0000	9800	Y	0.02	
583	00/12-16-094-03W5/0	1999/01/24	440	1320.5	0000	7880	N	0.33	
584	00/12-17-093-04W5/0	1987/08/16	12	1334	0000	9999	Y	0,01	Y
585	00/12-17-095-04W5/0	1993/02/15	1213	1259.5	7820	7880	N	0.96	
586	00/12-18-072-03W5/2	1988/11/11	1560	1672	7440	7820	N	0.93	
587	00/12-18-087-03W5/0	1986/01/17	285	1589.6	0000	9800	Y	0.18	Y
588	00/12-19-014-04W4/0	1988/01/25	454,8	2211.4	0000	9800	Y	0.21	
589	00/12-19-072-03W5/0		203	1665	0000	7820	N	0.12	
590	00/12-20-072-04W5/0	1990/12/13	300	1725,7	0000	7820	N	0.17	
591	00/12-20-094-03W5/0	1995/02/27	12.2	1312.2	0000	9999	N	0.01	
592	00/12-21-015-08W4/0		933.2	1685	6420	9160	Y	0.55	Y
593	00/12-21-073-04\\/5/0	1993/01/25	569.2	(619.9	3040	7820	N	0.35	
594	00/12-22-073-04W5/0	(994/01/26	596	1618.2	6440	7820	N	0.77	
595	00/12-22-089-03\\`5/0	1987/09/17	18	1507,4	0000	9800	Y	0,01	
596	00/12-23-073-04W5/0	1 ⁻³ 85/02/06	188.3	1616	0000	9999	N	012	
597	00/12-23-073-05W5/0		600	1659	3360	7820	N	0.36	
598	00/12-24-073-05W/5/0	1983/12/07	24	1654	0000	9999	N	0.01	
599	00/12-24-089-04W/5/0	1993/08/23	10	1497.5	0000	7880	N	0.01	
600	00/12-24-090-03W5/0	1985/11/16	10.	t368.8	0000	9800	Y	0,01	
601	00/12-25-073-05W5/0		1500	1662	7440	7820	N	0.90	
602	00/12-26-089-04W5/0	1989/03/21	1100	1507,8	7440	9800	Y	0.73	

Table C.1: Bulk density log data available in the expanded study area for the Elk Point Group (source: AEUB well database)

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
603	00/12-27-089-03W5/0	1992/02/20	200	1483,5	0000	7880	N	0.13	
604	00/12-28-069-03W5/0	1991/01/13	400	1719	0000	7820	N	0.23	
605	00/12-28-072-04W5/0		1610	1659.5	7580	7820	N	0.97	
606	00/12-28-089-03W5/0	1991/12/12	1040	1499.2	7170	7880	N	0.69	
607	00/12-29-015-08W4/0		977.5	1703	6420	9160	Y	0.57	
608	00/12-29-073-04W5/0	1989/03/13	300	1629.1	2060	7820	N	0.18	
609	00/12-30-073-04W5/0	1991/02/02	225	1645	0000	7820	N	0,14	
610	00/12-30-089-03W5/0	1987/10/07	20	1535	0000	9800	Ŷ	0.01	
611	00/12-30-096-04W5/0	1987/04/01	752	1237.1	7440	9800	Y	0,61	
612	00/12-31-072-04W5/0	1990/01/29	185,2	1663,2	0000	7820	'N	0,11	
613	00/12-31-073+04W5/0	1984/06/19	182.9	1645	1860	9999	Y	0.11	
614	00/12-31-088-02W5/0	1988/03/06	15	1500.8	0000	9800	Y	0.01	
615	00/12-33-015-07W4/0		939	1681	6420	9160	Y	0.56	Y
616	00/12-33-069-03W5/0	1991/08/08	400	1726	0000	7820	N	0,23	
617	00/12-34-069-03W5/0	1991/12/14	400	. 1709.9	0000	7820	N	0.23	
618	00/12-35-071-02W5/0	1987/01/13	595	1554	3060	7820	N	0.38	
619	00/12-35-072-04W5/0	1990/09/22	1500	1624.7	7440	7820	N	0.92	
620	00/12-35-073-05W5/0	1984/11/17	179	1661.2	0000	9999	N	0.11	
621	00/12-35-092-05W5/0	1988/08/11	\$29	1392	7170	9800	Y	0.60	
622	00/12-36-087-01W5/0	1987/01/29	15	1408	0000	9800	Ŷ	0.01	Y
623	00/13-01-093-02W5/0	1996/03/13	20	1248	0000	7880	N	0.02	
624	00/13-02-055-22W4/0	1988/06/26	213.8	1950.4	0000	8040	N	0.11	
625	00/13-03-098-02W/5/0	1987/01/22	528	1204	7170	9800	Y	0.44	Y
626	00/13-07-073-03W5/0	1994/01/30	603	1735.3	6440	7820	N	0.35	
627	00/13-07-092-04W5/0	1987/01/06	25	1321.9	0000	9760	Y	0.02	
628	00/13-08-093-04W5/0	1988/08/27	25	1339.7	0000	9800	Y	0.02	Ŷ
629	00/13-09-086-21W4/0	1991/03/17	882,3	1225.1	7580	9800	Y	0.72	
630	00/13-10-074-04W5/0	1995/12/21	1200	1700.4	7170	7820	N	0.71	
631	00/13-10-098-04W5/0	1988/02/15	15	1271	0000	9999	Y	0.01	Ŷ
632	00/13-11-091-05W5/0	1995/03/27	21	1404.8	0000	7880	N	0.01	
633	00/13-12-087-01W5/0	1985/02/12	944	1457	7170	9800	Y	0.65	
634	00/13-12-089-04W5/0	1987/08/07	20	1587	0000	9800	Y	0.01	
635	00/13-13-085-04W5/0	1982/02/20	1068	1671	7100	9800	Y	0.64	
636	00/13-13-093-02W5/0	1995/03/10	810.8	1301.1	7170	9999	Ŷ	0.62	
637	00/13-14-089-03W5/0	1988/10/11	25	1544	0000	9999	Y	0.02	
638	00/13-14-089-04W5/0	1989/10/14	470	1557.3	0000	9800	Y	0.30	
639	00/13-14-090-05W5/0	1988/03/15	1058.5	1523	7170	9800	Y	0.70	
640 (20/13-15-072-04W5/0	1995/02/07	1662 4	1698	7580	7820	N	0.98	
641 (00/13-17-071-03W5/0	1991/08/03	1413	1772.2	7170	7820	N	0.80	
642 (00/13-17-089-03W5/0	1988/09/28	15	1551,5	0000	9800	Y	0.01	
643 0	00/13-17-092-01W5/0	1995/01/29	702.8	1249.6	0000	9800	Y	0,56	
644 (00/13-18-095-01W5/0	1989/02/08	485	1408	0000	9999	Ϋ́	0.34	Y
645 0	00/13-19-034-20W/4/0	1987/06/23	¢10	2309	0000	9040	Y	0.26	ν.

No.	UWI	Run Date	Top Log Interval	Bottom Log Interval	Top Formation	Bottom Formation	Top and Bottom Coverage in Elk	Fraction of Unknown Bulk Density Data from Surface	Wells Proposed for
			(m KB)	(m KB)	Code	Code	Point Group	to Bottom Log Interval	Analysis
646	00/13-19-073-04W5/0	1993/02/10	250	1642.2	0000	7820	N	0.15	
647	00/13-23-089-04W5/0	1988/11/13	20	1520	0000	9800	Y	0.01	
648	00/13-25-089-04W5/0	1997/08/31	525	1549.1	0000	7880	N	0.34	
649	00/13-28-089-02W5/0	1986/03/14	977.1	1503.8	7170	9800	Y	0,65	
650	00/13-29-072-04W5/0	1989/02/22	25	1775.7	0000	7820	N	0,01	
651	00/13-30-072-03W5/0	1989/03/02	314.2	1620.37	6000	9999	N	0.19	
652	00/13-30-093-02W5/0	1997/03/14	809.2	1388.9	6700	9800	Y	0.58	
653	00/13-31-090-04W5/0	1987/02/25	336	1437	0000	9800	Y	0.23	
654	00/14-01-094-02W5/0	1988/02/24	902	1422.4	7440	9800	Y	0.63	
655	00/14-02-089-04W5/0	1991/09/03	25	1563.7	0000	9800	Y	0,02	
656	00/14-02-099-22W4/0		731.5	1158.2	7540	7960	'N	0.63	
657	00/14-03-093-03W5/0	1986/01/22	396	1317	0000	9999	Y	0.30	
658	00/14-05-097-21W/4/0		199.9	1271.9	0000	8020	· N	0.16	
659	00/14-07-072-03W5/0	1989/11/24	308	1726	0000	7820	N	0.18	
660	00/14-07-072-04W5/0	1984/11/14	1550	1705	7440	7820	N	0.91	
661	00/14-08-090-04W/5/0	1986/03/27	1024	1554	7170	9800	Y	0.66	
662	00/14-09-092-04W5/0	1987/06/25	15	1320	0000	9800	Y	0.01	
663	00/14-11-039-17W4/0	1987/11/06	1260	2022	3360	9000	, Y	0.62	Y
664	00/14-11-090-03W5/0	1985/09/13	1009	1506	7170	9800	Y	0.67	
665	00/14-12-016-06W4/0		900	1692	6420	9160	Y	0.53	
666	00/14-12-070-04W5/0	1993/11/19	1750	1826	7440	9999	Y	0.96	
667	00/14-12-073-04W5/0	1990/03/20	1496	1617	7440	7820	N	0.93	
668	00/14-12-090-03W5/0	1994/01/13	958.2	1436.6	7170	7880	N	0.67	
669	00/14-13-055-22W4/0	1989/12/30	212.8	1887.8	0000	8040	N	0.11	
670	00/14-15-073-03W5/0		250	1584	0000	7820	N	0,16	
671	00/14-16-090-03W5/0	1985/10/05	10	1499.5	0000	9800	Y	0.01	
672	00/14-17-015-06W4/0		974.1	1697.1	6420	9160	Y	0.57	
673	00/14-18-070-03W5/0	1989/12/14	700	1773	2480	7820	N	0.39	
674	00/14-18-089-02W5/0	1988/03/23	1051	1564	7170	9800	Ŷ	0.67	
675	00/14-18-094-03W5/0	1994/11/28	795	1303.5	7170	7880	N	0.61	
676	00/14-19-091-04W/5/0	1988/02/04	1017	1356	7440	9800	Y	0.75	
677	00/14-19-092-01W5/0	1995/01/22	701	1247.9	0000	9800	Y	0.56	
678	00/14-20-073-04W5/0	1992/02/20	602.6	1625.8	6440	7820	N	0.37	
679	00/14-20-097-04W5/0	1988/03/17	759	1276	7170	7940	N	0,59	
680	00/14-22-092-04W5/0	1988/08/25	380	1317.2	0000	9999	Ŷ	0.29	
681 (00/14-26-072-04W5/0	1992/01/28	1560	1630	7440	9999	Ŷ	0,96	
682	00/14-27-070-04W5/0	1993/12/08	1790	1866.7	7440	7820	N	0.96	
683	00/14-29-092-04W5/0	1987/11/06	15	1303	0000	9800	Y	0.01	Y
684	00/14-31-070-03W5/0	1989/02/19	1788	1823	7620	7820	N	0.98	
685 1	00/14-31-087-01W5/0	1988/01/01	1098.5	1492	7440	9800	Y	0.74	
686 1	00/14-31-089-03W5/0	1988/03/18	1037	1508,2	7170	9800	Y	0.69	
687	00/14-32-019-04W4/0		424.9	1731	1600	9160	Y	0.25	Y
688.	00/14-33-090-04W5/0	1987/03/05	289	1396,7	0000	9800	Y.	0.21	

Table C.1: Bulk density log data available in the expanded study area for theElk Point Group (source: AEUB well database)

ł

No.	บพเ	Run Date	Top Log	Bottom Log	Top Formation	Bottom Formation	Top and Bottom	Fraction of Unknown Bulk Density Data from Surface	Wells Proposed for
			(m KB)	(m KB)	Code	Code	Point Group	to Bottom Log Interval	Analysis
689	00/14-35-034-17W4/0	1989/01/15	339	2091.7	0000	9040	Y	0.16	Y
690	00/14-35-071-05W5/0	1993/03/22	355	1870	0000	7820	N	0.19	
691	00/14-35-088-03W5/0	1993/03/13	1144	1449.7	7440	7880	N	0.79	
692	00/14-35-089-04W5/0	1991/03/01	990.3	1508.8	0000	9800	Y	0,65	
693	00/14-35-092-04W5/0		854	1281.6	0000	7880	N	0.67	
694	00/14-36-020-01W4/0	1994/01/26	725	1701.6	2060	7920	N	0.43	
695	00/14-36-088-04W5/0	1988/07/10	1049	1601.4	7170	9800	Y	0.66	
696	00/14-36-092-05W5/0	1987/09/08	15	1344	0000	9800	Y	0.01	Y
697	00/14-36-092-05W5/2	1987/09/08	15	1344	0000	9800	Y	0.01	
698	00/15-01-090-04W5/0	1988/03/15	500	502 ا	0000	9800	Y	0,33	
699	00/15-02-090-03W5/0	1984/11/17	10	1529	0000	9800	Y	0.01	
700	00/15-02-095-04W5/0	1997/02/06	10	1267.7	0000	7880	N	0.01	
701	00/15-03-090-04W5/0	1987/10/30	1004	1512,5	7170	9800	Y	0.66	
702	00/15-03-094-02W5/0	1986/02/22	847	1381	7440	9800	Υ	0,61	
703	00/15-04-092-04W5/0	1987/03/14	20	1288	0000	9800	Y	0.02	
704	00/15-05-089-04W5/0	1991/03/24	25	1526.7	0000	9800	Y	0.02	
705	00/15-05-095-03W5/0	1998/01/27	698	1277,1	7170	7880	N	0.55	
706	00/15-06-094-03W5/0	1995/02/13	8.2	1287.3	0000	9999	N	0.01	
707	00/15-07-013-04W4/0	1991/01/13	211	1698.4	0000	7700	N	0.12	
708	00/15-07-093-04W5/0	1987/09/09	20	1341	0000	99 99	Y	0.01	Y
709	00/15-08-061-18W4/0		279	1358	0000	7920	N	0.21	
710	00/15-08-089-04W5/0	1993/12/21	1449.8	1457.5	7820	7880	N	0.99	
711	00/15-08-092-03W5/0	1989/03/18	823.8	1335	0000	99999	Y	0.62	
712	00/15-09-074-04W5/0	1990/08/25	295	1646.2	0000	7820	N	0.18	
713	00/15-09-092-04W5/0	1986/12/08	20	1299	0000	9800	Y	0.02	
714	00/15-10-055-22W4/0		1652	1853.2	7860	8040	Ň	0.89	
715	00/15-10-089-02W5/0	1985/03/28	446	1476	2640	9760	Y	0.30	
716	00/15-11-090-05W5/0	1988/08/21	295	1529,5	0000	9800	Y	0,19	
717	00/15-12-073-05W5/0	1994/02/15	624	1652.3	6440	7820	N	0.38	
718	00/15-12-090-03W5/0	1986/03/08	21	1465.5	0000	9800	Y	0.01	
719.	00/15-13-073-04W5/0	1993/06/03	298.8	1661.1	0000	7820	N	0,18	
720	00/15-14-015-06W4/0		859.5	1688.9	2480	9160	Y	0.51	
721	00/15-14-089-04W5/0	1989/11/09	450	1540,8	0000	9800	Y	0.29	
722	00/15-15-089-03W5/0	1987/11/05	17	1533.5	0000	9999	Y	0,01	
723	00/15-17-089-02W5/0	1986/02/28	55	1562.8	0000	9800	Y	0.04	
724 (90/15-19-096-18W4/0		171,6	1221.9	0000	9800	Y	0.14	Y
725. (00/15-20-073-03W5/0		365.8	1593.8	2180	7820	N	0.23	
726 (00/15-20-095-20\\'4/0		211.8	1246.9	0000	9800	Y	0.17	Y
727 (00/15-21-091-04W5/0	1986/12/25	334	1338.2	0000	9800	Y	0.25	
728 (00/45-22-089-03W5/0	1987/08/30	17.8	1522.3	0000	9800	Y	0.01]
729	00/15-23-091-05W5/0	1986/02/05	830.4	1353,5	7170	9800	Y	0.61	
730	00/15-24-089-04\V5/0	1993/06/21	1435	1491.5	7820	7880	N	0.96	
731 0	00/15-24-090-03W5/0	1988/01/04	15	1382	0000	9800	Y	0.01	

Table C.1: Bulk density log data available in the expanded study area for theElk Point Group (source: AEUB well database)

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
732	00/15-25-091-05W5/0		934	1360,8	7440	9760	Y	0.69	
733	00/15-25-091-05W5/2	1986/12/24	934	1329	7440	7880	N	0.70	
734	00/15-25-092-05W5/0	1987/11/26	10	1361	0000	9800	Y	0.01	Y
735	00/15-26-093-02W5/0	1996/01/23	807.5	1322	7170	7880	N	0.61	
736	00/15-29-092+04W5/0	1992/03/15	778	2612	6700	7880	N	0.30	
737	00/15-30-034-20W4/0	1986/06/14	1325	2393	3000	9040	Y	0.55	Y
738	00/15-30-089-03W5/0	1987/09/07	20	1489,4	0000	9800	Y	0.01	
739	00/15-30-093-03W5/0	1995/09/23	2.9	1254,6	0000	7880	N	0.00	
740	00/15-31-104-04W5/0		487,7	975.4	7440	9800	Y	0.50	
741	00/15-34-043-10₩4/0	1989/04/04	555	2148	1860	9800	Y	0.26	Y
742	00/15-34-089-03W5/0	1992/03/20	20	1509.3	0000	9800	Y	0.01	
743	00/15-34-092-04W5/0		834	1286.5	0000	7880	N	0.65	
744	00/15-34-093-24W4/0		617.5	1349.7	7170	8000	N	0.46	
745	00/15-36-089-04W5/0	1993/02/21	417	1457.7	7820	7880	N	0.97	
746	00/15-36-093-02W5/0	1998/01/08	740.5	1341.8	7160	9800	Y	0.55	
747	00/16-01-056-22W4/0		198.1	1908	0000	7700	N	0.10	
748	00/16-01-080-24W4/0	1988/01/24	319.8	1484.9	2620	9760	Y	0.22	Y
749	00/16-01-089-05W5/0	1987/10/02	1059	1537	7170	9800	Y	0,69	
750	00/16-02-096-02W5/0		703	1371.5	7170	9760	Y	0.51	
751	00/16-03-030-09W4/0		746.8	1820.3	1860	9160	Y	0.41	Y
752	00/16-03-055-22W4/0	1986/02/25	218.7	1946.3	0000	8040	N	0.11	
753	00/16-03-080-23W4/0	1988/01/06	893	1490.5	7440	9800	Y	0.60	
754	00/16-03-100-02W5/0	1986/01/26	534	1158.3	7440	9800	Y	0.46	Y
755	00/16-04-074-04W5/0	1993/08/08	1500	1661	7440	9999	Y	0.90	
756	00/16-07-092-04W5/0	1987/03/18	15	1338	0000	7940	N	0.01	 ,
757	00/16-08-092-04W5/0	1988/03/21	998	1439	7440	9800	Y	0.69	
758	00/16-09-060-22W4/0	1984/06/17	321.5	1806.8	0000	8040	N	0.18	
759	00/16-09-073-02W5/0		1478.3	1887	7580	7820	м	0.78	
760	xv/16-10-046-13W4/0	1984/06/08	273	1472	0000	7700	м	0.19	
761	30/16-10-091-03W5/0		946,4	1407.6	7440	9800	Y	0,67	
762	00/16-11-071-04W5/0	1990/01/22	185	1785.6	0000	7820	N	0.10	
763 0	×0/16-11-093-02W5/0	1995/02/03	767.3	1274.6	7170	7880	N	0.60	
764	00/16-11-100-04W5/0	1986/01/21	12	1159	0000	9800	Y	0.01	Y
765 0	0/16-13-090-03W5/0	1987/12/17	901	1408	7170	9800	Y	0.64	
766 0	00/16-15-031-12W4/0		\$23	1770	1860	7700	N	Ū.46	
767 0	0/16-15-034-20W4/0	1988/03/26	1962	2284,5	7320	7920	N	0.86	
768 (кы16-15-090-05W 5/0	1985-02/01	20	1524	0000	9800	Y	0,01	
769 6	0/16-16-034-15W4/0	1985/07/07	1200	2442,3	6440	0,000	Y	0.49	Y
770 C	10/16-16-073-04W5/2	1993.02/04	1600	1668.2	7440	7820	N	0.96	
771 C	0/16-16-089-03W5/0	1988/03/14	1074.5	1539	7170	9800	Y	0.70	
772 6	0/16-17-089-03W5/0	1994/03/25	1490.7	1503.3	7820	7880	N	0,99	
773 0	0/16-20-092-04W5/0	1986/12/30	18	1272	0000	9800	Y	0.01	
							·····		

Table C.1: Bulk density log data available in the expanded study area for theElk Point Group (source: AEUB well database)

. . .

No.	UWI	Run Date	Top Log Interval	Bottom Log Interval	Top Formation	Bottom Formation	Top and Bottom Coverage in Elk	Fraction of Unknown Bulk Density Data from Surface	Wells Proposed for Analysis
	00/1/ 21 111 04346/0		(m KB)	(m KB)	7440	9800	v v	0.46	Anarysis
775	00/16-21-111-04 ₩ 3/0	1085/02/14	420.7	923.1	0000	8040	N	0.17	
776	00/16-22-039-22 44/0	1983/02/10	25	1343.7	0000	9800	Y	0.02	Y
770	00/16-22-094-22 w4/0	1984/03/10	345	1345.7	0000	9800	y y	0.25	Y
778	00/16-23-093-02W3/0	1960/02/20	22.0		0000	9000	Y	0.02	Y
779	00/16-23-096-25 4/0	1964/03/13	705.6	1401	7170	9800	v	0.55	•
780	00/16-23-092-02W 3/0	1994/02/10	105.5	2609.4	0000	7700	N	0.18	
781	00/16-27-032-24W4/0	1987/04/22	430.5	2398.4	0000	0800	v	0.15	
782	00/16-27-089-04 \$70	198//11/16	517.9	1468,5 001 B	7500	9600		0.35	v
783	00/16-27-102-24W4/0		457.2	991.8	7520	9800	r v	0.40	
784	00/16-30-090-03W5/0	1986/03/11	10	1406	0000	9800		0.01	
785	00/16-30-091-03W5/0	1986/03/26	379	1309	0000	9800	r v	0.28	
786	00/16-31-092-01W5/0	1985/03/21	2	1284	0000	9800	Y	0.00	Y
787	00/16-35+095-02W5/0	1988/03/17	254.1	1398.7	0000	9800	Y Y	0.18	<u>т</u>
788	00/16-36-026-15W4/0	1988/06/23	1250	1983.4	6600	7700		0.63	
789	00/16-36-041-15W4/0	1984/01/07	1350	1808.5	7200	9000	Y	0.75	
790	00/16-36-041-23W4/0	1984/04/27	890	2289	1600	9999	Y	0.39	¥
791	02/01-10-055-22W4/0	1995/03/09	219	1911	0000	8040	N	0.11	
792	02/01-35-089-04W5/0	1994/12/21	10	1484	0000	7880	N	0.01	
793	02/02-10-055-22W4/0	1985/08/20	900	1932.5	2480	8040	N	0.47	
794	02/03-31-100-22W4/0		762	1265.5	7520	9800	Y .	0,60	
795	02/03-36-092-05W5/0	1986/08/25	20	1346	0000	9999	Ŷ	0.01	Y
796	02/04-18-072-03W5/0	1989/10/02	289	1684.7	0000	7820	N	0,17	
797	02/05-17-089-03W5/0	1988/10/05	25	1523.6	0000	9800	Y	0.02	
798	02/06-01-019-07W4/0		640.1	1783.1	0000	9160	Y	0.36	
799	02/06-07-019-08W4/0		975.4	1780,6	2480	9040	Y	0.55	
800	02/06-11-015-06W4/0		929.3	1703,8	6420	9160	Y	0,55	
801	02/06-15-045-15W4/0	1983/11/12	251.5	1737	0000	7960	N	0:14	
802	02/06-17-094-04W5/0	1985/02/28	382	1325	0000	9800	Y	0,29	
803	02/06-18-046-06W4/0		487.7	1389.9	0000	\$500	Y	0.35	Y
804	02/06-26-015-07W4/0		956.8	1677.9	6420	9160	Y	0.57	Y
\$05	02/06-30-018-08W4/0		1040,3	2261.6	6420	9800	<u>Y</u>	0.46	
806	02/06-30-019-07W4/0		1005.8	2265.9	3500	9480	Y	0.44	
807	02/07-10-055-22W4/0		1642	1858.7	7700	\$010	N	0.88	
\$08	02/07-21-087-02W5/0	1987/02/04	1113.7	1532	7440	9800	Y	0,73	
809	02/07-29-065-01W5/0		205	2113	0000	9000	Y	0.10	
\$10	02/08-01-090-03W5/0	1985/10/20	130	1508.5	0000	9999	Ŷ	0.09	
811	02/08-14-090-03W5/0	1992/12/14	963	1427.6	0000	7880	N	0.67	
812	02/08-24-025-15W4/0	1986.08/06	362	2054.1	0000	9000	Y	0.18	
\$13	02/08-34-055-20W4/0	1991/02/14	238	1760	0000	8040	N	0.14	
814	02/09-03-055-22W4/0	1986/05/30	209.5	1918	0000	8020	N	0.11	
815	02/09-10-055-22W4/0		1813,6	1878,2	7700	7700	N	0.97	
816	02/10-10-055-22W4/0		1641	1882.1	7720	8040	N	0.87	
817	02/10-10-093-01W5/0		944.9	1333.5	7540	9800	Y	0,71	

Table C.1: Bulk density log data available in the expanded study area for the Elk Point Group (source: AEUB well database)

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top and Bottom Coverage in Elk Point Group	Fraction of Unknown Bulk Density Data from Surface to Bottom Log Interval	Wells Proposed for Analysis
818	02/10-14-033-24W4/0	1988/02/26	397	2530	0000	7777	N	0,16	
819	02/10-19-091-04W5/0	1990/03/17	1002	[384	7440	7940	N .	0,72	
820	02/11-32-094-03W5/0	1996/07/05	15	1293.4	0000	7880	N	0.01	
821	02/12-01-072-04W5/0		1743	1793.8	7580	7820	N	0,97	
822	02/12-25-073-05W5/0	1989/06/05	1156.3	1675.8	6960	7820	א	0.69	
823	02/12-27-069-03W5/0		175	1710	0000	7820	N	0.10	
824	02/12-35-092-04W5/0	1994/01/27	796	1302.7	7170	7940	N	0.61	
825	02/13-01-091-05W5/0	1987/07/08	1027	1408.5	7440	9800	Ŷ	0.73	
826	02/13-02-055-22W4/0	1988/05/28	212	1946	0000	8040	N	0.11	
827	02/13-08-089-03W5/0	1987/01/06	1049.7	1527	7170	9760	Ŷ	0.69	
828	02/13-08-089-03W5/2	1987/01/06	1049.7	1527	7170	9760	Y	0,69	
829	02/13-11-055-22W4/0	1985/07/05	209	1903.1	0000	8020	N	0.11	
830	02/13-13-055-22W4/0	1990/11/28	214.5	1898.7	0000	8040	N	0.11	
831	02/13-23-089-03W5/0	1990/03/24	10	1520.2	0000	7880	N	0,01	
832	02/14-13-055-22W4/0	1990/01/30	213.2	1889.2	0000	8040	N	0.11	
833	02/14-13-090-03W5/0	1986/03/13	20	1403	0000	9800	Y	0.01	
834	02/15-15-089-04W5/0	1989/05/18	35	1521.9	0000	9800	Y ¹ .	0.02	
835	02/16-03-055-22W4/0	1986/01/24	10	1907.5	0000	8040	N	0,01	
836	02/16-07-072-03W5/0	1991/07/19	1450	1719.2	7100	7820	N .	0.84	
837	02/16-14-055-22W/4/0	1994/12/18	216	1837.6	0004	7960	N	0.12	
838	03/07-10-055-22W4/0	1985/11/26	219	1898,4	0000	8020	N	0,12	
839	03/07-10-055-22W4/2	1985/11/26	219	1898.4	0000	8020	N	0.12	
840	03/10-10-055-22W4/0		[643.8	1863.2	0000	8010	N	0.88	
841	03/14-13-055-22W4/0	1990/03/06	180	1901.6	0000	8040	м	0.09	
842	03/15-22-094-04W5/0	1987/12/07	400	1333.3	00000	9800	Y	0.30	
843	04/07-10-055-22W4/0	1985/10/29	220.5	1902	0000	8020	N	0,12	
844	04/07-10-055-22W4/2	1985/10/29	220.5	1902	0000	8020	N	0,12	
845	04/07-34-055-21W4/0	1991/03/30	859.7	1868	3000	9999	Y	0.46	Ŷ
846	04/13-13-055-22W4/0	1990/12/26	217.5	1882.7	0000	8040	N	0.12	
847	04/14-13-055-22W4/0	1990/04/10	190	1882.9	0000	8040	N	0.10	
848	04/15-10-055-22W4/0	1985/04/18	10	1964	0000	8040	N	0.01	
849	05/14-13-055-22W4/0	1991/02/01	225	1870	0000	8040	N	0.12	
850	05/16-10-055-22W4/0	1985/06/03	207	1958,8	0000	8040	N	0.11	
851	06/14-11-055-22W4/0		211.5	1926.3	0000	8040	N	0.11	
852	D0/12-21-035-06W4/0	1993/06/05	1001.5	1058.6	6960	8610	Y	0,60	Y
853	W0/13-12-029-11W4/0		1082	1727,9	6440	7700	N	0,63	

)

No.	ŪWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top of Beaverhill Lake Fm (m KB)	Dipmeter Log Recorded on Microfiche	All Data Needed for Breakout Analysis Present
1	00/01-11-091-05W5/0	1986/02/21	1051	1369	7440	9760	953.3	Y	
2	00/01-11-101-02W5/0	1969/03/31	518	1081	7440	9800	431.9	N	
3	00/01-23-095-05W5/0	1985/03/11	871	1238	7440	9800	751	N	
4	00/01-25-057-24W4/0	1984/11/12	1100	1633	6780	7440	1517.2	N	
5	00/01-28-089-03W5/0	1988/10/26	1412	1520	7820	9999	1072.5	Y	Y
6	00/01-29-101-24W4/0	1985/03/15	576	1067	7540	9800		N	
7	00/02-01-074-05W5/0	1988/08/12	1595	1646	7440	7820	1429	N	
8	00/02-03-088-20\\4/0		346	573	7160	7440	551.7	N	
9	00/02-04-072-03W5/0		975	1762	6960	7880	1414	N	
10	00/02-10-071-04W5/0		1524	1791	7100	7820	1572.5	Y	
11	00/02-10-102-23W4/0	1985/02/07	573	1074	7540	9800		N	
12	00/02-14-071-04W5/0	1964/10/30	1524	1756	7100	7820	1535.9	N	
13	00/02-15-071-04W5/0		1524	1753	7100	7820	1531.9	N	
14	00/02-17-058-25W4/0	1984/09/29	1051	1799	3360	7440	1628.3	N	
15	00/02-19-073-04W5/0		1585	1646	7440	7820	1414.9	Y	
16	00/02-20-091-02W5/0	1986/02/09	935	995	7440	7620	794	Y	
17	00/02-21-071-04W5/0		1698	1772	7440	7820	1549.6	Y	:
18	00/02-24-073-05W5/0		1524	1650	7440	7820	1424	Y	
19	00/02-27-071-04W5/0		1524	1764	7100	7820	1548.7	Y	
20	00/02-34-071-04W5/0		1676	1786	7440	7820	1562.4	N	
21	00/03-04-031-12W4/0	1984/04/04	1200	1877	6660	9999	1585.5	N	
22	00/03-17-065-25W4/0		1006	1523	6 960	7500	1412.1	Y	
23	00/03-35-095-05W5/0	1988/03/25	1100	1300	7820	9999	770,5	Y	
24	00/04-01-039-20W4/0		1325	1878	3360	7440	1857	Y	
25	00/04-01-045-16W4/0	1983/12/03	1600	1802	7520	9999	1440	N	
26	00/04-08-071-04W5/0		1798	1891	7440	7820	1662.7	Y	
27	00/04-08-097-02W5/0		625	1273	7170	9800	701	N	
28	00/04-22-073-05W5/0		1524	1668	7440	7820	1447.8	Y	
29	00/04-23-073-05W5/0		1602	1663	7440	7820	1437,1	Y	
30	00/04-24-070-04W5/0		1792	1839	7440	7820	1614.8	Y	
31	00/04-28-035-20W4/0		1495	2255	6440	7700		N	
32	00/04-29-098-21W4/0	1985/02/09	691	1184	7540	9800		N	
33	00/04-33-039-16W4/0	1984/03/27	1200	1600	6580	9999	1498	N	
34	00/04-33-070-04W5/0		1798	1893	7440	7820	1663.3	Y	
35	00/04-35-073-05W5/0		1585	1648	7440	7820	1429.5	Y	
36	00/04-36-092-05W5/2	1986/09/20	751	1409	0000	9800		N	
37	00/25-08-094-04W5/0	1986/02/10	951	1272	7440	9800	815.5	N	
38	00/05-08-100-22W4/C	1985/03/29	651	1231	7460	7960		N	
39	00/05-22-089-03W5/0	1986/02/07	1416	1517	7820	9800	1088.5	N	
40	00/06-02-052-27W4/0		1463	2012	6580	7440	1984.9	N	
41	00/06-02-097-19W4/0	1986/02/26	755	950	7520	7860		Ý	
42	00/06-03-087-22W4/0	1988/03/01	885	1235	7540	9800		Y	

Table C.2: Dipmeter log data available in the expanded study area for the Elk Pointand Beaverhill Lake Groups (source: AEUB well database)

Image: Constraint of the second sec	No.	UWI	Run Date	Top Log Interval	Bottom Log Interval	Top Formation	Bottom Formation	Top of Beaverhill	Dipmeter Log Recorded on	All Data Needed for Breakout Analysis
43 0006-07-097-23-W40 1255 1438 7860 7660 Y 44 0006-07-097-23-W40 19560 1450 1780 1780 1798 Y 1 45 0006-14-038-17/W40 1775 1716 7140 17025 N 1 46 0006-18-035-20/W40 1853/1207 1675 2198 6660 7440 1202 N 1 47 0006-21-086-23/W40 1337 1556 7700 7440 1517.5 N 1 50 0007-4-062-25/W40 1980021 581 1227 7440 9800 9841 Y 1 51 0007-4-062-25/W40 1185 1922 7440 1973.5 N 1 52 0008-16-038-23/W40 1987/11/14 1986 1922 7520 6602 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <				(m KB)	(m KB)	Code	Code	Lake Fm (m KB)	Microfiche	Present
44 0000-06-06-09-04/950 19600/05 11530 7820 9900 1004 Y 45 0006-14-038-17/W40 1716 1716 7440 7440 1828 N 47 0006-21-038-03/W50 1987/01/26 1375 1558 6660 7440 2025 N 48 0006-21-038-03/W50 1987/01/26 1375 1558 7740 1507.3 N 49 0007-04-082-38/W40 1010 1578 5580 7440 1505.7 N 51 0007-14-082-38/W40 1252 1557 7100 7440 1505.7 N 52 0008-10-038-20/W40 1985/01/23 751 1227 7420 9802 1433 Y N 54 0008-10-038-20/W1 1988/02/23 751 1227 7420 9802 1433 Y N 55 0008-10-08-20/W50 198/02/28 1100 1555 6440 9899 1428 Y N	43	00/06-07-097-23W4/0		1259	1438	7860	7960		Y	
45 0006-14-038-17.44/0 1776 1776 1776 7440 7440 1262 N 46 0006-14-038-2044/0 1983/1207 1675 2198 6660 7440 2028 N 47 0006-14-038-2044/0 1327 1326 1559 7720 9999 10142 N 48 0007-06-062-254/4/0 1987/01/26 1987 7140 9800 841 Y 50 0007-06-062-254/4/0 1987/11/4 1008 1488 7440 1999 1076.5 Y N 51 0007-14-062-254/4/0 1987/11/4 1008 1488 7440 1999 1075.5 N N 52 0008-14-028-21/4/0 1987/11/4 1008 1488 7440 1999 1075.5 N N 53 0008-14-028-21/4/0 1987/11/4 1008 1482 7440 1999 1433 Y N 54 0008-14-028-21/4/4/0 1984/027 1997 2471	44	00/06-08-089-04W5/0	1989/04/05	1450	1530	7820	9800	1094	Y	
46 0005-18-035-20-W40 1931/207 1675 2198 6660 7.440 20208 N 47 0005-21-08-03-W40 1377 1555 7720 9990 1084.2 N 48 0005-21-08-03-04-082-26W40 1010 1578 6580 7.440 1517.5 N 50 0007-40-082-26W40 1122 1557 7.100 7.440 1900.7 N 1 51 0007-40-082-26W40 1185 1922 2140 7.440 1907.6 Y N 52 0008-10-082-03W50 1987/11/4 1000 1485 7440 9990 1076.5 Y N 54 0008-10-082-03W50 1981/102.0 1100 1550 6440 9999 1483 Y N 55 0008-10-082-03W50 1984/022 1001 1550 6440 9999 2428 Y N 56 0008-10-082-03W50 1984/022 1027 1463 7440 9800 18	45	00/06-14-038-17W4/0		1716	1718	7440	7440	1628	N	
47 0005-21-089-03MS0 199701/26 1376 1559 7820 9999 1084.2 N 48 00005-36-064-159/40 - 44 2113 0000 9800 1332 N 49 0007-44-062-269/40 - 1010 1579 6580 7440 1505.7 N - 51 0007-44-062-269/40 1987/11/14 1080 1488 7440 9999 1076.5 Y - N 52 0008-14-028-209/40 1987/11/14 1080 1488 7440 9999 1076.5 Y - N 53 0008-14-028-209/40 1985/02/23 751 1227 7520 6020 - N - N 56 0008-14-027-1004/0 1989/02/2 1010 1550 6440 9999 2428 Y N 57 0008-34-024-289/40 1984/02/2 1001 1482 7440 9990 1082.5 N N 50	46	00/06-18-035-20W4/0	1983/12/07	1675	2198	6660	7440	2026	N	
48 0008-35-046-15W40 344 2113 0000 9800 1322 N 49 0007-04-082-26W40 1010 1579 6680 7440 1517.5 N 50 0007-04-082-26W40 11252 1557 7100 7440 1960.7 N 51 0007-14-082-26W40 11252 1557 7100 7440 1965.7 N 52 0008-14-082-20W40 1185 1923 2140 7440 1977.5 N 53 0006-14-082-20W40 1985/02/23 751 1227 7520 8969 1443 Y N 54 0006-14-083-20W40 1984/02/21 100 1556 6440 9969 1443 Y N 55 0008-14-084-20W40 1984/02/21 100 1384 7440 9600 765 Y N 66 00400-20-80-30W50 1984/02/22 1001 1483 7440 7800 1085.0 N N 5	47	00/06-21-089-03W5/0	1987/01/26	1375	1559	7820	9999	1084.2	N	
48 0007-04-062-26V440 1010 1579 6580 7440 1517.3 N 50 0007-04-062-26V4400 1252 1557 7440 9600 641 Y 51 0007-14-062-26V440 1252 1557 7100 7440 11057 N 53 0006-14-028-20V400 1987/11/14 1080 1488 7440 9999 1076.5 Y N 54 0006-16-028-22V440 1985/02/23 751 1227 7520 9020 N N 55 0006-13-028-20-12V450 1984/02/19 900 1224 7440 9690 765 Y N 56 0006-34-069-02V50 1984/05/7 1187 2441 6440 9999 2428 Y N 59 0006-03-069-02V50 1986/12/26 1001 1364 7440 9999 932.5 Y N 50 0006-03-0490-02V50 1986/12/26 1001 1364 7440 9900 188	48	00/06-35-046-15W4/0		344	2113	0000	9800	1322	N	
50 0007-08-082-04VIS0 1998/09/21 981 1297 7440 9800 841 Y 51 0007-14-062-20VIG0 1325 1557 7100 7440 15057 N 52 0008-14-038-21VI40 1185 1222 7140 9999 1076.5 N 53 0008-14-038-21VI40 1185 1227 7520 8000 N N 54 0008-14-038-21VI40 1988/02/23 751 1227 7520 8000 N N 55 0008-19-027-10VI40 1988/02/27 1971 2441 6440 9999 1483 Y N 56 0008-03-099-04WI50 1984/02/2 1001 1356 7440 7899 922.5 Y N 50 0009-03-099-04WI50 1984/12/2 1001 1343 7440 7899 932.5 Y N 50 0009-03-099-04WI50 1984/12/22 1001 1343 7440 7890 1083.5 N <td>49</td> <td>00/07-04-062-26W4/0</td> <td></td> <td>1010</td> <td>1579</td> <td>6580</td> <td>7440</td> <td>1517.9</td> <td>N</td> <td></td>	49	00/07-04-062-26W4/0		1010	1579	6580	7440	1517.9	N	
51 0007-14-062-269V40 1252 1557 7100 7440 15057 N 52 0008-16-058-30X50 1997/1/14 1080 1488 7440 9999 1076.6 Y N 53 0008-16-058-30X50 1997/1/14 1080 1122 2140 7440 1873.5 N 54 0008-16-058-227W40 1988/02/23 751 1227 7520 96020 N N 55 0008-36-091-027%50 1984/03/7 1997 2441 6440 9999 2428 Y N 56 0008-36-091-027%50 1986/12/26 1001 1364 7440 9999 323.5 Y N 57 0008-36-091-047%50 1986/12/26 1001 1364 7440 9999 393.5 N N 50 0009-36-091-047%50 1986/12/26 1001 1343 7440 9800 1063.5 N 61 0010-6-07-047%50 1986/12/22 10651 1443	50	00/07-09-092-04W5/D	1986/09/21	981	1297	7440	9800	841	Y	
52 0008-10-089-03W5/0 1987/11/14 1080 1488 7440 9999 1076.5 Y Y 53 0008-14-038-21W4/0 1165 1923 2140 7440 1873.5 N 54 0008-18-098-22W4/0 1985/02/23 751 1227 7520 8020 N N 55 0008-18-027-10W4/0 1988/03/19 900 1224 7440 9000 765 Y N 60 0008-28-091-02W5/0 1984/03/19 900 1224 7440 9000 765 Y N 58 0009-03-099-02W5/0 1984/03/12 1101 1364 7440 9999 2428 Y N 59 0009-03-099-03W5/0 1985/12/28 1001 1364 7440 9999 932.5 Y N 60 0009-14-039-03W5/0 1984/12/28 1061 1473 7440 9890 989.5 N 1 61 0009-14-039-03W5/0 1676 1473<	51	00/07-14-062-26W4/0		1252	1557	7100	7440	1505.7	N	
S3 0008-14-038-21W4/0 1165 1125 2140 7440 1873.5 N 54 0008-16-038-22W4/0 1985/02/23 751 1227 7520 8020 N N 55 0008-18-037-10W4/0 1984/03/19 900 1284 7440 9990 765 Y N 56 0008-28-091-02W5/0 1984/05/27 1887 2471 6440 9990 2428 Y N 57 0008-34-03-25W4/0 1984/05/27 1887 2471 6440 9999 2428 Y N 58 0009-05-091-04W5/0 1986/05/22 11001 1384 7440 9999 932.5 Y N 60 0009-10-088-03W5/0 1985/12/22 1061 1433 7440 9800 1083.5 N 61 0009-3-052-26W4/0 1676 1571 7440 7820 1442.7 N 62 0010-04-073-04W5/0 11570 11570 1650	52	00/08-10-089-03W5/0	1987/11/14	1080	1488	7440	9999	1076.5	Y	Y
54 0008-16-098-22W40 198502/23 751 1227 7520 8020 N 55 0008-19-027-10W40 1984102/0 1100 1550 6440 9999 1493 Y N 66 0008-28-091-02X/5/0 198403/19 900 1284 7440 9900 765 Y N 57 0008-36-99-30W5/0 198703/22 1207 1463 7440 9999 932.5 Y N 58 0009-05-091-04W5/0 198602/27 1001 1364 7440 9999 932.5 Y N 50 0009-05-091-04W5/0 198502/02 922 1432 7160 9800 1083.5 N 61 0009-14-080-03W5/0 198502/02 1676 1990 7440 9800 980.5 N 62 000-0-6-07-04W5/0 1676 1570 1660 7440 7820 1427.7 N 63 001-0-6-07-04W5/0 1676	53	00/08-14-038-21W4/0		1185	1923	2140	7440	1873.5	N	
55 0008-19-027-1004/40 1988/10/20 1100 1550 6440 9999 1493 Y N 66 0008-28-091-02V/5/0 198403/19 900 1284 7440 9800 765 Y 1 77 0008-34-034-25/W4/0 1984/05/27 1997 2471 6440 9999 2428 Y 1 58 0008-03-089-03/W5/0 1986/03/22 1001 1364 7440 9999 932.5 Y 1 59 0008-05-091-04/W5/0 1985/09/09 952 1492 7160 9800 1083.5 N 1 60 0009-14-080-03/W5/0 1985/09/09 952 1492 7160 7440 1983.9 N 1 61 0009-14-080-03/W5/0 1676 1998 7100 7440 1883.9 N 1 63 00/10-05-070-05/W5/0 1676 1771 7630 7620 1644.4 Y 1 64 00/10-05-070-04/W5/0	54	00/08-16-098-22W4/0	1985/02/23	751	1227	7520	8020		N	
56 0008-28-091-02/VS/0 1984/03/19 900 1284 7440 9600 765 Y 57 0008-34-034-034-05/V4/0 1984/05/27 1187 2471 6440 9999 2428 Y 1 58 0009-03-089-03/VS/0 1987/03/28 1207 1463 7440 9999 932.5 Y 1 59 0009-05-091-04/V5/0 1985/09/09 952 1492 7160 9800 1083.5 N 1 60 0009-10-088-03/V5/0 1986/09/05 1986/12/22 1051 1437 7440 9800 980.5 N 1 61 0000-05-070-03/V5/0 188/12/2 1051 1437 7440 9800 980.5 N 1 63 0010-06-073-04/V5/0 11448 1712 7100 7820 1427.7 N 1 64 0010-06-073-04/V5/0 11570 1580 7440 7820 1614.2 Y 1 65 0010-04-070-04/V5/0	55	00/08-19-027-10W4/0	1988/10/20	1100	1550	6440	9999	1493	Y	Y .
57 0008-34-034-25W4/0 1984/05/27 1897 2471 6440 999 2428 Y	56	00/08-28-091-027/5/0	1984/03/19	900	1284	7440	9800	765	Y	
56 0006-03-089-03W5/0 1987/03/28 1207 1463 7440 7880 1055 Y N 59 0009-05-091-04W5/0 1986/12/26 1001 1364 7440 9999 932.5 Y N 60 0009-01-0485/0 1986/12/26 1001 1364 7440 9999 932.5 Y N 61 0009-3-082-080/50 1984/12/22 1051 1437 7440 9800 980.5 N 62 0009-3-052-070-030/50 1984/12/22 1051 1437 7440 9800 980.5 N 63 0010-05-070-030/50 1444 1712 7100 7820 1427.7 N 64 0010-05-070-040/50 1773 1833 7440 7820 1614.4 Y 65 0010-08-075-040/50 1676 1871 7440 7820 1614.4 Y 66 0010-18-02-2406/40 198103/16 1500	57	00/08-34-034-25W4/0	1984/05/27	1897	2471	6440	9999	2428	Ŷ	
59 0009-05-091-04W5/0 1986/12/26 1001 1364 7440 9999 932.5 Y N 60 0009-10-088-03W5/0 1985.09/09 962 1492 7160 9800 1083.5 N	58	00/09-03-089-03W5/0	1987/03/28	1207	1463	7440	7880	1055	Y	Y
60 00091-0.088-03W5/0 1985/09/09 952 1442 7160 9800 1083.5 N 61 00/09-14-080-03W5/0 1884/12/22 1051 1437 7440 9800 980.5 N 62 00/09-33-052-26W4/0 1884/12/22 1051 1437 7440 9800 980.5 N 63 00/10-05-070-03W5/0 1448 1712 7100 7820 1427.7 N 64 00/10-06-073-04W5/0 1676 1671 7440 7820 1614.2 Y 65 00/10-14-070-04W5/0 1676 1671 7440 7820 1614.4 Y	59	00/09-05-091-04W5/0	1986/12/26	1001	1364	7440	9999	932.5	Y	Y
61 0009-14-09-03W50 1884/12/22 1051 1437 7440 9800 980.5 N 62 0009-33-052-26W40 1676 1908 7100 7440 1863.9 N 1 63 0010-05-07-03W50 1 1448 1712 7100 7820 1489.6 Y 1 64 0010-06-073-04W50 1 1570 1650 7440 7820 1614.2 Y 1 65 0010-08-071-04W50 1 1773 1833 7440 7820 1614.4 Y 1 66 0010-14-070-04W50 1 1676 16171 7440 7820 1644.4 Y 1 67 0010-14-02-2W40 19850227 751 1247 7540 9800 1 N 1 1 1 1 1 N 1 N 1 1 1 N 1 N 1 1 1 1 1 1 1	60	00/09-10-088-03\\/5/0	1985/09/09	952	1492	7160	9800	1083.5	N	
62 0009-33-052-26W4/0 1676 1908 7100 7440 1863.9 N 63 00/10-05-070-03W5/0 1448 1712 7100 7820 1489.6 Y 1 64 00/10-06-073-04W5/0 1570 1650 7440 7820 1427.7 N 1 65 00/10-08-071-04W5/0 1773 1833 7440 7820 1614.2 Y 1 66 00/10-14-070-04W5/0 18676 1871 7440 7820 1644.4 Y 1 67 00/10-14-00-23W4/0 1985/02/27 751 1247 7540 9800 N 1 68 00/10-16-027-08W4/0 1983 1704 0000 7700 1502 N 1 70 0/10-18-032-20W4/0 1984/03/16 1500 2074 6660 7440 1938.5 N 1 71 0/10-20-085-21W4/0 1986/09/19 2000 2550 6660 7700 2295 N	61	00/09-14-090-03W5/0	1984/12/22	1051	1437	7440	9800	980.5	и	
63 00/10-05-070-03W5/0 1448 1712 7100 7820 14896 Y 1 64 00/10-06-073-04W5/0 1 1570 1660 7440 7820 1427.7 N 1 65 00/10-08-071-04W5/0 1 1773 1833 7440 7820 1614.2 Y 1 66 00/10-14-070-04W5/0 1 1676 1871 7440 7820 1644.4 Y 1 67 00/10-14-02-29W4/0 1985/02/27 751 1247 7540 9800 1 N 1 68 00/10-18-032-20W4/0 1985/02/27 751 1247 7540 9800 1938.5 N 1 70 00/10-18-052-27W4/0 188 1702 6660 7440 1938.5 N 1	62	00/09-33-052-26W4/0		1676	1908	7100	7440	1863.9	N	
6400/10-06-073-04W5/0115701650740078201427.7N16500/10-08-071-04W5/0117731833744078201614.2Y16600/10-14-070-04W5/01167611671744078201644.4Y16700/10-14-070-04W5/01985/02/27755111247754098000N16800/10-16-027-08W4/01984/03/1615002074666074401938.5N17000/10-18-052-27W4/01984/03/1615002074666074401938.5N17100/10-18-052-27W4/01984/03/1615002074666074401938.5N17100/10-18-052-27W4/01984/03/1615802074666077401559.4Y17200/10-18-052-27W4/01986/02/197931240748098001Y117200/10-26-071-04W5/01986/02/1920002550666077002295N1YY7300/10-30-032-23W4/01986/12/2310531411744058009977YYYY7400/10-32-090-04W5/01986/12/23105314117440580097761651.1YYYY7500/10-33-070-04W5/01850/301090113837540945.31658.1NY <td>63</td> <td>00/10-05-070-03\\5/0</td> <td></td> <td>1448</td> <td>1712</td> <td>7100</td> <td>7820</td> <td>1489.6</td> <td>Y</td> <td></td>	63	00/10-05-070-03\\5/0		1448	1712	7100	7820	1489.6	Y	
6600/10-08-071-04W5/0117731833744078201614.2Y16600/10-14-070-04W5/0116761871744078201644.4Y16700/10-14-00-23W4/01985/02/27753124775409800MN16800/10-16-027-08W4/01984/03/161500200746660744019385N116900/10-18-033-20W4/01984/03/161500200746660744019385N11 <td>64</td> <td>00/10-06-073-04\\/5/0</td> <td></td> <td>1570</td> <td>1650</td> <td>7440</td> <td>7820</td> <td>1427.7</td> <td>х</td> <td></td>	64	00/10-06-073-04\\/5/0		1570	1650	7440	7820	1427.7	х	
6600/10-14-070-04W5/0116761677740078201644.4Y16700/10-14-00-23W4/01985/02/77511247754098000N16800/10-16-027-08W4/01984/03/1615002074666074401938.5N16900/10-18-039-20W4/01984/03/1615002074666074401938.5N117000/10-18-032-27W4/01984/03/1613872000334074401976.6N117100/10-20-085-21W4/01988/09/1920007400782015594Y11	65	00/10-08-071-04\\/5/0		1773	1833	7440	7820	1614.2	Y	
6700/10-14-100-23W4/01985/02/27755124775409800NN6800/10-16-027-08W4/0188018831704000077001502N16900/10-18-039-20W4/01984/03/16150020746660074401938.5N17000/10-18-052-27W4/01984/03/1613882001334074401976.6N17100/10-20-085-21W4/0120793124074809800YY117200/10-20-071-04W5/01986/09/1920002550666077002295N1YY7300/10-32-090-04W5/01986/12/2310531111744058009977YYYY7400/10-32-090-04W5/01986/12/2310531111744058009977YYYY7500/10-33-070-04W5/01986/12/2310531111744058009977YYYY7500/10-35-069-04W5/01986/12/2310531117758077801558.1NYYYY7600/10-36-062-22W4/01850/3109091383754096591329.8YYYY7900/11-12-080-05W5/0189/02/229981178280074801329.8YYYY7900/11-13-096-11W5/01889/02/229991	66	00/10-14-070-04W5/0		1676	1871	7440	7820	1644.4	Y	
68 00/10-16-027-08W4/0 188 1704 0000 7700 1500 N 69 00/10-18-039-20W4/0 1984/03/16 1500 2074 6660 7440 1938.5 N 70 00/10-18-052-27W4/0 1 1387 2001 3340 7440 1976.6 N 71 00/10-20-085-21W4/0 1 773 7400 9800 Y Y Y 72 00/10-26-071-04W5/0 1 1646 1762 7440 7820 1559.4 Y 73 00/10-32-030-04W5/0 1986/9/19 2000 2550 6660 7700 2295 N Y Y 74 00/10-32-090-04W5/0 1986/12/23 1065 1411 7440 5800 9977 Y Y Y 75 0/10-33-070-04W5/0 1986/12/23 1073 1772 7580 7780 1561.1 Y Y Y 76	67	00/10-14-100-23\\4/0	1985/02/27	751	1247	7540	9800		N	
6900/10-18-039-20W4/01984/03/1615002074666074401938.5N17000/10-18-052-27W4/0I13872001334074401976.6NI7100/10-20-085-21W4/0I793124074809800YII7200/10-26-071-04W5/0I16461762744078201559.4YI7300/10-32-030-04W5/01986/09/1920002550666077002295NII7400/10-32-030-04W5/01986/12/2310531141174409800977YYY7500/10-33-070-04W5/01986/12/2310531141174409800977YYY7500/10-35-089-04W5/0186717071872758077801651.1YIYY7600/10-35-089-04W5/0I17371772758077801558.1NIYYYYYY7700/10-36-082-22W4/01865/03/109111383754096:031329.8YYYYYY7800/11-12-080-05W5/0I7621791654096:031329.8YYYYYY7900/11-13-098-01W5/0189/02/229901210782077801623YYYYYYY80 <t< td=""><td>68</td><td>00/10-16-027-08W4/0</td><td></td><td>183</td><td>1704</td><td>0000</td><td>7700</td><td>1502</td><td>N</td><td></td></t<>	68	00/10-16-027-08W4/0		183	1704	0000	7700	1502	N	
70 00/10-18-052-27W4/0 1387 2001 3340 7440 1976.6 N 71 00/10-20-085-21W4/0 793 1240 7480 9800 Y 72 00/10-20-085-21W4/0 1646 1762 7440 7620 1559.4 Y 73 00/10-32-03W4/0 1986/09/19 2000 2550 6660 7700 2295 N 74 00/10-32-090-04W5/0 1986/12/23 1053 1411 7440 5800 977 Y Y Y 75 00/10-33-070-04W5/0 1986/12/23 1053 1411 7440 5800 977 Y Y Y 76 00/10-33-070-04W5/0 1986/12/23 1053 1411 7440 7820 1651.1 Y Y 77 00/10-36-082-22W4/0 1985/03/10 971 1783 7780 1568.1 N Y Y 78 00/11-2080-05W5/0 1985/03/1	69	00/10-18-039-20\\4/0	1984/03/16	1500	2074	6660	7440	1938.5	N	
71 00/10-20-085-21W4/0 Image: State of the state	70	00/10-18-052-27\\4/0		1387	2001	3340	7440	1976.6	N	
72 00/10-26-071-04W5/0 1646 1760 7440 7820 1558.4 Y 73 00/10-30-032-23W4/0 1988/09/19 2000 2550 6660 7700 2295 N 1 74 00/10-32-090-04W5/0 1988/12/23 1063 1411 7440 5800 977 Y Y Y 75 00/10-32-090-04W5/0 1986/12/33 1063 1411 7440 5800 977 Y Y Y 75 00/10-32-090-04W5/0 1986/12/33 1073 17172 7440 7620 1651.1 Y Y Y 76 00/10-35-069-04W5/0 1 622 838 7169 7440 816.9 N Y Y 77 00/10-36-082-22W4/0 1985/03/10 901 1383 7540 96:03 159.8 N Y Y 78 0/11-16-089-05W5/0 1989/02/22 990 1210 7820 7880 1329.8 Y Y </td <td>71</td> <td>00/10-20-085-21W4/0</td> <td></td> <td>793</td> <td>1240</td> <td>7480</td> <td>9800</td> <td></td> <td>Y</td> <td></td>	71	00/10-20-085-21W4/0		793	1240	7480	9800		Y	
73 00/10-30-032-23W4/0 1988/09/19 2000 2550 6660 7700 2295 N 74 00/10-32-090-04W5/0 1986/12/23 1053 1411 7440 5800 977 Y Y Y 75 00/10-33-070-04W5/0 1065 1707 1872 7440 7620 1651.1 Y Y Y 76 00/10-35-069-04W5/0 1 1737 1772 7580 7780 1558.1 N Y Y 77 00/10-36-082-22W4/0 1 6622 838 7169 7440 816.9 N Y Y 78 00/11-2600-05W5/0 1 6622 838 7169 7440 816.9 N Y Y 79 00/11-2600-05W5/0 1985/03/10 901 1383 7540 9£02 1329.8 Y Y Y 79 00/11-13-098-01W5/0 1989/02/22 990 1210 7820 77800 6623 Y<	72	00/10-26-071-04W5/0		1646	1782	7440	7820	1559.4	Y	
74 00/10-32-090-04W5/0 1986/12/23 1063 1411 7440 5800 977 Y Y Y 75 00/10-33-070-04W5/0 1 1707 1872 7440 7820 1651.1 Y 1 76 00/10-35-069-04W5/0 1 1737 1772 7580 7780 1558.1 N 1 77 00/10-36-082-22W4/0 1 622 838 7169 7440 816.9 N 1 Y Y 78 00/11-08-095-22W4/0 1985/03/10 901 1383 7540 96:03 Y Y Y 79 00/11-12-080-05W5/0 1985/03/10 901 1383 7540 96:03 1329.8 Y Y Y 79 00/11-12-080-05W5/0 1989/02/22 990 1210 7820 7780 1329.8 Y Y 80 0/11-15-073-24W4/0 1989/02/22 990 1210 7820 7740 10762 N	73	00/10-30-032-23W4/0	1988/09/19	2000	2550	6660	7700	2295	N	
75 00/10-33-070-04W5/0 11007 1872 7440 7620 1651.1 Y 76 00/10-35-069-04W5/0 1737 1772 7580 7780 1558.1 N 77 00/10-36-082-22W4/0 622 838 7169 7440 8816.9 N 78 0/11-08-095-22W4/0 1985/03/10 901 1383 7540 9£03 Y Y 79 0/11-12-080-05W5/0 1985/03/10 901 1383 7540 9£03 Y Y Y 79 0/11-12-080-05W5/0 1985/03/10 901 1383 7540 9£03 1329.8 Y Y 80 0/11-13-098-01W5/0 1989/02/22 990 1210 7820 7880 6623 Y Y 80 0/11-15-073-24W4/0 1983/12/22 1007 1807 3360 7440 10076.2 N Y 82 0/11-16-044-16W4/0 1983/12/22 1007 1807 3360 7560	74	00/10-32-090-04\\5/0	1986/12/23	1053	1411	7440	9800	977	Y	Y ·
76 00/10-35-069-04W5/0 1737 1772 7580 7780 1558.1 N 77 00/10-36-082-22W4/0 622 838 7169 7440 816.9 N 78 00/11-08-095-22W4/0 1985/03/10 901 1383 7540 9£50 Y Y 79 00/11-12-080-05W5/0 762 1791 6540 9£50 1329.8 Y Y 60 00/11-13-098-01W5/0 1989/02/22 990 1210 7820 7850 623 Y Y 81 00/11-16-044-16W4/0 1983/12/22 1075 1807 3360 7960 1470 Y Y	75	00/10-33-070-04W5/0		1707	1872	7440	7820	1651.1	Y	
77 00/10-36-082-22W4/0 622 838 7169 7440 816.9 N 78 00/11-08-095-22W4/0 1985/03/10 901 1383 7540 9650 Y Y 79 00/11-12-080-05W5/0 762 1791 6540 9£00 1329.8 Y Y 80 00/11-13-098-01W5/0 1989/02/22 990 1210 7820 7850 623 Y Y 81 00/11-15-073-24W4/0 1983/12/22 1075 1807 3360 7960 1470 Y Y	76	00/10-35-069-04\\/5/0		1737	1772	7580	7780	1558.1	N	
78 00/11-08-095-22W4/0 1985/03/10 901 1383 7540 9£50 Y Y 79 00/11-12-080-05W5/0 762 1791 6540 9£50 1329.8 Y Y 80 00/11-13-098-01W5/0 1989/02/22 990 1210 7820 7880 623 Y Y 81 00/11-15-073-24W4/0 549 1178 2800 7440 1076.2 N 82 00/11-16-044-16W4/0 1983/12/22 1075 1807 3360 7560 1470 Y Y	77	00/10-36-082-22W4/0		622	838	7169	7440	816,9	N	
79 00/11-12-080-05W5/0 762 1791 6540 9£00 1329.8 Y Y 80 00/11-13-098-01W5/0 1989/02/22 990 1210 7820 7850 623 Y 1 81 00/11-15-073-24W4/0 549 1178 2800 7440 1076.2 N 1 82 00/11-16-044-16W4/0 1983/12/22 1075 1807 3360 7960 1470 Y Y	78	00/11-08-095-22W4/0	1985/03/10	901	1383	7540	9500		Y	Y
60 00/11-13-098-01W5/0 1989/02/22 990 1210 7820 7850 623 Y 81 00/11-15-073-24W4/0 549 1178 2800 7440 1076.2 N 82 00/11-16-044-16W4/0 1983/12/22 1075 1807 3360 7960 1470 Y Y	79	00/11-12-080-05W5/0		762	1791	6540	9800	1329.8	Y	Y
81 00/11-15-073-24W4/0 549 1178 2800 7440 1076.2 N 82 00/11-16-044-16W4/0 1983/12/22 1075 1807 3360 7560 1470 Y Y	80	00/11-13-098-01W5/0	1989/02/22	990	1210	7820	78B0	623	Y	
82 00/11-16-044-16W4/0 1983/12/22 1075 1807 3360 7960 1470 Y Y	81	00/11-15-073-24W4/0		549	1178	2800	7440	1076.2	N	
	82	00/11-16-044-16W4/0	1983/12/22	1075	1807	3360	7960	1470	Y	Y
83 00/11-23-071-05W5/0 1995/03/19 1850 1934 7440 7820 1771.5 N	83	00/11-23-071-05W5/0	1995/03/19	1850	1934	7440	7820	1771.5	N	
84 00/11-35-027-14W4/0 884 1727 1860 7440 1693.8 N	84	00/11-35-027-14W4/0		884	1727	1860	7440	1693.8	N	

Table C.2: Dipmeter log data available in the expanded study area for the Elk Point and Beaverhill Lake Groups (source: AEUB well database)

No.	UWI	Run Date	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top of Beaverhill Lake Fm (m KB)	Dipmeter Log Recorded on Microfiche	All Data Needed for Breakout Analysis Present
85	00/11-36-071-05W5/0	1985/04/09	1832	1911	7440	7820	1685	N	
86	00/12-01-073-05W5/0		1555	1668	7440	7820	1439.3	N	
87	00/12-03-073-05W5/0		1593	1684	7440	7820	1463.3	Y	
88	00/12-08-073-04W5/0		1555	1650	7440	7440	1420.4	Y	
89	00/12-09-038-21W4/0	1984/02/08	389	2370	0000	9000	2012	N	
90	00/12-10-065-02W5/0		1150	1600	6960	7440	1552	N	
91	00/12-13-073-05W5/0		1585	1661	7440	7820	1432.6	Y	
92	00/12-13-089-03W5/0	1989/03/28	1170	1468	7440	9800	1021	Y	Y
93 -	00/12-18-087-03W5/0	1986/01/18	1055	1592	7100	9999	1136	Y	Y
94	00/12-21-058-25W4/0	1985/02/13	1116	1799	6580	7440	1690	Y	
95	00/12-33-071-04W5/0		1761	1852	7440	7820	1632.2	Y	
96	00/13-01-036-21W4/0		383	2415	0000	9040	2070	N	
97	00/13-09-086-21W4/0	1991/03/18	1,050	1250	7860	9999	682.5	Y	
98	00/13-13-085-04W5/0	1982/02/19	1068	1671	7100	9800	1186	Y	
99	00/13-14-089-04W5/0	1989/10/16	950	1600	0000	9999	1098	N	
100	00/13-14-090-05W5/0	1988/03/15	1225	1523	7440	9800	1093	Y	
101	00/13-18-095-01W5/0	1989/02/09	1200	1409	7820	9999	850	Y	
102	00/13-20-085-02W5/0		1250	1642	7540	9800		N	
103	00/14-03-093-03W5/0	1986/01/22	1001	1316	7440	9800	846.5	N	
104	00/14-05-097-21W4/0		823	1272	7580	8020		Y	
105	00/14-09-092-04W5/0	1987/06/25	1101	1319	7820	9800	849	Y	Y
106	00/15-20-095-20W4/0		793	1246	7440	9800	630.9	N	
107	00/15-30-034-20W4/0	1986/06/15	1640	2025	6660	7440	1993	Y	
108	00/15-34-093-24W4/0		914	1347	7520	8000		Y	
109	00/16-22-094-22W4/0	1984/03/10	620	1343	7170	9800		N	
110	00/16-23-096-25W4/0	1984/03/17	725	1450	7170	8000		N	
111	00/16-25-040-16W4/0	1984/09/04	800	1450	1860	9999	1386.5	Y	
112	00/16-26-051-27W4/0		1715	2036	7100	7440	1988	N	
113	02/0 2-14-055-22W4/ 0		o	1911	0000	8020	1417.6	N	
114	02/03-36-092-05W5/0	1986/08/25	1001	1346	7440	9999	869	N	
115	02/05-26-084-05W5/0		1300	1655	7440	9999	1232	N	
116	02/10-19-091-04W5/0	1990/03/17	1075	1385	7620	7940	8 92	Y	Y
117	02/11-06-036-02VV4/0		850	1591	2760	9160	1188.5	N	
118	AA/11-17-091-13W4/0	1997/01/08	48	175	0000	7440	167.5	Ŷ	
119	AA/11-21-091-13W4/0	1997/01/10	36	166	0000	7440	151.2	Y	
120	AA/11-28-091-13W4/0	1997/01/12	42	161	0000	7440	149	Y	

Table C.2: Dipmeter log data available in the expanded study area for the Elk Pointand Beaverhill Lake Groups (source: AEUB well database)

No.	UWI	Year Logged	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Formation Code	Bottom Formation Code	Top of Prairie Evaporite Formation (m KB)	Percent of Unknown Bulk Density Data above the Prairie Evaporite Formation	Within Prairie Evaporite Area Defined by AGS ?	
1	01/01-10-066-27W3/0	1969	161.2	759		545003	671.5	24	N	
2	01/01-25-062-25W3/0	1968	167.6	1151.2	224002	900001	693.1	24	N	
3	01/07-01-044-24W3/0	1972	579.1	1858.1	224002	900001	1069.2	54	Y	
4	01/07-16-024-27W3/0	1969	609.6	1611.2	224002	601003	1491.1	41	Y	
5	01/10-01-028-29W3/0	1968	666	2153.1	224002	900001	1511.8	44	Y	
6	01/10-09-050-24W3/0	1971	426.7	1032.1	224002	703003	830.6	51	Y	
7	01/12-28-045-22W3/0	1967	145.1	1168.6		601105	938.5	15	Y	
8	01/15-08-035-27W3/0	1976	139.3	1551.4		511505	1414.3	10	Y	
9	01/15-34-034-27W3/0	1980	256.9	2095.8	-	801005	1389.9	18	Y	
10	01/16-36-036-25W3/0	1980	191,1	1998		900001	1292.4	15	Y	
1 1	11/01-05-035-26W3/0	1997	250	2114.5		900001	1398	18	Y	
12	11/02-11-075-23W3/0	1997	177	566.3	231107	551003	490	36	N	
13	11/06-15-035-27W3/0	1998	260	2104.5		900001	1392.3	19	Y	
14	11/11-29-035-26W3/0	1997	301.1	2084.1		531003	1355	22	Y	
15	11/11-29-068-23W3/0	1993	97,4	988.5		900001	583	17	Y	
16	11/15-13-060-24W3/0	1984	123.1	1034.5		801003	701	18	N	
17	21/07-30-036-28W3/0	1997	303.5	2128	521003	900001	1355		Y	
18	21/07-30-049-27W3/0	1998	212.7	949.4		541003	949	22	Y	
19	21/09-22-062-27W3/0	1987	103	741.7	232507	543003	703,3	15	Y	
20	21/12-30-049-27W3/0	1984	301.4	1733.7		900001	952	32	Y	
21	31/01-03-074-24W3/0	1997	180,5	821.5		551003	569	32	N	
22	31/05-13-030-26W3/0	1985	209	1497,5		541003	1491.5	14	N	
23	31/07 -30-0 49-27W3/0	1996	232.1	1075		541003	950.8	24	Y	
24	31/14-17-065-26W3/0	1968	113.1	751.6		545003	685.8	16	N	
25	31/16-05-035-26W3/0	1997	247	2114		900001	1394. I	18	Y	
26	31/16-10-034-22W3/0	1980	497.4	2033.9		900001	1303.9	38	Y	
27	41/03-09-040-22W3/0	1995	131	1256		541003	1130.5	12	Y	
28	41/03-18-036-25W3/0	1997	244	2047.8		900001	1319.1	18	Y	
29	41/04-05-035-26W3/0	1997	247.5	2127.2		900001	1404.8	18	Y	
30	91/05-34-033-22W3/0	1999	158	1363.5		541003	1358	12	Ŷ	
No.	UWI	Top Formation Code	Bottom Formation Code	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Paleozoic Formation	Paleozoic Formation Top (m KB)	Amount of coverage in Palezoic (m)	Dipmeter Log Recorded on Microfiche	Ali Data Needed for Breakout Analysis Available on Microfiche
-----	---------------------	-----------------------	--------------------------	-------------------------------	----------------------------------	------------------------	---	--	---	--
1	41/04-33-035-25W3/0	224002	521003	609.6	836.1	Madison Group	734.0	102.1	N	N
2	11/03-04-030-28W3/2	227304	\$11105	728.0	862.0	Madison Group	798.3	63.7	Y	Y
3	41/07-07-010-23W3/0	511105	521003	1572.0	1631.5	Torquay Fm	1574.0	57.5	Y	Y
4	01/10-04-041-24W3/0	224002	525003	468.2	732.7	Duperow Fm	678.2	54.5	N	N
5	01/09-06-035-26W3/0	438003	511505	820.8	874.8	Bakken Fm	829.1	45.7	Ŷ	N
6	11/10-17-040-24W3/0	n/a	525003	238.0	712.0	Bird Bear Fm	671.0	41.0	Y	Y
7	11/07-19-031-24W3/0	224002	511105	600.2	835.2	Madison Group	794.6	40.6	Y	Y
8	01/13-21-035-25W3/0	219505	511505	\$36.8	788.2	Bakken Fm	758.3	29.9	N	א
9	01/02-16-036-28W3/0	226108	511505	651.1	848.9	Torquay Fm	826.0	22.9	Y	N
10	01/10-07-039-25W3/0	n/a	521003	127.1	737,9	Bird Bear Fm	718.0	19.9	Y	N
11	11/13-19-052-23W3/0	n/a	525003	123.1	669.0	Duperow Fm	650,0	19.0	Y	N
12	11/10-22-046-22W3/0	n/a	525003	125,9	612.0	Duperow Fm	597.4	14.6	Y	N
13	01/06-07-043-24W3/0	219003	525003	441.0	752.9	Duperow Fm	741.0	11.9	Y	N
14	11/02-21-040-26W3/0	219176	525003	399.9	815.0	Duperow Fm	803.5	11.5	Y	N
15	11/11-24-047-27W3/0	224002	525003	475.8	686.4	Duperow Fm	675.1	11.3	Ŷ	N
16	11/11-18-048-21W3/0	224002	525003	349.9	593.1	Duperow Fm	581.9	11.2	Y	N
17	20/07-21-009-29W3/0	224002	430002	914.4	1332.0	Madison Group	1324.1	7,9	Y	N
18	11/09-24-047-27W3/0	231107	525003	499.9	675.1	Duperow Fm	667.5	7.6	Y	N
19	11/13-01-052-27W3/0	n/a	525003	125.9	602.6	Duperow Fm	595.0	7.6	Y	N
20	11/07-03-054-25W3/0	224002	525003	326.1	660.5	Duperow Fm	653.5	7.0	Y	N
21	11/06-23-052-25W3/0	224002	525003	250.5	531.9	Duperow Fm	525.2	6.7	Y	Y
22	11/13-24-052-25W3/0	226408	525003	369.0	579,0	Duperow Fm	\$72.5	6.5	Y	N
23	11/01-26-052-25W3/0	226408	525003	367.6	583.4	Duperow Fm	578.5	4.9	Y	Y
24	11/03-23-052-25W3/0	231307	525003	399.9	545.0	Duperow Fm	540.5	4.5	Y	N
25	11/09-29-042-25W3/0	234107	525003	630.0	684.0	Duperow Fm	679.9	4.1	Y	N

Table C.4: Dipmeter log data available in the expanded Saskatchewan area for Paleozoic age formations (source: AEUB well database)

* Area bounded by 49.5-56.0 deg Latitude N and 109-110 deg Longitude W

** 71 total number of dipmeters in area

APPENDIX D

DATA ANALYSIS RESULTS FOR ORIGINAL STUDY AREA

- Table D.1Summary of vertical stresses for the Elk Point Group
determined from bulk density data in the original study area
- Figures D.1.1 to D.1.92 Bulk density profile, calculated vertical stress, local vertical stress gradient for analyzed bulk density wells
- Table D.2Detailed summary of breakout data in the Elk Point and
Beaverhill Lake Groups
- Figures D.2.1 to D.2.6 Roseplots of breakout data in the Elk Point and Beaverhill Lake Groups
- Table D.3Summary of breakout analysis data in the original study areafor the Elk Point and Beaverhill Lake Groups

.

.

Table D.1: Vertical Stress for the Elk Point Group determined from bulk density data

No. Well Name	Year Logged	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Elk Point Group (m KB)	Vertical Stress at Top of Elk Point Group (MPa)	Normalized Vertical Stress Gradient at Top of Elk Point Group (kPa/m)	Top Prairie Evaporite Fm (m KB)	Vertical Stress at Top of Prairie Evaporite Fm (MPa)	Normalized Vertical Stress Gradient at Top of Prairie Evaporite Fm (kPa/m)	Top Basal Red Beds Fn (m KB)	Vertical Stress at Top of Basal Red Beds Fm (MPa)	Normalized Vertical Stress Gradient at Top of Basal Red Beds Fm (kPa/m)	Bulk Density Log Quality	Stress Magnitude Difference b/w Prairie Evaporite and Basal Red Beds (MPa)	Stress Gradient Difference b/w Prairie Evaporite and Basal Red Beds	% of Unknown Bulk Density Data above Prairie	% of Unknown Bulk Density Data above Basal Red Beds	Comments
I HUSKY D.H. WILDMERE 6-5-48-6	1970	610.0	975.0	1180.8			1194.8			<u> </u>		<u> </u>	naor	[(kP2/m)	Evaporite Fm	<u> </u>	
2 VOYAGER PLAIN 6-1-52-13	1978	750.0	2100.0	1340.0	31.3	23.3	1356.0	31.7	23.4	1683.0	39.1	73.7	fair	71	_0 1	\$5	**	built density data does not reach top of Elk Point Grp.
3 HUSKY 2C FROG LAKE 2-19-53-1	1996	132.0	1134.0	842.9	19.3	22.9	856.5	197	23.0	1080 5	25.5	73.6	Jan	7.24 	-0.1 0.6	15	44 • * * * * * * * * * * * * * * * * * *	ана са та ила повето си азъсталива и повето повето повето на пробота со село село село село се се село се се се
4 HUSKY 8B MARWAYNE 8-9-53-3	1996	132.0	1393.2	869.0	19.9	22.0	883.0	20.3	22.0 23.0	1106.0	25.1	23.0	very good	5.8	-0.5	1.4	12	
5 STERLING ET AL DEWBERRY 6-12-53-4	1988	425.0	605.0	898.8			913 3		· · · · · · · · · · · · · · · · · · ·			64-1	very good	4.7		· ····	12	
6 HUSKY DH ETHELWYN 10D-17-54-5	1971	365.8	964.2	948.1	an an ta' an an an ta' an t	ا مېرو د د وستر ستو و سرو د وې و ورو د مېنو و وې و و وې و وې و وې و وې و وې و	964 1	an 16 - ang 16 ang 18 ang 1	an a	and the second second second	وريدي والمراهم وموسول مراسي والمراجع والمراجع والمراجع والمراجع	andria - To in the loss of an angle of the state of the s	very good	موسان مارا المراجع بالمار و مراجع و المراجع و الم	nysynysyn annonnau'n a'r ar an an a'r ann a'r ann ar ar ar	alipatu (Internet and an ann an	1 - Martin Carlon Carlon (1999) - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Dilk density data does not reach top of Elk Point Grp.
7 AMOCO INJ LINDBERGH 14-28-55-6	1991	671.0	1289 3	969.0	21.6		000.0		77 3	and the second		a la statut alla su a	poor		an a	£7	ويكون والاعتراب الرياسي ومعاطمه الأوليلي والا	this well has incorrect digital data
8 CHEMCELL DUVERNAY NACL 16-27-55-12	1969	186.5	1448.4	1065.9	24.2	22_3	565.U	24.6	22.5	1441.7	22 7		very good	01		17	• • • • • • • • • • • • • • • • • • •	Lotsberg Fm at TD
9 WESTMIN HAIRY 2-13-55-13	1983	335.0	1745.0	1158.0	25.2	22.7 22.0	1170.0	24.0 National Control of the State	22-1 	1527 5	32.7		poor	8.1 	-0.1 	۲/ ۱۹۹۹ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰	13 	et an a state of a state of the stat
10 CANSALT L-2 NACL LIND 16-23-56-5	1989	155.0	1719.0	877 /	.18.2	22.9	1170.0	10 7	22.5	1.332.3		11.1		6.V	-0.2	10	22	- Separation ()
11 MIRPHY SWD 51 ND 15-13-58-5	1987	586.0	1546.0	860.0	18.2	22.2	838.4	18.7	22.3	7 202 2	20.6		very good			18		Lotsberg Fm at TD
12 SASKOIL SLIGDEN 8-1-62-11	1991	296.0	1635.0	035.6	21.2	22,4	060.0	19.9 91.4	22J	1460.2	29.3	22.3	very good	9.0	-5.2			د از می از می از می از م
13 RENAISSANCE COLD LAVE 1-98-63-9	1080	170.0	700 4	6140	12.0	22.1	932.U 634.5	41.0	1.12	1407.2	32.3	22.2	8000	10.9	-U.0	51	20	n Na Malanda an Talandala na mangangan kerapanah na bari di persampuan aya garangan di kembanan dalah kerapatah an mara dar Na mangan
14 CON REACON DARA COLDIE 9 26 67 2	1907	1050	074 0	520.0	13.U 12.0	1.12	034.3 205 c	13.3 15.2	21.3	1-1964-1967-1967-1968-2015-201-196	a an	an a	good	Alahan meneratakan tertengan bahar dapat kerena dari bahar dari basa dari bahar dari bahar dari bahar dari baha	MANAGEST - DURING IN THE SAME AND SAME AND	20		Wunnipegosis FM at TD, some washed out zones
	1092	172.0	724.0	303.0	13.0	22.1 	0.000	13.5 19.00 - 10.00 - 10.00 - 10.00 10.1	LL.L The Constant of Constant	1007 0		۲۰۰۵ (۲۰۰۱ کی ۲۵۰۰ کی ۲۰۰۰ کی ۲ معد کار ۲۰۰۰ کی	very good			32	[,] variation arte and general general (2)	bulk density data does not reach top of Basal Red Beds
15 CDNOAT SWD 2 SUGDEN 0-15-05-6	1960	270.0	14,59.0	/63.0	17.7	22.6	797.5	18.1	22.7	1337.0	29.8	22.3	good	11.7	-0.4	33	20	n an
16 ESSO MARIE UV 15-20-04-2	1979	21.0	1207.0	652.0	14.4	22.1	669.2	14.8	22.1	1092.5	24.0	22.0 N 1964 / West York Washington State (1964 / 1964 / 1964 / 1964 / 1964 / 1964 / 1964 / 1964 / 1964 / 1964 / 1964	fair	9.2	-0.1		2	1999 - 1999 - 1992 - 1997 -
17 ESSU /9 SWD COLDLK /-18-04-3	1979	20.2	1294.6	000.2	14.9	22.4	680.3	15.3	22.4	1171.0	26.2	22.4	fair	10.9	-0.1	2]	الاستعارات المراجعة المراكبة والمعالية والمراكبة والمراكبة والمحالية
18 ESSO 85 SWD ETHELLK 1-19-64-3	1985	250.0	1229.6	656.9	14.5	22.1	671.3	14.9	22.2	1177.2	26.0	22.1	fair	11.1	-0.2	37	21	992 - 2 - 193 - 193 - 193 - 193 - 193 - 194 - 19
19 ESSO 83 SWD ETHELLK 11-22-64-3	1983	253.4	1277.0	654.0	14.4	22.1	668.7	14.8	22.1	1164.4	26.0	22.3	fair	11.2	0.2	37	21 	
20 ESSO 81 SWD ETHELLK 3-29-64-3	1981	20.0	1310.0	671.7	14.7	21.9	686.4	15.1	21.9	1190.6	26.0	21.8	fair	10.9	-0.1	2	1	
21 ESSO 83 INJ ETHELLK 8-33-64-3	1983	257.0	1317.0	705.0	15.2	21.6	720.0	15.6	21.6	1210.0	26.3	21.7	fair	10.7	0.1	35	21	
22 MOBIL GARTH 5-6-64-6	1988 *******************************	270.0	1405.0	736.0	[6,4	22.2	752.5	16.8	22.3	1252.5	27.6	22.0	good	10.8	-0.3	35	21	
23 MOBIL GARTH 12-6-64-6	1985	271.0	1414.0	741.0	16.6	22.4	758.4	17.0	22.4	1280.0	28.3	22.1	good	11.3	-0.3	· 35	21	
24 ESSO 83 SWD ETHELLK 2-3-65-3	1984	256.0	1314.0	696.0	15.1	21.7	712.0	15.5	21.8	1213.8	26.5	21.8	fair	10.9	0.0	35	21	
25 ESSO SWD LEMING ETHELLK 3-4-65-3	1978	396.4	1320.0	690.0	14.6	21.2	707.0	15.1	21.3	1204.4	25.7	21.3	fair	10.6	0.0	56	33	
26 ESSO 81 ETHELLK OV 9-20-65-3	1981	20.0	1264_6	624.5	13.5	21.6	640.4	13.9	21.7	1173.0	25.4	21.7	роот	11.5	0.0	2	1	
27 ESSO MEDLEY OV 6-8-66-2	1979	20.0	1214.6	672.6	15.0	22.3	690.0	15.4	22.3	1141.0	25.5	22.3	fair	10.1	0.0	2		
28 ESSO MEDLEY OV 14-28-66-3	1979	20.0	1254.6	644.0	14.2	22.1	ōó0.2	14.6	22.1	1184.0	26.3	22.2	fair	11.7	0.1	2	1	
29 BP PCI MARGLK 10-8-66-5	1984	15.0	1353.0	708.0	15.6	22.0	720.2	15.9	22.1	1262.4	27.3	21.6	fair	11.4	-0.5	. 1	1	
30 BP LEMING 10-10-66-6	1981	156.0	1363.0	720.1	15.9	22.1	735.0	16.3	22.2	1273.3	28.1	22.1	fair	11.8	-0.1	21	12	
31 AMOCO 10B4 MOORE 10-5-67-4	1983	165.0	1339.6	693.5	14.8	21.4	707,4	15.2	21.4	1257.8	27.1	21.6	poor	12.0	0.1	23	13	
32 ESSO AEC 85 FISHCK 7-11-67-6	1985	250.0	1344.6	700.6	15.6	22.2	717.0	16.0	22.3	1261.0	27.7	22.0	fair 	11.7	-0.3		20	
33 ESSO AEC 85 FISHCK 12-31-67-7	1985	248.0	1333.0	698.0	15.5	22.3	716.0	16,0	22.4	1257.5	27.8	22.1	good	11.7	-0.3	34	19	
34 ESSO AEC 85 FISHCK 7-34-67-8	1985	250.0	1389.6	753.0	1ó.8	22.3	769.0	17.2	22.4	1312.0	29.1	22.2	fair	11.9	-6.2	32	19	
35 ESSO AEC 85 FISHCK 11-19-68-6	1985	250.0	1339.6	715.0	15.8	22.1	729.8	16.2	22.2	1276.0	28.1	22.0	good	11.9	-0.2	34	19	
36 AECOG (NE) FISHER 8D-12-69-5	1990	196.0	915.0	664.9	14.1	21.2	680.0	14.5	21.3				fair			28	المنابعة والمنابعة والمنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة ا	Contact Rapids Fin at TD
37 ARCO HEART LAKE 11-26-69-10	1967	189.0	1435.3	831.5	18,8	22.6	847.0	19.2	22.6	1370.7	30.7	22.4	fair	11.5	-0,3	22	13	
38 AFC ET AL SCHELTENS 16-13-71-1	1985	184.0	825.0	750.4	16.3	21.8							good					Ik Point Fm at TD
39 AEC ET AL FOSTERCK 16-36-72-1	1985	199.0	770.8	657.0	14.2	21.6			and the second				โล ่ม	a and a second				Contact Rapids Fm at TD
40 AMOCO AEC KIRBY 5-21-71-4	1980	153.9	1150.9	591.0	12.8	21.6	60ni.0	13.2	21.7	1142.5	25.0	21.9	fair	11.9	N. 12 .	25	13	
41 AMOCO AEC IPIATIK 6-30-71-5	1980	285.0	1214.9	648.1	14.1	21.8	662.3	13.5	21.9	1190.3	26.1	21.9	fair	11.6	0.0	42	24	
42 AMOCO AEC IPLATIK GRIST 10-17-71-6	1980	156.0	1224.8	647.0	14.6	22.5	662.0	14,9	22.6	1189,9	26.5	22.3	fair	11.6	63	23	13	
43 AEC PHILLIPS WIAU 10-26-71-7	1980	230.0	1229.6	671.5	14.8	22.0	688.0	15.2	22.1	1208.6	26.7	22.1	tàir	11.5	0.0	33	19	
44 RAX ET AL MILLS 7-12-71-11	1978	313.9	1376.5	798.6	18.1	22.7	814.1	18.5	22.7	1330.0	30.3	22.7	fair	11.7	9.0	38		
45 AEC FOSTER CREEK 7-7-72-3	1996	169.7	837.o	600,7	13.0	21.ó	624.3	13.5	21.7				very good			26		contact Rapids Fm at TD
46 AMOCO AEC IPLATIK 11-18-72-4	1979	285.0	1187.0	0.906	13.3	21.8	627.0	13,7	21.9	1153.0	25.3	22.0	fair	11.6	0.1	45	24	
47 AMOCO KIRBY 10-22-72-6	1980	300.0	1208.8	071.5	14.7	21.8	689.0	15.1	22.0	1205.0	26.6	22.0	fair	11.4	0.1	43	25	
			•	•				-									Adva	ancea Geotechnology Ir

10-122

Table D.1: Vertical Stress for the Elk Point Group determined from bulk density data

No	Well Name	Year	Top Log	Bottom	Top Elk	Vertical Stress at	Normalized Vertical	Top Prairie	Vertical Stress at	Normalized Vertical	Ton Basal	Vertical Strong at	Namalized Vortical	D11					
		Logged	Interval (m KR)	Log	Point	Top of Elk Point	Stress Gradient at To	Evaporite Fm	Top of Prairie	Stress Gradient at Top	Red Beds Fn	Top of Basal Red	Stress Gradient at	Density	Stress Magnitude	Stress Gradient	% of Unknown Bulk Density	% of Unknown Bully Density	Comments
Ì		ļ	((m KB)	(tra KB)	Group (MPa)	of Elk Point Group (kPa/m)	(m KB)	Evaporite Fm	of Prairie Evaporite	(m KB)	Beds Fm (MPa)	Top of Basal Red	Log	Evaporite and Basal	Prairie Evaporite	Data above	Data above	
	ويوريها ويواعيه والمرابقة والمنابعة المسترية والمترافع منافعة والسيسمان والمتها ومتحافظ والمرابع والمرابع			· · · · · · · · · · · · · · · · · · ·		ر میں دوم بود وجد دارد در ان مان میں میں میں م			(M1Fa)	гш (кгалы)			Beds Fm (kPa/m)	Quality	Red Beds (MPa)	and Basal Red Beds	Prairie	Basal Red Beds	
48	AEC PHILLIPS WIAU 11-14-72-8	1980	150.0	1279.6	721.0	16.0	22.2	737.6	16.5	22.3	1253.8	27.9	22.2	fair	11 A	(KP2/m)	Evaporne Fm	۴ ۵	Management and a strategies and a strategies of a strategies for the desire of strategies of the strategies desire and a strategies and a strategies desire and a strategies and a
49	AEC PHILLIPS WIAU 10-33-72-8	1980	160.0	1290.0	745.0	16.7	22.4	760.0	17.1	22.5	1271.0	28.4	22.3	fair	113	-0.1	20	12 	an bar selana da a ser e terretar gan da mana e ser e a ser angan bar kana angan ser angan ser angan ser angan
50	PAN AM A-1 BEHAN 6-26-72-11	1969	426.7	1044.2	799.8	18.1	22.6	815.3	18.4	22.6	an a		an a	DOOT	11.2	-0.2	<u> </u>	17	
51	AEC FOSTER CREEK 6-25-73-3	1997	148.0	825.0	663.3	14.3	21.6	684.6	14.9	21.7				trent good	<u> </u>				Contact Rapids Fm at TD
52	AMOCO AEC IPIATIK KIRBY 10-14-73-5	1979	281.9	1119.7	599.9	13.0	21.7	616.8	13.5	21,8	a na sana ang kana sa k	ala di senara na kana kana kana na sana sa mangang	- 1997 1997 - 1993 1975 - 19 - 1986 - 1986 - 19 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	VCIY BOOD	a a saidille a sungsor a suns faithiseachara gu gu san a sa	nandor solatore oraș ane ano acontector d	21 	a da ana amin'ny sora ana amin'ny sora amin'ny sora amin'ny sora amin'ny sora amin'ny sora amin'ny sora amin'n	Prainie Evaporite Fm at TD, *
53	AMOCO KIRBY 9-25-73-5	1980	224.0	839.9	588.0	12.7	21.7	602.0	13.1	21.8	y gon hábi trent - stru truch soin f t	alter in the constants (autum)	Nanishi Malakana ang Kanana ang Ka		······································		45	ali halinganya harakan harakan ang	Lotsberg Fm at TD
54	AMOCO KIRBY 11-30-74-5	1977	187.5	1107.9	605.9	13.3	21.9	621.6	13.7	22.0	1070.0			IBIT	landa ah bada an ann an Alana, baas haan gala, 19	1	37	د این این میروند. مرکز میروند این میروند میروند این و میروند میروند این م	Contact Rapids Fm at TD
55	AMOCO KIRBY 10-9-74-6	1977	187.8	1094.7	583.4	12.9	22.2	602.3	134	27.3	1042.5	23.7 	24.2	poor	10.0	0.1	30	17	some bulk density data logged through cased hole
56	AMOCO KIRBY 6-24-74-7	1977	189.9	1142.4	632.2	14.0	22.1	650.1	14.4	22.0 77 7	1042.5	23.2	22.3	fair	9.8	0.0	31	18	Top of Granite Wash used for bottom of Lotsberg
57	HOME LEISMER A10-I-77-7	1975	190.8	951.0	479.5	10.6	22.2	495.3	11.0	31 2	1094.0	24.5	22.2	fair	9,9 -*.********	0.0	29	17	Top of Granite Wash used for bottom of Lotsberg
58	HOME LEISMER 3-7-77-7	1980	128.0	788.0	520,4	11.7	22.5	524 9	12.3		919.0 	20.5	22.3	fair	9.4	0.0	38	20	
59	NORCEN POR LEISMER 2-8-77-8	1982	167.0	782.0	568.0	12 7	22.5		12.1	22.0		······		poor	ر	1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	23		Contact Rapids Fm at TD
60	ALTANA HUBER CHRISTINA 10-28-77-8	1971	118.3	787.9	573.0	.11.7	11.4	520.2	15.1	22.5	nge Kilderster i Steriter fast	.) waa maa maa maa maa maa maa maa maa maa	ana amang na pagana ng si sana bina na mga paganang ng si ana	fair	an a	Energia samana Camanga majang ang ang ang ang ang ang ang	28	د	Winnipegosis Fm at TD
6]	LAKEWOOD ET AL CHARD 14-29-79-5	1991	128.0	605.0	405.0	20	22.3	539.3	12.1	22.5				fair			21		Winnipegosis Fm at TD
62	HOME WINNEFRED LAKE 19-5-80-2	1967	116 t	557.9	A70 1	10.3	21.7	420.7	9.3	21.9			·····	very good	an anna achtarachta ann ann ann an ann ann ann ann	an a shekara a kana a sa a sa a sa a sa a sa a sa a	29	- We wante to back, the mass of	Contact Rapids Fm at TD
63	HOMESTEAD CANOXY COWPAR 11-32-80-4	1976	618	364.8	303.0	10.5	21.0	505.7	11.0	21.7	P. P. Star and M. Star and Star Star Star Star Star Star Star	and a style of a graduate of the last spectra style of the second	به ان واری استان می موجود و با سال اموادی است از موافقه از مخت	poor	and Martin States and Solarian changes along a states and states a		22		density profile looks different, Contacts Rapids Fm at TD, *
64	GULF RESDELN 7-8-82-6	1981	370.0	654.0	575.7 		م به مارسی می است. محمد است است می می می می می می است	410.0	n Will Principae & Incoderate and an Alfred State States and a state state of the	an ana ang mangang ang mang sa		**************************************	٠٠٤٣٠٤ ٣٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠	fair	5-1-1-7		STATES ALL DAMAGENERAL DALLES		bulk density data does not reach Elk Pt. Group
65	HUSKY ET AL DIVIDE 10-29-82-12	1988	201.0	064.0	419.0	9.0	21.4	444.2	9.7	21.7	624.6	14.2	22.8	роог	4.6	1.1	83	59	Top of Granite Wash used for bottom of Lotsberg
66	GULF RESDELN 10.8.83.6	1001	120.0	904.0	089.0	15.0	22.6	703.0	15.9	22.7	adaratedadarin di seraji ara a yang agada	hall it strends a cample of tracing to the second	م مېرىمى بورىم دىرىم دىرىم در يې د يې د مېرىم د	very good	المنافقة الم		28		Contact Rapids Fm at TD
67	TEXCAN COTTONNOOD 1-14 82.6	1060	112.0	024.0	4/1.5	10.6	22.2	500.1	11.2	22.4		······································		fair			23		Winnipegosis Fm at TD
68	NORTHSTAR FE AL STRMONT 7 22 62 6	1909	115.0	082.8	452.8	9.6	22.3	-	and the second	ي جوي مربع مردي برار مردي من المردي و المردي مردي مردي المردي المردي المردي المردي المردي المردي الم	673.4	15.4	22.9	fair			anangan an in manadari ing ka	her drifther in extension sports and a	No Pranie Evaponie, Granite Wash used for bottom of Lotsberg
69	IACOS WD HANGST 15 14 84 11	1500	125.0	/04.0	440.0	9.8	22.0	453.0	10.0	22.0	665.4	15.1	22.7	fair	5.1	0.7	27	18	Edge of Prairie Evaporite Fm
70	PCI DCET HANGET 0.27 94 11	1990	181.0	883.0	521.6	11.7	22.4	529.0	11.9	22.4	852.0	19.2	22.5	good	7.3	0.1	33	21	Fop of Granite Wash used for bottom of Lotsberg
71	PAY NEWDY 14 24 95 4	1988	183.6	860.9	499.0	11.4	22.8	505.7	11.5	22.8	833.5	19.1	22.9	fair	7.5	0.1	35	21	For of Granite Wash used for bottom of Lotsberg
72	TEVO AN OC HODER 16 97 96 11	1988	119.0	470.0	336.0	7.4	21.9	343.0	7.5	22.0	-	The state of the s		good			· · · · ·		Contact Rapids Fm at TD*
71	CV201 ET AL LIOPET IL 10 25 10	1909	181.7	779.7	417.6	9.7	23.1	425.8	9.9	23.2	756.5	17.4	22.9	fair	7.5	-0.2	42	24	op of Granite Wash used for bottom of Lotsherp
74	SUBJCOD OL ADVID A 2020 TV OL 10	1970	96.6	875.9	526.0	12.6	23.9	534.0	12.8	24.0	The formation of the fo			fair	ا الله بين من الاربية وما اليونية الما من المراجعة الما من المراجع الما المراجع المراجع المراجع الم	henned og engenedig for om solder i de solder for de senare av en ager	and benefities anything of a subjective stational graph	9-13 Martin at a summary (1):11 and 14	٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠
74	SUNCOR CLARKE 2-SPREV-89-12	1981	86.0	717.0	397.8	1.9	22.8	406.5	9.3	22.9	August 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			fair		an a	nanna na maraonaidh an 1	*****	د ۱۹۰۵ و ۱۹۰۵ بیند از ۲۹۰۵ او میکن کار میکن کار او وارک میکن کار میکن
	AOSTRA WDWTATHABASCA 6-18-93-12	1991	179.0	599,0	314.3	7.2	22.9	323.5	7.4	22.9	576.5	13.5	23.5	very good	6.1	0.6	54		νο για τη διαστοριστική την
/0 -	CHEVRON STEEPBANK EX 8-22-94-7	1981	11.0	414.6	328.5	7.3	22.2	owners works and a state of the second	94				and out wat have a construction of the second se	fair	anda ona anakini an 1920 ka sha sharaniyoyo ya k	demonstration of Planta Control on the second strategy of the			**************************************
	CHEVRON STEEPBANK 6-23-94-7	1992	188.0	424.0				ويور أعواف فراجه والمناطرة والمنافرة					an an Anna A	very good	**************************************	•.••••••••••••••••••••••••••••••••••••	**************************************		A picky for Wett May as Plls Br Carry
78 P	HEVRON WDW STEEPBANK 13-23-94-7	1991	180.0	396.0	284.0	5.9	20.9							very good	م به می اور در می می اور اور می می می اور		/		
. 79	XCOG TENN MUSKEGR 1-3-95-7	1980	119.0	410.0	286.6	ó.t	21.2	The second second second second second	an an a Mare Million de la companya			and a second	and a second	fair	The Constructional American Construction of the State of the	an a			All Danamad Discuss Trade to Concern to a concern
80 1	USKY TENN NOVA 3-14-95-7	1981	44.0	405.0	275.0	0.0	21.9					and an	and a second	fair	17 - 17 - 19 - 19 - 19 - 19 - 19 - 19 -	an a	an mananan an	**************************************	CELERCERT TELEVISION CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR
81	USKY TENN NOVA 3-15-95-7	1981	43.0	391.0 -	260.7	5.6	21.6							fair	*				
82 1	IUSKY TENN MUSKEGR 1-20-95-7	1980	104.0	339.0	224.4	-1.8	21.4					n an chuidh ann chuireadhach ann an		fair	1999 - Barnan Brann, Brann an an gan an a	a na an			ار در مارین این از این از رومه پیروسو که <mark>بالایمیترو در در محمد معارفتان م</mark> ار مارد این از این این در مارد این ^{ارد م} ارد
83 6	USKY TENN NOVA 4-22-95-7	1981	45.0	385.0	251.7	5.7	22.5					The Contract of the Contract o	and have the end of the end of the second	fair	an a	·····			والمرابعة
84 0	DCOG TENN MUSKEGR 1-24-95-7	1980	129.0	413.0	283.0	ó.1	21.5		· · · · · · · · · · · · · · · · · · ·	ng - rankan argan, pang prosenti ti ta ini ang mili ti ti t		****		fair	an a tha an	en de Construction de la co			ensity seems way to high over Elk Pt. Gp.
_85 H	SSO 90PC OSLO 12-7-95-8	1990	143.0	311.0	183.5	3,9	21.4	·	n ann ann 1975 ann an 1975 ann an	a provenue personale en recente de manifester de	· · · · ·	** ** - **** - *** * *** *** - *** - *** - **		Gaie	and the following set of the set	·····			and the second
. 86 C	ULF FIREBAG 15-8-96-1	1976	12.1	134.0	129.6	2.9	22.2		· · · · · · · · · · · · · · · · · · ·	Contraction of the second s				DADAL			· · · · · · · · · · · · · · · · · · ·		ensity to low, not analyzed, Casing@143 m KB
87 C	ULF FIREBAG 14-11-96-1	1976	9.1	131.7	130.2	2.7	20.8	nn an air air air an an a			tter se a la la	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	алтами — то салар и _{на}	fair	an de la sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	estere determination			and a second
. 88 C	ULF FIREBAG 6-26-96-1	1976	14.0	162.5	162.4	3.5	21.5		· · · · · · · · · · · · · · · · · · ·		and the second sec	t t i t i t i t i t i t i t i t i t i t	•••• • • • • • • • • • • • • •	fair	*** ** **** ** ************************	· · · · · ·		· · · · · · · · · · · · · · · · · · ·	
89 G	ULF FIREBAG 7-29-96-1	1976	11.0	113.3	112.6	2.4	21.1	a and a set of the				·····	···· · · · · · · · · · · · · · · ·	fair	at attacation and an anna 1999 an	· · · · ·			
90 G	ULF FIREBAG 2-8-97-1	1976	6.0	125.0	109.8				n an	an a	· · · ·	· · · · · ·	· · · · · · · · · ·	1011	··· ··· ··· ·· · ···				the second se
эт G	ULF FIREBAG 2-11-97-1	1976	12.8	173.6	172.5	3.7	21.5	· · · · · · · · · · · · · · · · · · ·			··· · [.		· · · · · · ·	tau Cuir	en e			bi	Ik density data does not reach top of Elk Point Grp.
92 G	ULF FIREBAG 13-12-97-2	1976	7.3	126.0	143.3		· · · · ·		· · · · · · · · ·	de la companya de la La companya de la com La companya de la com				fair	1				e e e e e e
These y	vells have tops picked for the Prairie Evanorite For	mation but an	e outcide the	Drairia Evan	arrita Damanat			ł			l.,	<u> </u>		1801				ել	lk density data does not reach top of Elk Point Grp.

These weak have tops pieced for the frame evaporte Formation but are outside the Praine Evaporte Formation area as outlined by AGS. They have not been included in the contour plots.

Advanced Geotechnology Inc.

AGI 10-122

Figure D.1.1: Calculated vertical stress and vertical stress gradients for Husky D.H. Wildmere 6-5-48-6.

Figure D.1.2: Calculated vertical stress and vertical stress gradients for Voyager Plain 6-1-52-13.

AGI 10-122

Figure D.1.3: Calculated vertical stress and vertical stress gradients for Husky 2C Frog Lake 2-19-53-1.

Figure D.1.4: Calculated vertical stress and vertical stress gradients for Husky 8B Marwayne 8-9-53-3.

AGI 10-122

Figure D.1.5: Calculated vertical stress and vertical stress gradients for Sterling et al Dewberry 6-12-53-4.

Figure D.1.6: Calculated vertical stress and vertical stress gradients for Husky DH Ethelwyn 10D-17-54-5.

Alberta Geological Survey

March, 2001

Figure D.1.7: Calculated vertical stress and vertical stress gradients for Amoco INJ Lindbergh 14-28-55-6.

AGI 10-122

Figure D.1.8: Calculated vertical stress and vertical stress gradients for Chemcell Duvernay NaCl 16-27-55-12.

Figure D.1.9: Calculated vertical stress and vertical stress gradients for Westmin Hairy 2-13-55-13.

AGI 10-122

Figure D.1.10: Calculated vertical stress and vertical stress gradients for Cansalt L-2 NaCl Lind 16-23-56-5.

Figure D.1.11: Calculated vertical stress and vertical stress gradients for Murphy SWD 5 Lind 15-13-58-5.

Figure D.1.12: Calculated vertical stress and vertical stress gradients for Saskoil Sugden 8-1-62-11.

Figure D.1.13: Calculated vertical stress and vertical stress gradients for Renaissance Cold Lake 1-28-63-2.

Figure D.1.14: Calculated vertical stress and vertical stress gradients for Con Beacon Para Coldlk 8-26-63-3.

Figure D.1.15: Calculated vertical stress and vertical stress gradients for Cdnoxy SWD 2 Sugden 6-13-63-8.

AGI 10-122

Bulk Density (kg/m³) Vertical Stress (MPa) Local Vertical Stress Gradient (kPa/m) 40 19 20 21 1500 2000 2500 3000 0 10 20 22 23 30 24 0 للاستلاح المسارية والمحادية المراجع المتارية والمتعاد den scher dam dami Assumed bulk density of 2150 kg/m³ to surface 200 Vertical stress at the top of 400 Prairie Evaporite = 14.8 MPa (22.3 kPa/m normalized gradient) Top of Measured Depth (m KB) Prairie Evaporite 600 669 m KB Vertical stress at the top of Basal Red Beds = 24.0 MPa 800 (22.0 kPa/m normalized gradient) Top of Basal Red Beds 1000 1093 m KB 1200 1400

Figure D.1.16: Calculated vertical stress and vertical stress gradients for Esso Marie OV 15-20-64-2.

AGI 10-122

ί.

Figure D.1.17: Calculated vertical stress and vertical stress gradients for Esso 79 SWD 7-18-64-3.

Figure D.1.18: Calculated vertical stress and vertical stress gradients for Esso 85 SWS Ethelik 1-19-64-3.

AGI 10-122

2

AGI 10-122

Figure D.1.19: Calculated vertical stress and vertical stress gradients for Esso 83 SWD Ethelik 11-22-64-3.

Figure D.1.20: Calculated vertical stress and vertical stress gradients for Esso 81 SWD Ethellk 3-29-64-3.

AGI 10-122

Alberta Geological Survey March, 2001

Figure D.1.21: Calculated vertical stress and vertical stress gradients for Esso 83 INJ Ethellk 8-33-64-3.

Figure D.1.22: Calculated vertical stress and vertical stress gradients for Mobil Garth 5-6-64-6.

Alberta Geological Survey AGI 10-122 March, 2001 Local Vertical Stess Gradient (kPa/m) Bulk Density (kg/m³) Vertical Stress (MPa) Formation Tops 1500 0 10 20 40 19 2000 2500 3000 30 20 21 22 23 24 0 أربيه بالمراجع والمتعط وسطر Assumed bulk density of 100 2150 kg/m³ to surface 200 300 Vertical stress at the top of 400 Prairie Evaporite = 17.0 MPa (22.4 kPa/m normalized gradient) 500 ed Depth (m KB) 600 Top of Prairie Evaporite 758 m KB 700 Measur 800 Vertical stress at the top of Basal Red Beds = 28.3 MPa 900 (22.1 kPa/m normalized gradient) 1000 1100 Top of 1200 Basal Red Beds 1280 m KB

Figure D.1.23: Calculated vertical stress and vertical stress gradients for Mobil Garth 12-6-64-6.

1300 -

1400

AGI 10-122

Figure D.1.24: Calculated vertical stress and vertical stress gradients for ESSO 83 SWD Ethellk 2-3-65-3.

Figure D.1.25: Calculated vertical stress and vertical stress gradients for ESSO SWD Ethellk 3-4-65-3.

Figure D.1.26: Calculated vertical stress and vertical stress gradients for ESSO 81 Ethellk OV 9-20-65-3.

Figure D.1.27: Calculated vertical stress and vertical stress gradients for ESSO Medley OV 6-8-66-2.

Bulk Density (kg/m³) Vertical Stress (MPa) Local Vertical Stress Gradient (kPa/m) 1500 2000 2500 3000 0 10 20 30 40 19 20 21 22 23 24 0 4 العارية لإستا ستلاد اللا Loss horse due An advertised of the strength of the استار با Assumed bulk density of 100 2150 kg/m³ to surface 200 300 400 Vertical stress at the top of Prairie Evaporite = 14.6 MPa 500 (22.1 kPa/m normalized gradient) d Depth (m) Top of Prairie Evaporite 600 660 m KB Measure 700 Vertical stress at the top of Basal Red Beds = 26.3 MPa 800 (22.2 kPa/m normalized gradient) 900 1000 Top of 1100 Basal Red Beds 1184 m KB 1200 1 1300

Figure D.1.28: Calculated vertical stress and vertical stress gradients for ESSO Medley OV 14-28-66-3.

AGI 10-122

Figure D.1.29: Calculated vertical stress and vertical stress gradients for BP PCI Marglk 10-8-66-5.

Figure D.1.30: Calculated vertical stress and vertical stress gradients for BP Leming 10-10-66-6.

Figure D.1.31: Calculated vertical stress and vertical stress gradients for Amoco 10B4 Moore 10-5-67-4.

AGI 10-122

urta Canlant

Fugure D.1.32: Calculated vertical stress and vertical stress gradients for Esso AEC 85 Fishck 7-11-67-6.

Figure D.1.33: Calculated vertical stress and vertical stress gradients for Esso AEC 85 Fishck 12-31-67-7.

Figure D.1.34: Calculated vertical stress and vertical stress gradients for Esso AEC 85 Fishck 7-34-67-8.

Figure D.1.35: Calculated vertical stress and vertical stress gradients for ESSO AEC 85 FISHCK 11-19-68-6.

AGI 10-122

Figure D.1.36: Calculated vertical stress and vertical stress gradients for AECOG (NE) Fisher 8D-12-69-5.

Figure D.1.37: Calculated vertical stress and vertical stress gradients for Arco Heart Lake 11-26-69-10.

AGI 10-122

Figure D.1.38: Calculated vertical stress and vertical stress gradients for AEC et al Scheltens 16-13-71-1.

Figure D.1.39: Calculated vertical stress and vertical stress gradients for AEC Foster Creek 16-36-72-1.

1200

Local Vertical Stess Gradient (kPa/m) Bulk Density (kg/m³) Vertical Stress (MPa) Formation Tops 21 19 20 22 23 24 1500 0 5 10 15 20 25 30 2000 2500 3000 0 Assumed bulk density of 2150 kg/m³ to surface 100 200 300 Vertical stress at the top of Prairie Evaporite = 13.2 MPa (21.7 kPa/m normalized gradient) 400 bepth (m KB) Top of 500 Prairie Evaporite 606 m KB 600 Measured Vertical stress at the top of 700 Basal Red Beds = 25.0 MPa (21.9 kPa/m normalized gradient) 800 900 1000 Top of Basal Red Beds 1143 m KB 1100 .

Figure D.1.40: Calculated vertical stress and vertical stress gradients for Amoco AEC Kirby 5-21-71-4.

AGI 10-122

Figure D.1.41: Calculated vertical stress and vertical stress gradients for Amoco AEC Ipiatik 6-30-71-5.

AGI 10-122

Figure D.1.42: Calculated vertical stress and vertical stress gradients for Amoco AEC Ipiatik Grist 10-17-71-6.

. Secure

AGI 10-122

Figure D.1.43: Calculated vertical stress and vertical stress gradients for AEC Phillips Wiau 10-26-71-7.

Bulk Density (kg/m³) Vertical Stress (MPa) Local Vertical Stress Gradient (kPa/m) 1500 3000 0 10 ⁴⁰ 19 2000 2500 20 30 20 21 22 23 24 0 Assumed bulk density of 2150 kg/m³ to surface 200 400 sured Depth (m KB) 600 Vertical stress at the top of Prairie Evaporite = 18.5 MPa Top of (22.7 kPa/m normalized gradient) Prairie Evaporite 814 m KB 800 • ۰. Me 1000 Vertical stress at the top of Basal Red Beds = 30.3 MPa (22.7 kPa/m normalized gradient) 1200 Top of Basal Red Beds 1330 m KB ١. 1400

Figure D.1.44: Calculated vertical stress and vertical stress gradients for Rax et al Mills 7-12-71-11.

Figure D.1.45: Calculated vertical stress and vertical stress gradients for AEC Foster Creek 7-7-72-3.

Figure D.1.46: Calculated vertical stress and vertical stress gradients for Amoco AEC Ipiatik 11-18-72-4.

Figure D.1.47: Calculated vertical stress and vertical stress gradients for AMOCO Kirby 10-22-72-6.

Figure D.1.48: Calculated vertical stress and vertical stress gradients for AEC Phillips Wiau 11-14-72-8.

AGI 10-122

Second

Figure D.1.49: Calculated vertical stress and vertical stress gradients for AEC Phillips Wiau 10-33-72-8.

Figure D.1.50: Calculated vertical stress and vertical stress gradients for Pam Am A-1 Behan 6-26-72-11

Figure D.1.51: Calculated vertical stress and vertical stress gradients for AEC Foster Creek 6-25-73-3.

Figure D.1.52: Calculated vertical stress and vertical stress gradients for Amoco AEC Ipiatik Kirby 10-14-73-5.

Figure D.1.53: Calculated vertical stress and vertical stress gradients for Amoco Kirby 9-25-73-5.

Figure D.1.54: Calculated vertical stress and vertical stress gradients for Amoco Kirby 11-30-74-5.

AGI 10-122

"Manager"

Figure D.1.55: Calculated vertical stress and vertical stress gradients for Amoco Kirby 10-9-74-6.

Figure D.1.56: Calculated vertical stress and vertical stress gradients for Amoco Kirby 6-24-74-7.

AGI 10-122

Figure D.1.57: Calculated vertical stress and vertical stress gradients for Home Leismer A10-1-77-7.

Figure D.1.58: Calculated vertical stress and vertical stress gradients for Home Leismer 3-7-77-7.

Figure D.1.59: Calculated vertical stress and vertical stress gradients for Norcen Por Leismer 2-8-77-8.

AGI 10-122

÷.,

Figure D.1.60: Calculated vertical stress and vertical stress gradients for Altana Huber Christina 10-28-77-8.

Figure D.1.61: Calculated vertical stress and vertical stress gradients for Lakewood et al Chard 14-29-79-5.

Figure D.1.62: Calculated vertical stress and vertical stress gradients for Home WinneFred Lake 10-5-80-2.

Figure D.1.63: Calculated vertical stress and vertical stress gradients for Homestead Canoxy Cowpar 11-32-80-4.

Bulk Density (kg/m³)

Local Vertical Stess Gradient (kPa/m) Vertical Stress (MPa) 19 20 21 22 20 23 24 30 40

Figure D.1.64: Calculated vertical stress and vertical stress gradients for Gulf Resdeln 7-8-82-6.

AGI 10-122

Figure D.1.65: Calculated vertical stress and vertical stress gradients for Husky et al Divide 10-29-82-12.

Figure D.1.66: Calculated vertical stress and vertical stress gradients for Gulf Resdeln 10-8-83-6.

Figure D.1.67: Calculated vertical stress and vertical stress gradients for Texcan Cottonwood 1-14-83-6.

Figure D.1.68: Calculated vertical stress and vertical stress gradients for Northstar et al Surmont 7-32-83-6.

AGI 10-122

100 august 1

Figure D.1.69: Calculated vertical stress and vertical stress gradients for JACOS WD HANGST 15-14-84-11.

Figure D.1.70: Calculated vertical stress and vertical stress gradients for PCI PCEJ Hangst 9-27-84-11.

Figure D.1.71: Calculated vertical stress and vertical stress gradients for Rax Newby 14-24-85-6.

Figure D.1.72: Calculated vertical stress and vertical stress gradients for Texcan CS Horse 16-27-85-11.

Figure D.1.73: Calculated vertical stress and vertical stress gradients for Cigol et al Horse 11-10-85-13.

Figure D.1.74: Calculated vertical stress and vertical stress gradients for Suncor Clarke 2-32prev-89-12.

500

600

Top of Basal Red Beds 577 m KB

Bulk Density (kg/m³) Vertical Stress (MPa) Local Vertical Stress gradient (kPa/m) Formation Tops 1500 2000 2500 3000 6 8 10 12 14 16 19 20 21 22 23 0 2 4 0 Assumed bulk density of 2150 kg/m³ to surface 100 Vertical stress at the top Prairie Evaporite = 7.4 MPa (22.9 kPa/m normalized gradient) 200 Depth (m KB) Top of Prairie Evaporite 300 324 m KB Measurèd 400 Vertical stress at the top of Basal Red Beds = 13.5 MPa (23.5 kPa/m normalized

Figure D.1.75: Calculated vertical stress and vertical stress gradients for AOSTRA WDW1 Athasbasca 6-18-93-12.

AGI 10-122

24

Figure D.1.76: Calculated vertical stress and vertical stress gradients for Chevron Steepbank EX 8-22-94-7.

Figure D.1.77: Calculated vertical stress and vertical stress gradients for Chevron Steepbank 6-23-94-7.

Figure D.1.78: Calculated vertical stress and vertical stress gradients for Chevron Steepbank 13-23-94-7.

AGI 10-122

last extent

Figure D.1.79: Calculated vertical stress and vertical stress gradients for CDCOG Tenn Muskegr 1-3-95-7.

Figure D.1.80: Calculated vertical stress and vertical stress gradients for Husky Tenn Nova 3-14-95-7.

Figure D.1.81: Calculated vertical stress and vertical stress gradients for Husky Tenn Nova 3-15-95-7.

AGI 10-122

" Starter

Figure D.1.82: Calculated vertical stress and vertical stress gradients for Husky Tenn Muskegr 1-20-95-7.

Figure D.1.83: Calculated vertical stress and vertical stress gradients for Husky Tenn Nova 4-22-95-7.

Figure D.1.85: Calculated vertical stress and vertical stress gradients for Esso 90PC Oslo 12-7-95-8.

AGI 10-122

1----

Figure D.1.86: Calculated vertical stress and vertical stress gradients for Gulf Firebag 15-8-96-1.

Figure D.1.87: Calculated vertical stress and vertical stress gradients for Gulf Firebag 14-11-96-1.

Figure D.1.88: Calculated vertical stress and vertical stress gradients for Gulf Firebag 6-26-96-1.

Figure D.1.89: Calculated vertical stress and vertical stress gradients for Gulf Firebag 7-29-96-1.

Figure D.1.90: Calculated vertical stress and vertical stress gradients for Gulf Firebag 2-8-97-1.

Figure D.1.91: Calculated vertical stress and vertical stress gradients for Gulf Firebag 2-11-97-1.

Figure D.1.92: Calculated vertical stress and vertical stress gradients for Gulf Firebag 13-12-97-2.

Table D.2: Detailed summary of breakout data in the Beaverhill Lake and Elk Point Groups

top: top of interval (m log depth)

- bottom: bottom of interval (m log depth)
- thickness: thickness of interval (m)
- P1AZ: azimuth of C1 caliper (degrees)
- PIAZc: azimuth of C1 caliper corrected to true north

Cmax Az wrt true North: Breakout azimuth corrected to true north

- C1: C1-C3 caliper measurement (mm)
- C2: C2-C4 caliper measurement (mm)
- % enlarge % difference between C1 and C2 readings
- % gauge % difference between smaller caliper reading and hole gauge
- quality: quality of breakout
- formation formation that breakout occurs within

Well Name: Voyager et al Bruce 6-14-48-14 (100/06-14-048-14W4/00)

Borehole Diameter:

159 mm

Correction to True North: 20 (1982, Lat: 53, Long 112 = correction 20 deg E)

top	bottom	thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% enlarge	% gauge	quality	formation
(m KB)	(m KB)	(m)	(deg)	(deg)	(deg)	(mm)	(mm)				
1475	1476	1	230	230	250	181.25	161	12.58%	1.26%	v good	Watt Mtn
1474	1475	1	230	230	250	173	156	10.90%	-1.89%	v good	Watt Mtn
1473	1474	1	225	225	245	171	153	11.76%	-3.77%	good	Watt Mtn
1472	1473	1	240	240	260	175	156	12.18%	-1.89%	good	Watt Mtn
1471	1472	1	235	235	255	173	159	8.81%	0.00%	good	Watt Mtn
1470	1471	1	235	235	255	169	153	10.46%	-3.77%	good	Watt Mtn
1469	1470	1	232	232	252	165	153	7.84%	-3.77%	good	Watt Mtn
1468	1469	1	230	230	250	165	153	7.84%	-3.77%	good	Watt Mtn
1467	1468	1	235	235	255	161	153	5.23%	-3.77%	good	Watt Mtn
1466	1467	1	238	238	258	160	153	4.58%	-3.77%	good	Watt Mtn
1465	1466	1	238	238	258	160	153	4.58%	-3.77%	good	Watt Mtn
1464	1465	1	238	238	258	160	153	4.58%	-3.77%	good	Watt Mtn
1463	1464	1	240	240	260	159	153	3.92%	-3.77%	good	Watt Mtn
1462	1463	1	240	240	260	159	153	3.92%	-3.77%	good	Watt Mtn
1461	1462	1	240	240	260	158	153	3.27%	-3.77%	fair	Watt Mtn
1460	1461	1	240	240	260	157	153	2.61%	-3.77%	fair	Watt Mtn
1459	1460	1	242	242	262	156	153	1.96%	-3.77%	fair	Watt Mtn

AGI 10-122

Advanced Geotechnology Inc.

Table D.2: Detailed summary of breakout data in the Beaverhill Lake and Elk Point Groups

Well Name: AEC D1 Fisher 1-21-70-4 (104/01-21-070-04W4/00)

311 mm

0 (corrected 18 deg E on log)

Borehole Diameter:

Correction to True North:

top	bottom	thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% enlarge	% gauge	quality	formation
(m KB)	(m KB)	(m)	(deg)	(deg)	(deg)	(mm)	(mm)	÷	0 0		
510	511	1	145	145	145	320	311	2.89%	0.00%	poor	BH LK
511	512	1	145	145	145	320	311	2.89%	0.00%	poor	BHLK
512	513	1	145	145	145	315	311	1.29%	0.00%	noor	BHIK
513	514	1	145	145	145	320	311	2.89%	0.00%	poor	BHIK
514	515	1	145	145	145	320	311	2.89%	0.00%	noor	BHIK
515	516]	145	145	145	320	311	2.89%	0.00%	poor	BH LK

Well Name: AEC A8 Fisher 8-21-70-4 (100/08-21-070-04W4/00)

Borehole Diameter:200 mmCorrection to True North:0 (corrected 18.3 deg E on log)

Comments: Dipmeter logged 09-Oct-96 while other logs ran 12-Feb-97

Comments: No PIAZ trace (tadpoles within breakout zone)

top	bottom	thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% enlarge	% gauge	quality	formation
(m KB)	(m KB)	(m)	(deg)	(đeg)	(deg)	(mm)	(mm)	0		j	
520	521	1	285	285	285	209	200	4.50%	0.00%	fair	BHLK
521	522	1	285	285	285	209	198	5.56%	-1.00%	fair	BHLK
522	523	1	285	285	285	213	198	7.58%	-1.00%	fair	BHIK
523	524	1	285	285	285	217	198	9.60%	-1.00%	fair	BHLK
524	525	1	285	285	285	211	198	6.57%	-1.00%	fair	BHLK
525	526	1	280	280	280	209	196	6.63%	-2.00%	fair	BHLK
526	527	1	280	280	280	209	196	6.63%	-2.00%	fair	BHLK
527	528	1	280	280	280	209	. 196	6.63%	-2.00%	fair	BHLK
528	529	1	280	280	280	208	196	6.12%	-2.00%	fair	BHLK
529	530	1	280	280	280	209	196	6.63%	-2.00%	fair	BHLK
530	531	1	280	280	280	211	200	5.50%	0.00%	fair	BHLK
531	532	1	280	280	280	208	196	6.12%	-2.00%	fair	BHLK
532	533	1	280	280	280	206	196	5.10%	-2.00%	fair	BHLK
533	534	1	275	275	275	203	200	1.50%	0.00%	fair	BHLK
534	535	1	275	275	275	200	200	0.00%	0.00%	fair	BHLK

Advanced Geotechnology Inc.

Table D.2: Detailed summary of breakout data in the Beaverhill Lake and Elk Point Groups

Well Name: AEC B3 Fisher 3-22-70-4 (100/03-22-070-04W4/00)

Borehole Diameter:

Correction to True North: 0 (corrected 18.2 deg E on log)

159 mm

Comments:

S. Same

top	bottom	thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% enlarge	% gauge	quality	formation
(m KB)	(m KB)	(m)	(deg)	(deg)	(deg)	(mm)	(mm)	Ŭ			
496	497	1	115	115	115	167	162	3.09%	1.89%	poor	BHLK
497	498	1	115	115	115	167	159	5.03%	0.00%	noor	BHIK
498	499	1	115	115	115	171	162	5.56%	1.89%	poor	BHIK
499	500	1	115	115	- 115	173	159	8.81%	0.00%	poor	BHIK
500	501	1	115	115	115	173	159	8.81%	0.00%	poor	BHIK
501	502	1	115	115	115	173	159	8.81%	0.00%	poor	BHLK

Well Name: AEC Fisher 6-33-70-4 (100/06-33-070-04W4/00)

Borehole Diameter: Correction to True North;

159 mm 0 (corrected 18.2 deg E on log)

Comments:

top	bottom	thickness	PIAZ.	CMAX A7	CMAY An must true N	C1	<u></u>	9/	0/		
405	100			Chian Ak	CIMAA AZ WIT IT UE IN		C2	% enlarge	% gauge	quality	formation
495	496	1	140	140	140	167	159	5.03%	0.00%	fair	BHLK
496	497	1	140	140	140	167	159	5.03%	0.00%	fair	BHLK
497	498	1	140	140	140	171	159	7.55%	0.00%	fair	BHIK
498	499	1	140	140	140	167	159	5.03%	0.00%	fair	BHIK
499	500	1	140	140	140	165	159	3 77%	0.00%	fair	BUIK
500	501	1	140	140	140	165	159	3.77%	0.00%	fair	BHIK

Alberta Geological Survey August, 2001

top:

top of interval (m log depth)

Table D.2: Detailed summary of breakout data in the Beaverhill Lake and Elk Point Groups

SD of corrected CMAX Az data from all wells: 53°

bottom:	bottom of inf	terval (m log	depth)								
thickness:	thickness of	interval (m)									
P1AZ:	azimuth of C	1 caliper (de	grees)								
P1AZc:	azimuth of C	1 caliper cor	rected to t	rue north							
Cmax Az wrt	true North:	Breakout azi	imuth corr	ected to tru	e north						
C1:	C1-C3 calipe	er measureme	ent (mm)							54	
C2:	C2-C4 calipo	er measureme	ent (mm)								
% enlarge	% difference	between C1	and C2 re	adings							
% gauge	% difference	between sma	aller calipe	er reading a	nd hole gauge						
quality:	quality of br	eakout									
formation	formation th	at breakout o	ccurs with	in							
Well Name:	Vovager et :	al Bruce 6-1	4-48-14 (1	00/06-14-0)48-14W4/00)						
Borehole Dia	meter:	159	mm		,						
Correction to	True North:	20	(1982, La	t: 53, Long	112 = correction 20 de	egE)					2
top	bottom	thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C					formation
(m KB)	(m KB)	(m)	(deg)	(deg)	(deg)	(m.					
1475	1476	1	230	230	250	181.	Orio	inal dafaat	on this no	(n)	Watt Mtn
1474	1475	1	230	230	250	17:	(Ong	inal del ect	on uns pa	ge)	Watt Mtn
1473	1474	1	225	225	245	171					Vatt Mtn
1472	1473	1	240	240	260	175					Vatt Mtn
1471	1472	1	235	235	255	173					⁷ att Mtn
1470	1471	1	235	235	255	169					att Mtn
1469	1470	1	232	232	252	165					att Mtn
1468	1469	1	230	230	250	165					Watt Mtn
1467	1468	1	235	235	255	161	e		-3.17%	good	Watt Mtn
1466	1467	1	238	238	258	160	1	4.58%	-3.77%	good	Watt Mtn
1465	1466	1	238	238	258	160	153	4.58%	-3.77%	good	Watt Mtn
1464	1465	1	238	238	258	160	153	4.58%	-3.77%	good	Watt Mtn
1463	1464	1	240	240	260	159	153	3.92%	-3.77%	good	Watt Mtn
1462	1463	1	240	240	260	159	153	3.92%	-3.77%	good	Watt Mtn
1461	1462	1	240	240	260	158	153	3.27%	-3.77%	fair	Watt Mtn
1460	1461	1	240	240	260	157	153	2.61%	-3.77%	fair	Watt Mtn
1459	1460	1	242	242	262	156	153	1.96%	-3.77%	fair	Watt Mtn
					Carry and a second seco						

SD of corrected CMAX Az data:

Advanced Geotechnology Inc.

Alberta Geological Survey August, 2001

Table D.2: Detailed summary of breakout data in the Beaverhill Lake and Elk Point Groups Well Name: AEC D1 Fisher 1-21-70-4 (104/01-21-070-04W4/00)

Borehole Diameter:

Correction to True North:

311 mm 0 (corrected 18 deg E on log)

top	bottom	thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% enlarge	% gauge	quality	formation
<u>(m KB)</u>	<u>(m KB)</u>	(m)	(deg)	(deg)	(deg)	(mm)	(mm)				
510	511	1	145	145	145	320	311	2.89%	0.00%	poor	BHLK
511	512	1	145	145	145	320	311	2.89%	0.00%	poor	BH LK
512	513	1	145	145	145	315	311	1.29%	0.00%	poor	BH LK
513	514	1	145	145	145	320	311	2.89%	0.00%	poor	BH LK
514	515	1	145	145	145	320	311	2.89%	0.00%	poor	BH LK
515	516	1	145	145	145	320	311	2.89%	0.00%	poor	BHLK
	S	D of correct	ed CMAX	X Az data:	0						

SD of corrected CMAX Az data:

Well Name: AEC A8 Fisher 8-21-70-4 (100/08-21-070-04W4/00) 200 mm

Borehole Diameter:

Correction to True North: 0 (corrected 18.3 deg E on log)

Comments: Dipmeter logged 09-Oct-96 while other logs ran 12-Feb-97

Comments: No P1AZ trace (tadpoles within breakout zone)

top	bottom	thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% enlarge	% gauge	quality	formation
(m KB)	(m KB)	(m)	(deg)	(deg)	(deg)	(mm)	(mm)		- •		
520	521	1	285	285	285	209	200	4.50%	0.00%	fair	BH LK
521	522	1	285	285	285	209	198	5.56%	-1.00%	fair	BH LK
522	523	1	285	285	285	213	198	7.58%	-1.00%	fair	BHLK
523	524	1	285	285	285	217	198	9.60%	-1.00%	fair	BH LK
524	525	1	285	285	285	211	198	6.57%	-1.00%	fair	BH LK
525	526	1	280	280	280	209	196	6.63%	-2.00%	fair	BHLK
526	527	1	280	280	280	209	196	6.63%	-2.00%	fair	BHLK
527	528	1	280	280	280	209	196	6.63%	-2.00%	fair	BH LK
528	529	1	280	280	280	208	196	6.12%	-2.00%	fair	BH LK
529	530	1	280	280	280	209	196	6.63%	-2.00%	fair	BH LK
530	531	1	280	280	280	211	200	5.50%	0.00%	fair	BHLK
531	532	1	280	280	280	208	196	6.12%	-2.00%	fair	BH LK
532	533	1	280	280	280	206	196	5.10%	-2.00%	fair	BH LK
533	534	1	275	275	275	203	200	1.50%	0.00%	fair	BH LK
534	535	1	275	275	275	200	200	0.00%	0.00%	fair	BH LK
	S	D of correct	ed CMAX	Az data:	7						

SD of corrected CMAX Az data:

AGI 10-122

Advanced Geotechnology Inc.

Alberta Geological Survey August, 2001

Table D.2: Detailed summary of breakout data in the Beaverhill Lake and Elk Point Groups Well Name: AEC B3 Fisher 3-22-70-4 (100/03-22-070-04W4/00)

Borehole Diameter: 159 mm

Correction to True North: 0 (corrected 18.2 deg E on log)

Comments:

top (m KB)	bottom (m KB)	thickness (m)	P1AZ (deg)	CMAX Az (deg)	CMAX Az wrt true N (đeg)	C1 (mm)	C2 (mm)	% enlarge	% gauge	quality	formation
496	497	1	115	115	115	167	162	3.09%	1.89%	poor	BHLK
497	498	1	115	115	115	167	159	5.03%	0.00%	poor	BHLK
498	499	1	115	115	115	171	162	5.56%	1.89%	poor	BHLK
499	500	1	115	115	115	173	159	8.81%	0.00%	poor	BHLK
500	501	1	115	115	115	173	159	8.81%	0.00%	poor	BHLK
501	502	1	115	115	115	173	159	8.81%	0.00%	poor	BH LK
	S	D of correct	ed CMAX	Az data:	0			·····		i i i	

SD of corrected CMAX Az data:

159 mm

Well Name: AEC Fisher 6-33-70-4 (100/06-33-070-04W4/00)

Borehole Diameter: Correction to True North:

0 (corrected 18.2 deg E on log)

Comments:

top	bottom	thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% enlarge	% gauge	quality	formation
495	496	1	140	140	140	167	159	5.03%	0.00%	fair	BHLK
496	497	1	140	140	140	167	159	5.03%	0.00%	fair	BHLK
497	498	1	140	140	140	171	159	7.55%	0.00%	fair	BHLK
498	499	1	140	140	140	167	159	5.03%	0.00%	fair	BHLK
499	500	1	140	140	140	165	159	3.77%	0.00%	fair	BHLK
500	501	1	140	140	140	165	159	3.77%	0.00%	fair	BHLK
	S	D of correct	ed CMA	Az data:	0						

SU of corrected CMAX Az data:

Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 50 Maximum Percentage 26 Percent Mean Percentage 14.3 Percent Standard Deviation ... 9.04 Percent Vector Mean 282.55 Degrees Confidence Interval ... 14.96 Degrees R-mag 0.65

Figure D.2.1: Combined roseplot of borehole breakout data for all wells.

Figure D.2.2: Roseplot of borehole breakout data for Voyager et al Bruce 6-14-048-14W4.

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 6 Maximum Percentage 100 Percent Mean Percentage 100 Percent Standard Deviation ... 0 Percent Vector Mean 325 Degrees Confidence Interval .. 6.47 Degrees R-mag 1

Figure D.2.3: Roseplot of borehole breakout data for AEC D1 Fisher 1-21-70-4W4.

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 15 Maximum Percentage 86.7 Percent Mean Percentage 50 Percent Standard Deviation ... 42.34 Percent Vector Mean 281 Degrees Confidence Interval .. 4.1 Degrees R-mag 0.99

Figure D.2.4: Roseplot of borehole breakout data for AEC A8 Fisher 8-21-70-4W4.

Figure D.2.5: Roseplot of borehole breakout data for AEC B3 Fisher 3-22-70-4W4.

Mean Percentage 100 Percent Standard Deviation ... 0 Percent

Vector Mean 320 Degrees

Confidence Interval .. 6.47 Degrees

R-mag 1

Figure D.2.6: Roseplot of borehole breakout data for AEC Fisher 6-33-70-4W4.

March, 2001

No,	UWI	Well Name	Year Logged	Top Log	Bottom	Dipmeter log	Dipmeter	Missing data	Apparent	Breakout	Notes
			*3	(m KB)	Interval	microfiche	obtained from	breakout	by pipe wear in	present in Beaverhill	
					(m KB)	obtained from AEUB	MJ	analysis	deviated hole	Lake or Elk Point Groups	
1	00/07-14-057-06W4/0	TEXEX ET AL ELK POINT 7-14-57-6	1956	546	1585					- Sint Groups	
2	00/10-13-060-04W4/0	TEXEX ET AL CHAR LAKE 10-13-60-4	1956	597	1433					·	
3	02/10-30-048-10W4/0	NUL KINSELLA 10-30-48-10	1978	579	937	····				·····	
4	00/06-14-048-14W4/0	VOYAGER et al BRUCE 6-14-48-14	1982	891	2087	Y				Y	good breakout over Elk Point Group
5	00/14-09-049-08\V4/0	PCP MANNVILLE SOUTH 14-9-49-8	1983	520	813				······································		
6	00/16-31-050-01W4/0	CNRL B LLOYD 16-31-50-1	1981	534	705						
7	00/14-22-050-11W4/0	SIGNALTA ET AL BIRCH 14-22-50-11	1971	506	718	Y		Y			tadpoles but no dipmeter caliper
8	00/11-34-051-04W4/0	CDNOXY P9 MORGAN EX 11-34-51-4	1980	115	622						
9	00/06-32-055-06W4/0	AMOCO LINDBERGH 6-32-55-6	1996	450	681						
10	AR/10-11-056-01W4/0	AMOCO AQ JOHN LAKE EX 10-11-56-1	1983	400	634	Y					no breakout
11	AB/15-11-056-01W4/0	AMOCO AB JOHN LAKE EX 15-11-56-1	1983	333	630	Y		Y			can't see calipers due to other curves on microfiche
12	00/15-26-056-02W4/0	TEXACO FROG LAKE 15-26-56-2	1983	390	603						
13	00/13-35-056-02W4/0	ESSO FROG LAKE 13-35-56-2	1984	400	621						
14	00/14-06-057-01W4/0	CNRL JOHN LAKE 14-6-57-1	1984	450	667	Y		Y			tadpoles, caliper but no azimuth
15	00/14-18-057-01W4/0	TEXACO FROG LAKE 14-18-57-1	1984	390	641						
16	00/13-01-057-02W4/0	TEXACO FROG LAKE 13-1-57-2	1984	420	640						
17	00/15-12-057-02W4/0	CNRL JOHN LAKE 15-12-57-2	1984	390	620						
18	00/07-15-059-02W4/0	CNRL CHANDLER 7-15-59-2	1989	470	589						
19	00/07-16-059-02\\4/0	SUNCOR ET AL CHANDLER 7-16-59-2	1983	25	584		Y				no breakout
20	00/07-27-059-02W4/0	TRANSWEST CHANDLER 7-27-59-2	1983	450	554						
21	00/06-20-062-04\V4/0	GENESIS ET AL FTKENT 6-20-62-4	1985	275	525						
22	00/11-24-062-04W4/0	GENESIS ET AL FTKENT 11-24-62-4	1985	268	504						
23	00/09-13-062-08W4/0	AMOCO ET AL SUGDEN 9-13-62-8	1994	143	499						
24	00/01-13-063-08W4/0	CDNOXY ET AL SUGDEN 1-13-63-8	1985	251	500	······································					
25	00/11-14-063-08W4/0	NUMAC 11A WOLF LAKE 11-14-63-8	1997	300	513		Y				no breakout
26	02/16-06-064-06W4/0	MOBIL GARTH 16-6-64-6	1981	300	525	Y		Y			tadpotes, catiper no azimuth, Dresser Atlas log
27	00/03-07-064-06W4/0	MOBIL GARTH 3-7-64-6	1990	290	513	Y		Y			tadpoles, caliper no azimuth, Dresser Atlas log

Table D.3: Summary of breakout analysis data in the original study area for the Elk Point and Beaverhill Lake Grou	oups
--	------

March, 2001

No,	υwi	Well Name	Year Logged	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Dipmeter log recorded in microfiche obtained from AEUB	Dipmeter microfiche obtained from MJ	Missing data necessary for breakout analysis	Apparent breakout caused by pipe wear in deviated hole	Breakout present in Beaverhill Lake or Elk Point Groups	Notes
28	AA/14-20-064-06W4/0	MOBIL GARTH OV 14-20-64-6	1980	335	547	Y		Y			can't see calipers due to other curves on microfiche
29	AAV02-21-064-06W4/0	MOBIL GARTH EX 2-21-64-6	1983	315	504	Y		Y			tadpoles, caliper no azimuth, Dresser Atlas log
30	AA/03-27-064-06W4/0	MOBIL GARTH EX 3-27-64-6	1982	300	521	Y		Y			tadpoles, caliper no azimuth, Dresser Atlas log
31	AA/09-27-064-06W4/0	MOBIL GARTH EX 9-27-64-6	1981	300	530	Y		Y			tadpoles, caliper no azimuth, Dresser Atlas log
32	AA/09-28-064-06W4/0	MOBIL GARTH OV 9-28-64-6	1980	160	520	Y		Y			can't see calipers due to other curves on microfiche
33	00/16-01-064-07\V4/0	MOBIL SUGDEN 16-1-64-7	1980	280	519	Y		Y			can't see calipers due to other curves on microfiche
34	02/07-13-065-04\V4/0	ESSO 83 B3-20 COLDLK 7-13-65-4	1984	20	195						
35	00/06-27-065-05W4/0	BP LEMING 6-27-65-5	1981	159	561						
36	00/07-31-065-05W4/0	BP LEMING 7-31-65-5	1981	153	551						
37	00/11-01-065-06VV4/0	BP MARGUERITE LAKE 11-1-65-6	1981	150	550						
38	00/07-08-065-06VV4/0	BP MARGUERITE LAKE 7-8-65-6	1981	154	561						
39	11/12-08-066-05W4/0	BP PCI 21 MARGLK 12-8-66-5	1981	150	528	Y					no breakout
40	14/12-08-066-05W4/0	BP PCI 24 MARGLK 12-8-66-5	1981	155	526	Y					no breakout (only 1 m Elk Point Group on log)
41	17/12-08-066-05W4/0	BP PCI 13-81 OB MARG LK 12-8-66-5	1981	156	522	Y					no breakout
42	00/06-13-066-06W4/0	BP MARGUERITE 6-13-66-6	1981	157	519						
43	00/12-30-069-07W4/0	AEC FISHER 12-30-69-7	1988	436	534	Y					no breakout over Beaverhill Lake Group
44	00/08-20-070-03W4/0	AEC FISHER 8-20-70-3	1997	124	531		Y				no breakout
45	03/05-14-070-04W4/0	AEC 03 FISHER 5-14-70-4	1996	355	538		Y		Y		apparent breakout caused by well deviation
46	05/05-14-070-04W4/0	AEC 06 FISHER 5-14-70-4	1996	375	560		Y		Y		apparent breakout caused by well deviation
47	00/11-14-070-04W4/0	AECOG C11 FISHER 11-14-70-4	1998	124	514	Y					no breakout
48	00/12-14-070-04W4/0	AEC 01 FISHER 12-14-70-4	1996	450	550	Y		Y			deviated, SHDT, Caliper 2-4 not presented on log
49	00/07-15-070-04W4/0	AECOG A7 FISHER 7-15-70-4	1998	380	507	Y					no breakout, SHDT
50	00/08-15-070-04W4/0	AEC 02 FISHER 8-15-70-4	1996	390	540		Y				no breakout, deviated well, digital diprneter data available from the AEUB
51	00/11-15-070-04W4/0	AEC FISHER 11-15-70-4	1996	405	515		Y				no breakout, some poor breakout in McMurray Fm
52	00/13-15-070-04W4/0	AEC 13A FISHER 13-15-70-4	1997	124	514	Y					no breakout
53	00/15-15-070-04W4/0	AEC B15 FISHER 15-15-70-4	1997	359	504		Y				no breakout
54	00/09-16-070-04W4/0	AEC A9 FISHER 9-16-70-4	1997	350	510	Y					no breakout

Table D.3: Summary of breakout analysis data in the original study area for the Elk Point and Beaverhill L	ake Groups
--	------------

March, 2001

No.	UWI	Well Name	Year Logged	Top Log Interval	Bottom Log	Dipmeter log recorded in	Dipmeter microfiche	Missing data necessary for	Apparent breakout caused	Breakout present in	Notes
				(m KB)	Interval (m KD)	microfiche	obtained from	breakout	by pipe wear in	Beaverhill	
					(III KB)	AEUB	C IN	anaiysis	deviated hole	Lake or Elk Point Groups	
55	00/10-16-070-04W4/0	AEC FISHER 10-16-70-4	1997	371	529		Y	ki			no breakout
56	00/15-16-070-04\\4/0	AEC A15 FISHER 15-16-70-4	1997	114	518		Y				no breakout
57	00/16-16-070-04W4/0	AEC 816 FISHER 16-16-70-4	1997	100	522	Y					no breakout
58	00/01-21-070-04W4/0	AEC B1 FISH 1-21-70-4	1997	360	510		Y				no breakout
59	02/01-21-070-04W4/0	AEC 1A FISHER 1-21-70-4	1997	400	511		Y				no breakout
60	03/01-21-070-04W4/0	AEC C1 FISHER 1-21-70-4	1997	325	500		Y				no breakout
61	04/01-21-070-04W4/0	AEC D1 FISHER 1-21-70-4	1997	375	515		Y			Y	breakout in Beaverhill Lake Group
62	00/02-21-070-04W4/0	AEC C2 FISHER 2-21-70-4	1997	350	500		Y				no breakout
63	00/08-21-070-04W4/0	AEC A8 FISHER 8-21-70-4	1997	350	500		Y			Y	breakout in Beaverhill Lake Group
64	00/10-21-070-04W4/0	AEC A10 FISHER 10-21-70-4	1997	369	519	Y					no breakout
65	02/10-21-070-04W4/0	AEC B10 FISHER 10-21-70-4	1997	350	515		Y				no BO, some poor BO in McMurray FM
66	02/15-21-070-04W4/0	AEC 158 FISHER 15-21-70-4	1997	350	510		Y				no breakout
67	00/02-22-070-04W4/0	AECOG D2 FISHER 2-22-70-4	1997	375	507	Y					no breakout
68	00/03-22-070-04W4/0	AEC B3 FISHER 3-22-70-4	1997	375	500		Y			Y	breakout in Beaverhill Lake Group
69	00/04-22-070-04W4/0	AEC 4C FISHER 4-22-70-4	1997	96	518		Y				no breakout
70	04/05-22-070-04W4/2	AEC 104 FISHER 5-22-70-4	1996	450	525						-
71	05/05-22-070-04W4/0	AECOG 105 FISHER 5-22-70-4	1997	390	530	Y					no breakout, digital data available from the AEUB
72	06/05-22-070-04W4/0	AECOG A5 FISHER 5-22-70-4	1997	73	220	Y					no breakout
73	00/06-22-070-04W4/0	AEC 6A FISHER 6-22-70-4	1997	110	515	Y					no breakout
74	00/07-22-070-04W4/0	AECOG(E) A7 FISHER 7-22-70-4	2000	130	516						digital diprneter data available from the EUB
75	00/11-22-070-04W4/0	AEC 11B FISHER 11-22-70-4	1997	350	514	Y					no breakout
76	04/11-22-070-04W4/0	AECOG 2B11 FISHER 11-22-70-4	1997	70	513		Y				no breakout
77	00/12-22-070-04W4/0	AEC FISHER 12-22-70-4	1996	400	515		Y				no breakout
78	03/12-22-070-04W4/0	AEC 12C FISHER 12-22-70-4	1997	347	516		Y				no breakout
79	02/14-22-070-04W4/0	AEC C14 FISHER 14-22-70-4	1997	340	502		Y				no breakout
80	00/03-23-070-04W4/0	AECOG A3 FISHER 3-23-70-4	1998	123	513	Y					no breakout
81	00/14-28-070-04W4/0	AECOG A14 FISHER 14-28-70-4	1998	125	513		Y				no breakout

Table D.3: Summary of breakout analysis data in the original study area for the Elk Point and Beaverhill Lake Grou	ıps
--	-----

Alberta Geological Survey March, 2001

UWI No. Well Name Year Top Log Bottom Dipmeter log Dipmeter **Missing data** Apparent Breakout Notes Logged Interval Log recorded in microfiche necessary for breakout caused present in (m K8) Interval microfiche obtained from breakout by pipe wear in Beaverhill (m KB) obtained from MJ analysis deviated hole Lake or Elk AEUB Point Groups 00/07-32-070-04W4/0 AEC FISHER 7-32-70-4 82 1996 375 525 83 00/06-33-070-04W4/0 AEC FISHER 6-33-70-4 1997 400 500 Y breakout in Beaverhill Lake Group Y 84 00/08-13-070-06W4/0 AEC FISHER 8-13-70-6 585 1988 491 Y no breakout 85 00/05-23-070-06W4/0 AEC FISHER 5D-23-70-6 1987 275 544 86 00/10-34-072-06W4/0 AMOCO AEC KIRBY 10-34-72-6 1980 160 588 Y Y no caliper orientation data indicated on log 87 02/12-01-073-06W4/0 AEC 07 KIRBY 12-1-73-6 1983 108 569 Y no diproeter coverage in Beaverhill Lake Grp. 88 00/07-03-073-06W4/0 AMOCO AEC IPIATIK 7-3-73-6 1980 577 Y 160 Y no breakout 89 00/10-03-073-06W4/0 AMOCO AEC IPIATIK KIRBY 10A-3-73-6 1984 160 579 Y no breakout 90 00/06-05-073-06W4/0 AMOCO AEC KIRBY 6-5-73-6 1990 100 572 Y no breakout 91 00/11-09-073-06W4/0 AMOC AEC IPIATIK 11-9-73-6 1995 160 534.9 Y no breakout 92 00/10-11-073-06W4/0 AEC AMOCO IPIATIK KIRBY 10-11-73-6 1984 160 605 Y Y caliper one not presented 93 00/04-15-073-06W4/0 AECOG ET AL KIRBY 4-15-73-6 Y 1997 96 528.5 no breakout 94 00/12-11-074-08W4/0 ISH KIRBY 12-11-74-8 1997 440 530 95 00/12-14-074-08W4/0 ISH KIRBY 12-14-74-8 2000 440 519.3 96 00/14-05-082-12W4/0 TRANSWEST DIVIDE 14-5-82-12 1987 275 535 Y Y can't see calipers through other curves 97 00/10-29-082-12W4/0 HUSKY ET AL DIVIDE 10-29-82-12 1988 382 461 Y no breakout 98 00/16-03-083-07W4/0 GULF RESDELN 16-3-83-7 1981 175 505 99 AAV11-15-083-07W4/0 GULF RESDELN 11-15-83-7 1997 400 500 only one caliper curve shown (Dresser Atlas log) Y Y

Table D.3: Summary of breakout analysis data in the original study area for the Elk Point and Beaverhill Lake Groups

APPENDIX E

DATA ANALYSIS RESULTS FOR EXPANDED STUDY AREA

- Table E.1Summary of vertical stresses for the Elk Point Group
determined from bulk density data in the expanded study area
- Table E.2Detailed summary of breakout data in the Saskatchewan,
Beaverhill Lake, and Elk Point Groups
- Figures E.2.1 to E.2.14 Roseplots of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

No.	Log Kelly Bashing	Ground Level	Well Name	UWI	Year Logged	Latitude (deg N)	Longitude (deg W)	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Prairie Evaporite Fm (m KB)	Elevation of Prairie Evaporite Fm (m)	Vertical Stress at Top of Prairie Evaporite Fm (MPa)	Normalized Vertical Stress Gradient at Top of Prairie Evaporite Fm (kPa/m)	Balk Deasity Log Quality	% of Unknown Bu Density Data abo Prairie Evaporite
1	647.4	642.8	GULF SENEX 4-21-94-3	00/01-20-094-03W5/0	1996	57.164	114.432	30	1351	1105	-458	24.4	22.1	v.good	2
2	469.7	465.3	NORCEN POR EDRA 1-29-101-24	00/01-29-101-24W4/0	1985	57.791	113.891	280	1070	682	-212	16.1	23.7	v.good	40
3	514.8	510.9	ALSL BIRCH RIVER 2-10-102-23	00/02-10-102-23W4/0	1985	57.832	113.681	325	1075	669	-154	15.7	23.4	v.good	48
4	723.8	719.0	GULF AEC SUFFIELD 3-32-15-5	00/03-32-015-05W4/0	1978	50.297	110.661	193	1717	1617	-893	39.3	24.3	poor	12
5	563.5	558.1	GULF SENNEX 4-5-93-4	00/04-05-093-04W5/0	1987	57.035	114.612	801	1314	1080	-517	24,1	22.3	v.good	74
6	696.2	691.9	PCP PROVOST 4-18-38-1	00/04-18-038-01W4/0	1994	52.262	110.142	201	1571	1314	-617	30.3	23.1	v.good	15
7	291.2	287.1	MUTEX IOE EDRA 4-26-104-1	00/04-26-104-01W5/0	1969	58.052	114.054	130	857	496	-204	12.0	24.3	poor	25
8	676.7	672.1	CLM ET AL BIRCH RIVER 4-29-98-21	00/04-29-098-21W4/0	1985	57,530	113,390	325	1190	792	-115	18.1	22.9	fair	40
9	730.0	725.9	CS ET AL AEC SUFFIELD 5-2-20-3	00/05-02-020-03W4/0	1978	50.664	110.326	470	2194	1635	-905	39.6	24.2	fair	28
10	793,1	788.5	AECOG (E) CS ET AL SUFF 5-11-20-6	00/05-11-020-06W4/0	1978	50.679	110.737	229	2228	1695	-9 02	41,1	24.3	fair	13
11	809.0	805.7	DOME HOME LIEGE 6-2-97-19	00/06-02-097-19W4/0	1986	57.385	112.977	236	1231	849	-40	18.2	21.5	роог	27
12	860.8	856.7	PENN WEST PROVOST 6-4-37-16	00/06-04-037-16W4/0	1989	52.147	112.231	356	2048	1965	-1104	46.3	23.6	fair	18
13	666.2	661.7	AECOG (E) CS ET AL SUFFIELD 6-25-19-4	00/06-25-019-04W4/0	1977	50.635	110.435	189	1351	1564	-897	37,9	24.3	good	12
14	749.2	744 6	AEC GULF BERADI SUFFIELD 6-28-16-5	00/06-28-016-05W4/0	1978	50.374	110.635	189	1768	1653	-903	40.3	24.4	good	11
15	759.9	755.6	AECOG (E) GULF SUFF 6-30-16-6	00/06-30-016-06W4/0	1977	50,374	110,820	190	1755	1654	-894	39.7	24.0	good	11
16	478.5	474.9	PAN AM A-1 TELEGRAPH 6-30-86-13	00/06-30-086-13W4/0	1967	56.484	112.049	97	780	463	15	11.1	24.0	fair	20
17	6581	654 1	CS ET AL AEC SUFFIEID 6-36-18-5	00/06-36-018-05W4/0	1978	50,562	110.566	362	1662	1560	-902	37.0	23.7	fair	23
18	661.1	656.8	CS ET AL AEC SUFFIEI D 7-11-19-5	00/07-11-019-05W4/0	1978	50.592	110.590	191	2131	1560	-899	38.2	24.5	fair	12
10	666.8	662.6	PACETIC AMOCO EMERESS 7.12.22.1	00/07_12_022_01W4/0	1974	50.852	110.011	210	1759	1558	-891	37.3	23.9	fair	13
20	698.5	693.7	CS FT AL AFC SUFFIELD 7-18-19-3	00/07-18-019-03W4/0	1978	50.607	110.406	420	1737	1595	-897	38,4	24.0	fair	26
	010.5	P14 7		00/07.05.034.01384/0	1086	51.046	112 848	337	2279	7219	-1401	57.5	23.7	fair	15
	818,5	814.2	BIG VALLET RICH 1-25-34-21	00/07-25-034-21 W4/0	1900	50.912	112.040	190	1 200	1684	-1401	40.1	23.8	fair	11
22	730.0	120.3	DENISON ET AL PRINCESS 7-20-21-11	00/07-20-021-11W4/0	1004	50.026	111.016	150	1663	1004	-754 817	24.0	23.0	tan Fair	11
23	684,8	680.7	SUNCOR BROCE 8-2-46-14	00/08-02-040-14W4/0	1984	50.004	110.514	050	2003	1512	-027	39.9	23.1	fair	
24	740.4	736.1	CS ET AL SOFFIELD 8-17-20-4	00/08-17-020-04 W4/0	1978	50.094	110.514	450	2203	1040	-097	10.2	23.0	fair	28
25	261.5	257.9	IOD IOE CEGO BIRCH RIVER 8-17-105-1	00/08-17-105-01W5/0	1967	58.114	114.110	105	1042	423	-102	10.2	24,0	Idii	12
26	754.7	750.7	AECOG (E) SUFF 8-23-17-4	00/08-23-017-04W4/0	1985	50.448	110.440	202	1760	1003	-908	40.3	24.4	good	12
27	755.2	751.2	CANSO ET AL AEC SUFFIELD 9-27-15-8	00/09-27-015-08W4/0	1980	50.291	111.017	191	1710	1049	-894	39,9	24.2	Tair	11
28	609.9	605.9	GPD NOEL ET AL SENEX 10-6-93-3	00/10-05-093-03W5/0	1968	57.043	114.437	487	1309	1000	-450	24.0	23,2	Tatt	40
29	689.1	684.5	SEA JOR EDRA 10-14-100-23	00/10-14-100-23W4/0	1985	57.680	113.655	320	1250	674	-139	14.7	23,0	v.good fair	30
30	516.9	513.6	PAN AM D-I CHIPEWYAN 10-16-91-18	00/10-16-091-18W4/0	1900	56.895	112.832	100	2140	024	-107	26.2	23.0	tan tan	48
31	766,3	762.3	RENAISSANCE PROVOST 11-35-38-10	00/11-35-038-10W4/0	1992	52.311	111.327	750	2140	1570	-804	30,3	23.1	v.good	48
32	669.7	665.3	EPIC BIRCH MTNS 12-4-99-21	00/12-04-099-21W4/0	1988	57.566	113.390	215	1180	7/2	-102	17,6	22.8	good	27
33	850.6	845.9	CDNRES ET AL OBERLIN 12-9-38-21	00/12-09-038-21W4/0	1984	52.254	112.955	390	2370	2234	-1,383	-53.3	23.9	Lair	17
34	796.3	792.2	MARK RED WILLOW 14-11-39-17	00/14-11-039-17W4/0	1987	52.346	112.345	364	2022	1920	-1124	46.3	24.1	v.good	19
35	854.2	850.0	CHEVRON LINK 14-35-34-17	00/14-35-034-17W4/0	1989	51.967	112.308	364	2091	2022	-1167	48.0	23.7	good	18
36	821.1	817.2	HESS CDN-SUP NAMUR 15-19-96-18	00/15-19-096-18W4/0	1969	57.350	112.915	172	1222	857	-35	19.5	22.8	iair	20
37	821.6	817.5	VIRAGO ET AL RICH 15-30-34-20	00/15-30-034-24W4/0	1986	51.954	112.825	361	2393	2210	-1388	54,0	24.5	good	10
38	749.2	745.2	MUTEX IOE SEAFORTH 15-20-95-20	00/15-20-095-20W4/0	1969	57,261	113.209	212	1247	869	-120	19,8	22.7	ांका	24
39	557.1	552.I	ICOR ET AL HOOLE 16-1-80-24	00/16-01-080-24W4/0	1988	55,909	113.611	320	1485	1105	-548	26.2	23.7	v.good	29
40	830.2	824.5	BEST PACIFIC SPIERS 16-16-34-15	00/16-16-034-15W4/0	1985	51,925	112.060	404	2442	1950	-1120	44,9	23.0	1811	20
41	691.3	687.9	DOME ET AL EAST PANNY 16-35-95-2	00/16-35-095-02W5/0	1988	57.292	114.196	254	1399	1046	-354	23.4	22.4	good	24
42	566.4	562.4	UNOCAL WOODENHOUSE 6-3-87-22	00/06-03-087-22W4/0	1988	56.513	113,424	349	1240	919	-353	20.7	22.6	v.good	38
43	746.6	740.8	NORTHROCK MEDHAT 6-36-19-1	00/06-36-019-01W4/0	1980	50.650	110.020	188	2226	1662	-915	39.2	23.6	fair	na sana na sana na sana sana sana sana
44	748.9	744.9	CS ET AL AEC SUFFIELD 8-22-19-5	00/08-22-019-05W4/0	1978	50.622	110.608	456	1760	1645	-896	39.3	23.9	fair	27

Table E.1: Summary of vertical stresses for the Elk Point Group determined from bulk density data in the expanded area Τ-

AGI 10-122

~

٤	
1	Comments
_	ана андината и правита стали и правита и Правити и правити и пр
_	
_	
-	bulk density only recorded up to 801 m
_	
-	bad hole wash out b/w 500-650 m KB
	FDC tool with some zones of hole enlargement present
_	
-	
_	hole washed out
	enlarged hole present leading to lower bulk densities
-	
-	
	good quality older log
	zones of hole enlargement present
	some minor washouts but generally good older log
	good quality older log
	good quality older log
	good quality older log
	good quality older log
4	
1	good quality older log
	some minor washouts leading to lower bulk density
+	
+	
	minor zones of hole enlargement
-	good quality older log
+	minor zones of hole enlargement
$\left \right $	
ł	A La secondari in first rug
1	zones of Doit curatification in survey
1	minor zones of hole enlargement
ł	missing 240 m of data in mickue of tog title yat
1	

No.	Log Kelly Bushing	Ground Level	Well Name	UWI	Year Logged	Latitude (deg N)	Longitude (deg W)	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Prairie Evaporite Fm (m KB)	Elevation of Prairie Evaporite Fm (m)	Vertical Stress at Top of Prairie Evaporite Fm (MPa)	Normalized Vertical Stress Gradient at Top of Prairie Evaporite Fm (kPa/m)	Bulk Density Log Quality	% of Unknown B Density Data abo Prairie Evaporite
45	754.2	750.5	AECOG (E) SUFF 10C-1-17-8	00/10-01-017-08W4/0	1985	50.407	110,975	200	1720	1657	-902	40.0	24.2	v.good	12
46	754.2	749.5	DEVLAN MARTEN HILLS 10-4-75-3	00/10-04-075-03W5/0	1993	55,471	114.397	421	1852	1674	-920	37.6	22.4	v.good	25
47	761.7	757.7	GULF AEC FALCON SUFFIELD 11-5-15-6	00/11-05-015-06W4/0	1978	50.232	110.797	190	1750	1662	-900	40.4	24,3	v.good	11
48	789.3	785.I	AECOG (E) SUFF 11C-14-18-8	00/11-14-018-08W4/0	1985	50.524	111.005	206	1745	1698	-909	40.7	24.0	v.good	12
49	797.8	793.9	AECOG (GS) SUFF 11-18-18-8	00/11-18-018-08W4/0	1985	50.524	111.097	262	2242	1708	-910	40.9	23.9	v.good	15
50	718.6	714.0	CANSO ET AL AEC SUFFIELD 12-7-15-7	00/12-07-015-07W4/0	1979	50.247	110.962	189	1677	1611	-892	39.3	24.4	fair	11
51	717.1	713.0	GULF AEC HAWK SUFFIELD 12-12-15-7	00/12-12-015-07W4/0	1978	50.246	110.848	184	2154	1610	-893	39.1	24.3	fair	11
52	747.0	742.4	AECOG (E) 12-2I-15-8	00/12-21-015-08W4/0	1980	50.274	111.056	192	1688	1644	-897	40.2	24.5	fair	11
53	713.0	708.5	CANSO ET AL AEC SUFFIELD 12-33-15-7	00/12-33-015-07W4/0	1980	50.305	110.917	189	1682	1607	-894	38.8	24.2	fair	11
54	708.1	704.1	CS ET AL AEC SUFFIELD 14-32-19-4	00/14-32-019-04W4/0	1978	50.657	110.526	424	1731	1604	-896	38.9	24.2	fair	26
55	770.5	766.9	PAN AM UNION A-I YNGSTN 16-3-30-9	00/16-03-030-09W4/0	1967	51.546	111.178	747	1820	1667	-897	38.8	23,3	fair	45
56	852.9	849.3	CANSO ET AL AEC SUFFIELD 12-33-15-7	00/12-33-015-07W4/0	1984	52.577	113.174	882	2289	2218	-1365	52.4	23.6	v.good	40
57	706.8	702.9	AECOG (E) HAWK SUFF 6-26-15-7	02/06-26-015-07W4/0	1978	50.286	110,866	192	1676	1597	-890	39,4	24.7	v.good	12
58	791.4	788.4	PCP HEATHDALE 10-16-27-8	00/10-16-027-08W4/0	1980	51.310	111.070	183	1699	1693	-902	39.5	23.3	fair	11
59	785.1	780.8	AMOCO RICHDALE 3-4-31-12	00/03-04-031-12W4/0	1984	51.622	111.648	350	1877	1785	-1000	43.3	24.2	fair	19
60	852.5	848.4	MOBIL CRAIGMYLE 9-18-32-17	00/09-18-032-17W4/0	1988	51.744	112.394	361	2155	2116	-1264	50.6	23.9	good	17
61	826.2	820.6	STELLARTON SPIERS 11-15-34-15	00/11-15-034-15W4/0	1992	51.919	112.049	296	1975	1885	-1059	45.8	24.3	v.good	15
62	839.7	835.3	CHEVRON ET AL HACKETT 1-7-36-18	00/01-07-036-18W4/0	1982	52.071	112.553	354	2121	2090	-1250	50.2	24.0	fair	17
63	728.3	723.8	SCEPTRE ET AL STROME 8-23-43-16	00/08-23-043-16W4/0	1984	52.718	112.205	329	1810	1712	-983	40.0	23.4	fair	19
64	706.8	702.2	SUNCOR STROME 11-16-44-16	00/11-16-044-16W4/0	1983	52.795	112.269	321	1807	1695	-988	39.5	23,3	fair	19
65	717.4	· 712.9	SUNCOR HOLMBERG 4-1-45-16	00/04-01-045-16W4/0	1983	52.845	112.198	284	1682	1666	-949	39.2	23.5	fair	17
66	698.4	693.8	SUNCOR KILLAM NORTH 6-15-45-15	02/06-15-045-15W4/0	1983	52.877	112.097	252	1737	1599	-901	37.9	23.7	fair	15
67	707.8	703.3	SUNCOR ET AL KILLAM 16-10-46-13	00/16-10-046-13W4/0	1984	52.956	111.795	275	1670	1444	-736	33.4	23.2	v.good	19
68	632.0	626.4	DOW 27 NACL FTSASK 9-3-55-22	00/09-03-055-22W4/0	1986	53.726	113.176	215	1910	1701	-1069	40.0	23.5	good	12
69	633.3	625.9	NUL NGS FTSASK 7-34-55-21	00/07-34-055-21W4/0	1982	53.795	113.036	205	1875	1585	-952	37,7	23.8	fair	12
70	636.2	632.5	PLPG FT SASK 16D-1-56-22	00/16-01-056-22W4/0	1975	53.817	113.125	198	1908	1617	-980	37.7	23.3	fair	12
71	647.5	642.9	GULF ET AL THORHILD 16-22-59-22	00/16-22-059-22W4/0	1985	54.122	113.200	314	1844	1575	-928	36.6	23.3	v.good	20
72	651.1	647.1	ANDERSON ET AL THORHILD 1-12-60-21	00/01-12-060-21W4/0	1980	54.167	113.002	186	1682	1474	-823	34.7	23.6	fair	12
73	668,8	664.8	AMOCO THORHILD 16-9-60-22	00/16-09-060-22W4/0	1984	54,178	113.229	322	1806	1584	-915	37.3	23.6	fair	20
74	679.8	674.9	CHEVRON ET AL LUCKY 15-8-61-18	00/15-08-061-18W4/0	1982	54.267	112.661	279	1358	1355	-675	31.7	23,4	fair	20
75	554,0	549.0	ICOR ET AL HOOLE 12-1-80-24	00/12-01-080-24W4/0	1987	55.906	113.629	302	1466	1117	-563	26.3	23.5	good	27
76	740.3	735.7	PCP MEDICINE HAT 12-19-14-4	00/12-19-014-04W4/0	1988	50.188	110.549	455	2215	1640	-900	38,9	23.7	v.good	27
77	632,2	628.0	AECOG (E) SUFF 7-22-17-5	00/07-22-017-05W4/0	1984	50.448	110.608	205	1640	1536	-904	37,8	24.6	fair	13
78	618.0	613.4	SHELL FINA RUBEN 3-25-83-2	00/03-25-083-02W5/0	1979	56.220	114.175	15	1500	1261	-643	30.1	23.8	fair	t i
79	587.3	583.7	GULF WABASCA 7-36-84-23	00/07-36-084-23W4/0	1975	56.325	113,489	183	1051	1001	-414	23.0	23.0	fair	37
80	669.3	665.4	PAN AM A-1 JEAN LAKE 4-11-98-23	00/04-11-098-23W4/0	1966	57.484	113.631	188	1185	864	-194	20.0	23.2	fair	21
81	654.1	649.2	CDN-SUP FRANCIS 7-22-74-22	00/07-22-074-22W4/0	1971	55,422	113.295	562	1682	1219	-565	28.6	23.5	fair	46
82	704,2	700.4	CLM ET AL JEAN 8-16-98-22	00/08-16-098-22W4/0	1985	57.501	113.504	312	1225	855	-150	19.5	22.8	v.good	36
83	584.7	580.4	CZAR ET AL LIEGE 7-13-92-24	00/07-13-092-24W4/0	1979	56.978	113.716	15	1185	885	-300	20.2	22.8	fair	30
84	530,9	523.9	COLIN PANNY 1-31-95-4	00/01-31-095-04W4/0	1985	57.280	114.630	615	1209	975	-444	21,5	22.1	v.good	62
85	802.4	797.9	HUSKY MEDICINE HAT 5-32-17-2	00/05-32-017-02W4/0	1988	50.475	110.251	339	1716	1711	-909	40.1	23.4	v.good	20
86	512,4	508.0	GAO MINK 10-29-89-23	00/10-29-089-23W4/0	1983	56.751	113.628	189	1165	856	-344	20.1	23.5	fair	22
87	521.2	517.9	PAN AM E-1 CHIPEWYAN 10-34-91-18	00/10-34-091-18W4/0	1967	56.939	112.805	190	920	604	-83	14.1	23,4	fair	31
88	763,7	759.7	FCPI 12D PROVOST 12-21-35-6	D0/12-21-035-06W4/0	1993	52.021	110.808	750	1662	1525	-761	35.3	23.2	v.good	49
									 A set of the set of	والمرجع فأرجع والمحجوب والمتركب والمرجع والمراجع والمراجع والمحاصي	a na particular and a construction of the second	and a start of the s	and the second second state of the second		and the second

Table E.1: Summary of vertical stresses for the Elk Point Group determined from bulk density data in the expanded study area

AGI 10-122

п.	Comments
	missing data b/w 711 and 1643 m KB
	difficult pick for Prairie Evaporite Fm
I	
	difficult pick for Prairie Evaporite Fm
Į	
ł	
ſ	
I	· · · · · · · · · · · · · · · · · · ·
I	very good quality older log
I	
I	no curve availabe < 2000 kg/m3 for digitizing, therefore calculations would be high
I	nond auglin older lon
Ŀ	Even Annual Annual Initial and a state of the state of th
	Boona quarany utiles tog breakout also analyzed for this well
	procequary order tog breakout also analyzed for this well good quality older log
	procequary order tog breakout also analyzed for this well good quality older log very good quality older log
	poor quarry order tog breakout also analyzed for this well good quality older log very good quality older log Schlumberger's LDT run
	breakout also analyzed for this well good quality older log very good quality older log Schlumberger's LDT run well deviated past the Prairie Evaporite Formation
	procequary order log breakout also analyzed for this well good quality older log very good quality older log Schlumberger's LDT run well deviated past the Prairie Evaporite Formation
	good quality ofder log good quality older log very good quality older log Schlumberger's LDT run well deviated past the Prairie Evaporite Formation
	good quality office fog good quality offer fog very good quality offer log Schlumberger's LDT run well deviated past the Prairie Evaporite Formation
	procequary order log breakout also analyzed for this well good quality older log Schlumberger's LDT run well deviated past the Prairie Evaporite Formation good quality older log
	good quality older log
	good quality older log
	good quality older log
	good quality older log
	procequary order tog proceduary order tog procedua
	procequary order tog breakout also analyzed for this well good quality older log Schlumberger's LDT run well deviated past the Prairie Evaporite Formation well deviated past the Prairie Evaporite Formation good quality older log good quality older log good quality older log good quality older log
	prove quality other log prove quality det log prov
	prove quality ofder log good quality ofder log
	procequarity officer fog good quality offer log schlumberger's LDT run well deviated past the Prairic Evaporite Formation well deviated past the Prairic Evaporite Formation good quality offer log good quality offer log
	procequarity officer fog good quality older log Schlumberger's LDT run well deviated past the Prairie Evaporite Formation well deviated past the Prairie Evaporite Formation good quality older log good quality older log
	procequary order tog breakout also analyzed for this well good quality older log Schlumberger's LDT run well deviated past the Prairie Evaporite Formation well deviated past the Prairie Evaporite Formation good quality older log good quality older log good quality older log good quality older log sood quality older log sood quality older log nissing data blw 393 and 585 m KB
	people quality ofder log good quality ofder log missing data b/w 273 and 526 m KB
	prove quality other log prove
	peoce quality ofder log good quality de log good quality ofder log good quality de log good

No.	Log Kelly Bashing	Graund Level	Well Name	UWI	Year Logged	Latitude (deg N)	Lougitude (deg W)	Top Log Interval (m KB)	Bottom Log Interval (m KB)	Top Prairie Evaporite Fm (m KB)	Elevation of Prairie Evaporite Fm (m)	Vertical Stress at Top of Prairie Evaporite Fm (MPa)	Normalized Vertical Stress Gradient at Top of Prairie Evaporite Fm (kPa/m)	Bulk Density Log Quality	% of Unknown Buik Density Data above Prairie Evaporite Fm	Comments
89	633.1	627.6	DOW 103B FTSASK NACL 14-11-55-22	06/14-11-055-22W4/0	1988	53,742	113,166	18	1926	1657	-1024	37.8	22.8	v.good	I	bulk density of salt seems low at approx. 1500 kg/m3
90	701.7	698.I	NCL PROVOST 8-14-40-3	00/08-14-040-03W4/0	1994	52.440	110.319	182	1503	1297	-595	29.5	22.7	v.good	14	
91	692.8	688.8	HUSKY D H BALDWINTON 7-1-44-24	01/07-01-044-24W3/0	1972	52.760	109.351	579	1858	1070	-377	24.2	22.6	fair	54	
92	628.2	624.5	HUSKY INC ET AL CABRI 7-16-24-27	01/07-16-024-27W3/0	1969	51.043	109.710	610	1611	1491	-863	34.8	23.4	fair	41	
93	694.0	690.1	TEXCAN ALSASK 10-1-28-29	01/10-01-028-29W3/0	1984	51.367	109.950	668	2158	1512	-818	35.4	23.4	fair	44	
94	602.0	598.0	HUSKY DH LOW LAKE 10-9-50-24	01/10-09-050-24W3/0	1971	53.301	109.452	426	1032	831	-229	18.5	22.3	fair	51	
95	622.4	619.0	ARCO BA POUNDMAKER 12-28-45-22	01/12-28-045-22W3/0	1967	52.909	109.145	145	1168	939	-316	21.7	23,1	fair	15	good quality older log
96	741.0	737.3	SPCHBLUSELAND 15-8-35-27	01/15-08-035-27W3/0	1976	51,996	109.821	140	1539	1414	-673	33,1	23.4	fair	10	
97	718.0	712.3	WASCANA SHOP CACTUS LK 15-34-34-27	01/15-34-034-27W3/0	1980	51.967	109.746	257	2095	1390	-672	32.4	23.3	fair	18	
98	700,7	696.5	SASKOIL SHOP LUSELAND 16-36-36-25W3	01/16-36-036-25W3/0	1980	52.142	109.434	190	2000	1292	-591	30.0	23.2	fair	14	good quality older log
99	728.1	724.4	WASCANA PLOVER LK SWD A1-5-35-26	11/01-05-035-26W3/0	1997	51.970	109.670	249	2121	1398	-670	32.1	23.0	v.good	18	
100	723.5	719.4	PENN WEST PLOVER LAKE SWD A6-15-35-27	11/06-15-035-27W3/0	1998	\$2.001	109.776	260	2105	1392	-669	32.2	23.1	v.good	18	
101	742.2	737.3	MURPHY CCTS LK N 7-30-36-28	21/07-30-036-28W3/0	1997	52.119	109.988	303	2130	1396	-653	32.3	23.2	v.good	21	
102	646.3	641.8	HUSKY LLOYD SCD B7-30-49-27	21/07-30-049-27W3/0	1998	53.254	109.939	213	954	949	-302	21,0	22.1	good	22	hole somewhat washed out - vertical stress will be low
103	646.5	642.8	HUSKY LLOYD SWD B12-30-49-27	21/12-30-049-27W3/0	1984	53.257	109.952	300	1735	952	-306	21.9	23.0	fair	31	good quality older log, near Husky's disposal area within the Prairie Evaporite Fm
104	646,3	641.4	HUSKY LLOYD SCD C7-30-49-27	31/07-30-049-27W3/0	1996	53.256	109.941	232	1075	950	-304	20.8	21.9	good	24	hole somewhat washed out - vertical stress will be low
105	655.8	651.7	GULF SHOP DRUID DD 1C16-10-34-22	31/16-10-034-22W3/0	1980	51.909	109.031	498	2034	1303	-648	30.6	23,5	fair	38	good quality older log
106	638.5	633.5	SIFTO CANADA UTILITY 3-9-40-22	41/03-09-040-22W3/0	1995	52.422	109.111	135	1249	1129	-491	25.9	23.0	good	12	
107	692.6	687.6	WASCANA LUSELAND SWD D3-18-36-25	41/03-18-036-25W3/0	1997	52.088	109,563	244	2047	1319	-626	30.6	23.2	v.good	18	
108	662.3	656.3	AMOCO KRRBRT 4 STORAGE DD 5-34-33-22	91/05-34-033-22W3/0	1996	51.870	109.050	158	1361	1359	-697	31.4	23.1	v.good	н	
109	538.4	535.4	BONAVISTA ET AL BEACON HILL 9-22-62-27	21/09-22-062-27W3/0	1987	54.377	109.958	103	742	715	-177	15.8	22.2	v.good	14	
110	728.7	722.7	WASCANA PLOVER LK SWD C16-5-35-26	31/16-05-035-26W3/0	1997	51.983	109.672	247	2114	1394	-665	32.4	23.2	v.good	17	
111	734.9	730.4	WASCANA PLOVER LK SWD D4-5-35-26	41/04-05-035-26W3/0	1997	51.972	109.689	247	2129	1405	-670	32.6	23.2	v.good	17	
112	702.2	697.3	MURPHY PLOVER LAKE 11-29-35-26	11/11-29-035-26W3/0	1997	52.035	109.683	301	2084	1355	-653	31.4	23.2	v.good	22	

Table E.1: Summary of vertical stresses for the Elk Point Group determined from bulk density data in the expanded study area

AGI 10-122

AGI 10-122

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverbill Lake, and Elk Point Groups

Definition of Column Headings:

Top:	top of interval (m log depth)
Bottom:	bottom of interval (m log depth)
Thickness:	thickness of interval (m)
P1AZ:	azimuth of C1 caliper with respect to magnetic north (degrees)
P1AZc:	azimuth of C1 caliper corrected to true north
Cmax Az wrt true North:	Breakout azimuth corrected to true north
C1:	C1-C3 caliper measurement (mm)
C2:	C2-C4 caliper measurement (mm)
% Enlarge	% difference between C1 and C2 readings
% Gauge	% difference between smaller caliper reading and hole gauge
Quality:	quality of breakout (see report for details)
Formation or Group:	formation or group identified in well ticket that breakout occurs within

August, 2001

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name MURPHY ET AL GRAHAM 12-18-87-3

UWI: 100/12-18-087-03W5/00

Borehole Diameter:

Correction to True North: 23.27 degrees

Comments: Well drilled with NaCl Gel Chem mud but little breakout shown in well

159 mm

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)				or Group
1152	1153	1	105	105	128	228.5	190.0	20.3%	19.5%	good	BH LK Grp
1153	1154	1	80	80	103	256.5	215.0	19.3%	35.2%	good	BH LK Grp
1478	1479	1	320	230	253	287.0	302.0	5.2%	80.5%	poor	Prairie Evaporite Fm
1493	1494	1	270	270	293	292.0	254.0	15.0%	59.7%	good	Prairie Evaporite Fm
1494	1495	1	270	270	293	298.5	267.0	11.8%	67.9%	good	Prairie Evaporite Fm
1495	1496	1	270	270	293	304.8	292.0	4.4%	83.6%	good	Prairie Evaporite Fm
1496	1497	1	270	270	293	311.0	292.0	6.5%	83.6%	good	Prairie Evaporite Fm
1497	1498	1	270	270	293	311.0	292.0	6.5%	83.6%	good	Prairie Evaporite Fm
1567	1568	1	305	305	328	171.0	159.0	7.5%	0.0%	good	Keg River Fm
1568	1569	1	300	300	323	171.0	159.0	7.5%	0.0%	good	Keg River Fm
1569	1570	1	300	300	323	171.0	159.0	7.5%	0.0%	good	Keg River Fm
1570	1571	1	295	295	318	171.0	159.0	7.5%	0.0%	good	Keg River Fm
1571	1572	1	295	295	318	171.0	159.0	7.5%	0.0%	good	Keg River Fm
1572	1573	1	290	290	313	171.0	159.0	7.5%	0.0%	good	Keg River Fm
1573	1574	1	290	290	313	171.0	159.0	7.5%	0.0%	good	Keg River Fm
1574	1575	1	285	285	308	171.0	159.0	7.5%	0.0%	good	Keg River Fm
1575	1576	1	280	280	303	171.0	159.0	7.5%	0.0%	good	Keg River Fm
1576	1577	1	280	280	303	171.0	159.0	7.5%	0.0%	good	Granite Wash Fm
1577	1578	1	265	265	288	171.0	159.0	7.5%	0.0%	good	Granite Wash Fm
1578	1579	1	265	265	288	171.0	159.0	7.5%	0.0%	good	Granite Wash Fm

August, 2001

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name COLIN ET AL KIDNEY 10-19-91-4

UWI: 102/10-19-091-04W5/00

Borehole Diameter:

Correction to True North: 0 (log corrected to true north)

Comments: Possibly other areas of breakout but caliper curves masked by pad resistivity traces in places

Comments: Well name on log header is DORSET ET AL KIDNEY 10-19-91-4

159 mm

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)				or Group
1152	1153	1	290	290	290	225	220	2.27%	38.36%	fair	Prairie Evaporite Fm
1153	1154	1	288	288	288	235	225	4.44%	41.51%	fair	Prairie Evaporite Fm
1154	1155	1	286	286	286	250	230	8.70%	44.65%	fair	Prairie Evaporite Fm
1155	1156	1	284	284	284	240	225	6.67%	41.51%	fair	Prairie Evaporite Fm
1156	1157	1	282	282	282	230	220	4.55%	38.36%	fair	Prairie Evaporite Fm
1157	1158	1	280	280	280	225	200	12.50%	25.79%	fair	Prairie Evaporite Fm
1198	1199	1	195	105	105	175	180	2.86%	10.06%	fair	Prairie Evaporite Fm
1199	1200	1	195	105	105	175	185	5.71%	10.06%	fair	Prairie Evaporite Fm
1200	1201	1	195	105	105	175	195	11.43%	10.06%	fair	Prairie Evaporite Fm
1201	1202	1	195	105	105	180	195	8.33%	13.21%	fair	Prairie Evaporite Fm
1202	1203	1	195	105	105	185	200	8.11%	16.35%	fair	Prairie Evaporite Fm
1203	1204	1	200	110	110	190	200	5.26%	19.50%	fair	Prairie Evaporite Fm
1204	1205	1	200	110	110	185	200	8.11%	16.35%	fair	Prairie Evaporite Fm
1205	1206	1	200	110	110	175	195	11.43%	10.06%	fair	Prairie Evaporite Fm
1206	1207	1	200	110	110	175	195	11.43%	10.06%	fair	Prairie Evaporite Fm
1207	1208	1	200	110	110	180	195	8.33%	13.21%	fair	Prairie Evaporite Fm
1208	1209	1	200	110	110	175	195	11.43%	10.06%	fair	Prairie Evaporite Fm
1209	1210	1	205	115	115	180	195	8.33%	13.21%	fair	Prairie Evaporite Fm
1210	1211	1	205	115	115	180	195	8.33%	13.21%	fair	Prairie Evaporite Fm
1211	1212	1	210	120	120	175	190	8.57%	10.06%	fair	Prairie Evaporite Fm
1212	1213	1	210	120	120	175	190	8.57%	10.06%	fair	Prairie Evaporite Fm
1213	1214	1	210	120	120	180	190	5.56%	13.21%	fair	Prairie Evaporite Fm
1214	1215	1	210	120	120	180	190	5.56%	13.21%	fair	Prairie Evaporite Fm
1215	1216	1	210	120	120	165	180	9.09%	3.77%	fair	Prairie Evaporite Fm
1216	1217	1	210	120	120	160	175	9.38%	0.63%	fair	Prairie Evaporite Fm

August, 2001

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name NCE ENER SENEX 14-9-92-4

UWI: 100/14-09-092-04W5/0

Borehole Diameter:200 mmCorrection to True North:25.08 (corrected 18.2 deg E on log)Comments:Oil-based mud used, hole near gauge and breakout difficult to identify

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)				or Group
1203	1204	1	200	110	135	200	205	2.50%	25.79%	fair	Prairie Evaporite Fm
1204	1205	1	195	105	130	200	205	2.50%	25.79%	fair	Prairie Evaporite Fm
1205	1206	1	190	100	125	200	210	5.00%	25.79%	fair	Prairie Evaporite Fm
1206	1207	1	190	100	125	200	205	2.50%	25.79%	fair	Prairie Evaporite Fm
1232	1233	1	355	265	290	200	210	5.00%	25.79%	fair	Prairie Evaporite Fm
1233	1234	1	355	265	290	200	210	5.00%	25.79%	fair	Prairie Evaporite Fm
1234	1235	1	345	255	280	200	210	5.00%	25.79%	fair	Prairie Evaporite Fm

Well Name UNOCAL KIDNEY 10-32-90-4

UWI: 00/10-32-090-04W5/0

Borehole Diameter: 158.9 mm

Correction to True North: 23.6

Comments: only one section of breakout at the top of the logged interval

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)				or Group
1138	1139	1	5	95	119	170	175	2.94%	6.92%	fair	BH LK Grp
1139	1140	1	10	100	124	170	175	2.94%	6.92%	fair	BH LK Grp
1140	1141	1	15	105	129	170	175	2.94%	6.92%	fair	BH LK Grp
1141	1142	1	20	110	134	170	175	2.94%	6.92%	fair	BH LK Grp
1142	1143	1	25	115	139	170	175	2.94%	6.92%	fair	BH LK Grp
1143	1144	1	30	120	144	170	175	2.94%	6.92%	fair	BH LK Grp
1144	1145	1	30	120	144	167	172	2.99%	5.03%	fair	BH LK Grp
1145	. 1146	1	30	120	144	165	170	3.03%	3.77%	fair	Slave Point Fm
1146	1147	1	30	120	144	159	164	3.14%	0.00%	fair	Slave Point Fm

August, 2001

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name UNOCAL KIDNEY 9-5-91-4

UWI: 00/09-05-091-04W5/0

Borehole Dia	ameter:	158.9	mm	Correction	to True North:	23.5					
Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)				or Group
1016	1017	1	125	125	149	190	180	5.56%	13.21%	poor	BH LK Grp
1017	1018	1	125	125	.149	200	180	11.11%	13.21%	poor	BH LK Grp
1018	1019	1	130	130	154	200	180	11.11%	13.21%	poor	BH LK Grp
1019	1020	1	130	130	154	200	180	11.11%	13.21%	poor	BH LK Grp
1020	1021	1	130	130	154	200	180	11.11%	13.21%	poor	BH LK Grp
1021	1022	1	125	125	149	200	180	11.11%	13.21%	poor	BH LK Grp
1022	1023	1	125	125	149	195	180	8.33%	13.21%	poor	BH LK Grp
1023	1024	1	120	120	144	190	180	5.56%	13.21%	poor	BH LK Grp
1024	1025	1	110	110	134	195	180	8.33%	13.21%	poor	BH LK Grp
1025	1026	1	105	105	129	200	185	8.11%	16.35%	poor	BH LK Grp
1026	1027	1	100	100	124	205	190	7.89%	19.50%	poor	BH LK Grp
1027	1028	1	95	95	119	205	185	10.81%	16.35%	poor	BH LK Grp
1028	1029	1	90	90	114	190	175	8.57%	10.06%	poor	BH LK Grp
1134	1135	1	260	260	284	175	162	8.02%	1.89%	good	Watt Mountain Fm
1135	1136	1	250	250	274	185	162	14.20%	1.89%	good	Watt Mountain Fm
1136	1137	1	230	230	254	190	162	17.28%	1.89%	good	Watt Mountain Fm
1137	1138	1	230	230	254	195	165	18.18%	3.77%	good	Watt Mountain Fm
1138	1139	1	230	230	254	190	165	15.15%	3.77%	good	Watt Mountain Fm
1139	1140	1	230	230	254	185	165	12.12%	3.77%	good	Watt Mountain Fm
1140	1141	1	230	230	254	180	162	11.11%	1.89%	good	Prairie Evaporite Fm
1264	1265	1	285	285	309	175	170	2.94%	6.92%	fair	Prairie Evaporite Fm
1265	1266	1	290	290	314	175	170	2.94%	6.92%	fair	Prairie Evaporite Fm
1288	1289	1	285	285	309	175	159	10.06%	0.00%	fair	Prairie Evaporite Fm
1289	1290	1	290	290	314	172	159	8.18%	0.00%	fair	Prairie Evaporite Fm
1290	1291	1	290	290	314	175	163	7.36%	2.52%	fair	Prairie Evaporite Fm
1291	1292	1	285	285	309	172	159	8.18%	0.00%	fair	Prairie Evaporite Fm
1292	1293	1	290	290	314	172	159	8.18%	0.00%	fair	Prairie Evaporite Fm
1293	1294	1	290	290	314	175	163	7.36%	2.52%	fair	Prairie Evaporite Fm
1294	1295	1	290	290	314	175	163	7.36%	2.52%	fair	Prairie Evaporite Fm

August, 2001

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

. :

Well Name MURPHY TROUT 9-3-89-3

UWI: 00/09-03-089-03W5/0

Borehole Diameter:

200 mm Correction to True North: 0 (log corrected 23 degrees to true north)

Comments: Breakout between 1403 and 1414 m KB seen in both the main and repeat passes

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)		-		or Group
1291	1292	1	100	100	100	250	225	11.11%	41.51%	fair	Prairie Evaporite Fm
1298	1299	1	105	105	105	265	250	6.00%	57.23%	fair	Prairie Evaporite Fm
1299	1300	1	100	100	100	270	250	8.00%	57.23%	fair	Prairie Evaporite Fm
1403	1404	1	205	115	115	200	205	2.50%	25.79%	fair	Prairie Evaporite Fm
1404	1405	1	205	115	115	210	225	7.14%	32.08%	good	Prairie Evaporite Fm
1405	1406	1	205	115	115	225	230	2.22%	41.51%	good	Prairie Evaporite Fm
1406	1407	1	215	125	125	220	235	6.82%	38.36%	good	Prairie Evaporite Fm
1407	1408	1	215	125	125	220	240	9.09%	38.36%	good	Prairie Evaporite Fm
1408	1409	1	210	120	120	220	240	9.09%	38.36%	good	Prairie Evaporite Fm
1409	1410	1	210	120	120	220	240	9.09%	38.36%	good	Prairie Evaporite Fm
1410	1411	1	205	115	115	220	235	6.82%	38.36%	good	Prairie Evaporite Fm
1411	1412	1	205	115	115	220	230	4.55%	38.36%	good	Prairie Evaporite Fm
1412	1413	1	200	110	110	210	220	4.76%	32.08%	good	Prairie Evaporite Fm
1413	1414	1	200	110	110	200	210	5.00%	25.79%	good	Prairie Evaporite Fm

August, 2001

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

÷.

.

Well Name UNOCAL ET AL TROUT 8-10-89-3

UWI: 00/08-10-089-03W5/0

Borehole Diameter: 159 mm

Correction to True North: 0 (log corrected 24 degrees to true north)

Comments:	Breakout shows minor population between 1091 and 1100 m KB approx. 90 degrees from the major population										
Тор	Bottom	Thickness	PIAZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)				or Group
1091	1092	1	210	210	210	170	165	3.03%	3.77%	fair	BH LK Grp
1092	1093	1	215	215	215	180	170	5.88%	6.92%	fair	BH LK Grp
1093	1094	1	215	215	215	200	180	11.11%	13.21%	fair	BH LK Grp
1094	1095	1	220	220	220	210	175	20.00%	10.06%	fair	BH LK Grp
1095	1096	1	230	230	230	210	175	20.00%	10.06%	fair	BH LK Grp
1096	1097	1	235	235	235	200	165	21.21%	3.77%	fair	BH LK Grp
1097	1098	1	240	240	240	190	165	15.15%	3.77%	fair	BH LK Grp
1098	1099	1	245	245	245	185	160	15.63%	0.63%	fair	BH LK Grp
1099	1100	1	250	250	250	170	160	6.25%	0.63%	fair	BH LK Grp
1107	1108	1	230	140	140	170	175	2.94%	6.92%	poor	BH LK Grp
1108	1109	1	225	135	135	170	185	8.82%	6.92%	fair	BH LK Grp
1109	1110	1	225	135	135	170	190	11.76%	6.92%	fair	BH LK Grp
1110	1111	1	220	130	130	170	205	20.59%	6.92%	fair	BH LK Grp
1111	1112	1	215	125	125	170	200	17.65%	6.92%	fair	BH LK Grp
1112	1113	1	215	125	125	170	195	14.71%	6.92%	fair	BH LK Grp
1113	1114	1	210	120	120	170	190	11.76%	6.92%	fair	BH LK Grp
1114	1115	1	205	115	115	165	185	12.12%	3.77%	fair	BH LK Grp
1326	1327	1	135	135	135	285	260	9.62%	63.52%	good	Prairie Evaporite Fm
1330	1331	1	130	130	130	290	265	9.43%	66.67%	good	Prairie Evaporite Fm
1331	1332	1	130	130	130	295	270	9.26%	69.81%	good	Prairie Evaporite Fm

August, 2001

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name SUNCOR STROME 11-16-44-16

222 mm

UWI: 00/11-16-044-16W4/0

Borehole Diameter:

Correction to True North: 20.1 degrees

Comments: Breakout shows minor population between 1710 and 1716 m KB approx. 90 degrees from the major population

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	<u>(m KB)</u>	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)	_	-		or Group
1470	1471	1	360	270	290	235	238	1.28%	47.80%	poor	BH LK Grp
1471	1472	1	360	270	290	235	240	2.13%	47.80%	poor	BH LK Grp
1472	1473	1	355	265	285	235	242	2.98%	47.80%	poor -	BH LK Grp
1473	1474	1	355	265	285	235	245	4.26%	47.80%	poor	BH LK Grp
1474	1475	1	350	260	280	240	248	3.33%	50.94%	poor	BH LK Grp
1475	1476	1	350	260	280	240	250	4.17%	50.94%	fair	BH LK Grp
1476	1477	1	350	260	280	240	250	4.17%	50.94%	fair	BH LK Grp
1477	1478	1	350	260	280	240	250	4.17%	50.94%	fair	BH LK Grp
1478	1479	1	350	260	280	240	250	4.17%	50.94%	fair	BH LK Grp
1479	1480	1	350	260	280	240	250	4.17%	50.94%	fair	BH LK Grp
1480	1481	1	355	265	285	240	250	4.17%	50.94%	fair	BH LK Grp
1481	1482	1	355	265	285	240	250	4.17%	50.94%	fair	BH LK Grp
1482	1483	1	355	265	285	240	250	4.17%	50.94%	fair	BH LK Grp
1483	1484	1	355	265	285	235	250	6.38%	47.80%	fair	BH LK Grp
1484	1485	1	350	260	280	235	250	6.38%	47.80%	fair	BH LK Grp
1485	1486	1	350	260	280	235	250	6.38%	47.80%	fair	BH LK Grp
1486	1487	1	350	260	280	235	245	4.26%	47.80%	fair	BH LK Grp
1487	1488	1	350	260	280	235	245	4.26%	47.80%	fair	BH LK Grp
1488	1489	1	345	255	275	235	250	6.38%	47.80%	fair	BH LK Grp
1489	1490	1	345	255	275	235	250	6.38%	47.80%	fair	BH LK Grp
1490	1491	1	340	250	270	245	250	2.04%	54.09%	poor	BH LK Grp
1710	1711	1	280	190	210	260	265	1.92%	63.52%	poor	Prairie Evaporite Fm
1711	1712	1	280	190	210	260	275	5.77%	63.52%	fair	Prairie Evaporite Fm
1712	1713	1	280	190	210	260	275	5.77%	63.52%	fair	Prairie Evaporite Fm
1713	1714	1	280	190	210	260	275	5.77%	63.52%	fair	Prairie Evaporite Fm
1714	1715	1	280	190	210	260	275	5.77%	63.52%	fair	Prairie Evaporite Fm
1715	1716	1	280	190	210	260	275	5.77%	63.52%	fair	Prairie Evaporite Fm
									Advanc	ed Gei	otechnology Ind

August, 2001

1731	1732	1	210	210	230	275	260	5.77%	63.52%	fair	Prairie Evaporite Fm
1732	1733	1	215	215	235	265	255	3.92%	60.38%	poor	Prairie Evaporite Fm
1733	1734	1	215	215	235	265	255	3.92%	60.38%	poor	Prairie Evaporite Fm
1734	1735	1	215	215	235	275	265	3.77%	66.67%	poor	Prairie Evaporite Fm
1735	1736	1	210	210	230	275	265	3.77%	66.67%	poor	Prairie Evaporite Fm

 Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

i.

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

÷.,.

Well Name DORSET ET AL MARTENCK 11-12-80-5

UWI: 00/11-12-080-05W5/0

Borehole Diameter: 209.55 mm (8.25")

Correction to True North: 20.3 degrees

Comments: Log recorded in feet

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)				or Group
1339	1340	1	80	80	100	350	340	2.94%	113.84%	poor	BH LK Grp
1340	1341	1 .	80	80	100	365	340	7.35%	113.84%	poor	BH LK Grp
1341	1342	1	80	80	100	370	355	4.23%	123.27%	poor	BH LK Grp
1342	1343	1	80	80	100	375	355	5.63%	123.27%	poor	BH LK Grp
1343	1344	1	80	80	100	365	355	2.82%	123.27%	poor	BH LK Grp
1344	1345	1	75	75	95	360	340	5.88%	113.84%	poor	BH LK Grp
1521	1522	1	5	95	115	270	330	22.22%	69.81%	poor	Watt Mountain Fm
1522	1523	1	5	95	115	270	405	50.00%	69.81%	poor	Watt Mountain Fm
1523	1524	1	10	100	120	330	410	24.24%	107.55%	poor	Watt Mountain Fm
1524	1525	1	10	100	120	270	370	37.04%	69.81%	poor	Watt Mountain Fm
1525	1526	1	10	100	120	270	350	29.63%	69.81%	poor	Watt Mountain Fm
1526	1527	1	5	95	115	270	300	11.11%	69.81%	poor	Watt Mountain Fm
1527	1528	1	5	95	115	270	370	37.04%	69.81%	poor	Watt Mountain Fm

August, 2001

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name PCI LEIGE 11-8-95-22

UWI: 00/11-08-095-22W4/0

Borehole Diameter: 222 mm

Correction to True North: 23.4 degrees

Comments: P1AZ was calculated from adding hole azimuth (AZIM) to the relative bearing (RB)

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)				or Group
919	920	1	310	310	333	230	225	2.22%	41.51%	fair	Waterways Fm
920	921	1	310	310	333	240	225	6.67%	41.51%	good	Waterways Fm
921	922	1	310	310	333	240	225	6.67%	41.51%	good	Waterways Fm
922	923	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
923	924	1	300	300	323	240	230	4.35%	44.65%	good	Waterways Fm
924	925	1	300	300	323	240	230	4.35%	44.65%	good	Waterways Fm
925	926	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
926	927	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
927	928	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
928	929	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
929	930	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
930	931	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
931	932	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
932	933	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
933	934	1	305	305	328	240	225	6.67%	41.51%	good	Waterways Fm
934	935	1	305	305	328	250	225	11.11%	41.51%	good	Waterways Fm
935	936	1	310	310	333	250	225	11.11%	41.51%	good	Waterways Fm
936	937	1	310	310	333	250	230	8.70%	44.65%	good	Waterways Fm
937	938	1	310	310	333	250	230	8.70%	44.65%	good	Waterways Fm
938	939	1	300	300	323	250	230	8.70%	44.65%	good	Waterways Fm
939	940	1	300	300	323	245	235	4.26%	47.80%	good	Waterways Fm
940	941	1	300	300	323	230	225	2.22%	41.51%	fair	Waterways Fm
1041	1042	1	5	95	118	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1042	1043	1	5	95	118	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1043	1044	1	5	95	118	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1044	1045	1	0	90	113	260	270	3.85%	63.52%	fair	Prairie Evaporite Fm
1045	1046	1	350	260	283	260	270	3.85%	63.52%	fair	Prairie Evaporite Fm

August, 2001

1046	1047	1	345	255	278	230	240	4.35%	44.65%	fair	Prairie Evaporite Fm
1047	1048	1	340	250	273	225	240	6.67%	41.51%	fair	Prairie Evaporite Fm
1048	1049	1	340	250	273	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1049	1050	1	340	250	273	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1248	1249	1	365	275	298	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1249	1250	1	365	275	298	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1250	1251	1	365	275	298	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1251	1252	1	360	270	293	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1255	1256	1	360	270	293	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1256	1257	1	355	265	288	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1257	1258	1	355	265	288	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1258	1259	1	355	265	288	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1259	1260	1	360	270	293	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name SCEPTRE MURPHY T'FLAGS A1-26-52-25

UWI: 11/01-26-052-25W3/2

Borehole Diameter: 251 mm

Correction to True North: 0 (log corrected using magnetic declination of 21 degrees)

Comments: Breakout occurs at bottom of hole and, therefore, may be influenced by drilling effects. Breakout does occur in both the main and repeat pass.

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)		_		or Group
578	579	1	335	335	335	270	265	1.89%	66.67%	poor	Duperow Fm
579	580	1	335	335	335	270	265	1.89%	66.67%	poor	Duperow Fm
580	581	1	335	335	335	270	265	1.89%	66.67%	poor	Duperow Fm
581	582	1	330	330	330	270	265	1.89%	66.67%	poor	Duperow Fm
582	583	1	325	325	325	270	265	1.89%	66.67%	poor	Duperow Fm

10-122

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Definition of Column Headings:

top of interval (m log depth)
bottom of interval (m log depth)
thickness of interval (m)
azimuth of C1 caliper with respect to magnetic north (degrees)
azimuth of C1 caliper corrected to true north
Breakout azimuth corrected to true north
C1-C3 caliper measurement (mm)
C2-C4 caliper measurement (mm)
% difference between C1 and C2 readings
% difference between smaller caliper reading and hole gauge
quality of breakout (see report for details)
formation or group identified in well ticket that breakout occurs within

SD of all corrected CMAX Az data from all wells: 53° SD of Population 1 corrected CMAX Az data from all wells: 36° SD of Population 2 corrected CMAX Az data from all wells: 35°

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name: MURPHY ET AL GRAHAM 12-18-87-3

UWI: 100/12-18-087-03W5/00

Borehole Diameter: 159 mm

Correction to True North: 23.27 degrees

Comments: Well drilled with NaCl Gel Chem mud but little breakout shown in well

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation	
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)	Ŭ	Ŭ		or Group	
1152	1153	1	105	105	128	228.5	190.0	20.3%	19.5%	good	BH LK Grp	
1153	1154	1	80	80	103	256.5	215.0	19.3%	35.2%	good	BH LK Grp	
1478	1479	1	320	230	253	287.0	302.0	5.2%	80.5%	poor	Prairie Evaporite Fm	
1493	1494	1	270	270	293	292.0	254.0	15.0%	59.7%	good	Prairie Evaporite Fm	
1494	1495	1	270	270	293	298.5	267.0	11.8%	67.9%	good	Prairie Evaporite Fm	
1495	1496	1	270	270	293	304.8	292.0	4.4%	83.6%	good	Prairie Evaporite Fm	
1496	1497	1	270	270	293	311.0	292.0	6.5%	83.6%	good	Prairie Evaporite Fm	
1497	1498	1	270	270	293	311.0	292.0	6.5%	83.6%	good	Prairie Evaporite Fm	
1567	1568	1	305	305	328	171.0	159.0	7.5%	0.0%	good	Keg River Fm	
1568	1569	1	300	300	323	171.0	159.0	7.5%	0.0%	good	Keg River Fm	
1569	1570	1	300	300	323	171.0	159.0	7.5%	0.0%	good	Keg River Fm	
1570	1571	1	295	295	318	171.0	159.0	7.5%	0.0%	good	Keg River Fm	
1571	1572	1	295	295	318	171.0	159.0	7.5%	0.0%	good	Keg River Fm	
1572	1573	1	290	290	313	171.0	159.0	7.5%	0.0%	good	Keg River Fm	
1573	1574	1	290	290	313	171.0	159.0	7.5%	0.0%	good	Keg River Fm	
1574	1575	1	285	285	308	171.0	159.0	7.5%	0.0%	good	Keg River Fm	
1575	1576	1	280	280	303	171.0	159.0	7.5%	0.0%	good	Keg River Fm	
1576	1577	1	280	280	303	171.0	159.0	7.5%	0.0%	good	Granite Wash Fm	
1577	1578	1	265	265	288	171.0	159.0	7.5%	0.0%	good	Granite Wash Fm	
1578	1579	1	265	265	288	171.0	159.0	7.5%	0.0%	good	Granite Wash Fm	
	SD of all corrected CMAX Az data: 34											

27

0

SD of all corrected CMAX Az data:

SD of Population 1 corrected CMAX Az data:

SD of Population 2 corrected CMAX Az data:

AGI 10-122

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name: COLIN ET AL KIDNEY 10-19-91-4

UWI: 102/10-19-091-04W5/00

Borehole Diameter: 159 mm

Correction to True North: 0 (log corrected to true north)

Comments: Possibly other areas of breakout but caliper curves masked by pad resistivity traces in places

Comments: Well name on log header is DORSET ET AL KIDNEY 10-19-91-4

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	<u>(m)</u>	(degrees)	(degrees)	(degrees)	(mm)	(mm)		-		or Group
1152	1153	1	290	290	290	225	220	2.27%	38.36%	fair	Prairie Evaporite Fm
1153	1154	1	288	288	288	235	225	4.44%	41.51%	fair	Prairie Evaporite Fm
1154	1155	1	286	286	286	250	230	8.70%	44.65%	fair	Prairie Evaporite Fm
1155	1156	1	284	284	284	240	225	6.67%	41.51%	fair	Prairie Evaporite Fm
1156	1157	1	282	282	282	230	220	4.55%	38.36%	fair	Prairie Evaporite Fm
1157	1158	1	280	280	280	225	200	12.50%	25.79%	fair	Prairie Evaporite Fm
1198	1199	1	195	105	105	175	180	2.86%	10.06%	fair	Prairie Evaporite Fm
1199	1200	1	195	105	105	175	185	5.71%	10.06%	fair	Prairie Evaporite Fm
1200	1201	1	195	105	105	175	195	11.43%	10.06%	fair	Prairie Evaporite Fm
1201	1202	1	195	105	105	180	195	8.33%	13.21%	fair	Prairie Evaporite Fm
1202	1203	1	195	105	105	185	200	8.11%	16.35%	fair	Prairie Evaporite Fm
1203	1204	1	200	110	110	190	200	5.26%	19.50%	fair	Prairie Evaporite Fm
1204	1205	1	200	110	110	185	200	8.11%	16.35%	fair	Prairie Evaporite Fm
1205	1206	11	200	110	110	175	195	11.43%	10.06%	fair	Prairie Evaporite Fm
1206	1207	1	200	110	110	175	195	11.43%	10.06%	fair	Prairie Evaporite Fm
1207	1208	1	200	110	110	180	195	8.33%	13.21%	fair	Prairie Evaporite Fm
1208	1209	1	200	110	110	175	195	11.43%	10.06%	fair	Prairie Evaporite Fm
1209	1210	1	205	115	115	180	195	8.33%	13.21%	fair	Prairie Evaporite Fm
1210	1211	1	205	115	115	180	195	8.33%	13.21%	fair	Prairie Evaporite Fm
1211	1212	1	210	120	120	175	190	8.57%	10.06%	fair	Prairie Evaporite Fm
1212	1213	1	210	120	120	175	190	8.57%	10.06%	fair	Prairie Evaporite Fm
1213	1214	1	210	120	120	180	190	5.56%	13.21%	fair	Prairie Evaporite Fm
1214	1215	1	210	120	120	180	190	5.56%	13.21%	fair	Prairie Evaporite Fm
1215	1216	1	210	120	120	165	180	9.09%	3.77%	fair	Prairie Evaporite Fm
1216	1217	1	210	120	120	160	175	9.38%	0.63%	fair	Prairie Evaporite Fm

13

SD of Population 1 corrected CMAX Az data:

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Well Name: NCE ENER SENEX 14-9-92-4

100/14-09-092-04W5/0 UWI:

Borehole Diameter: 200 mm

Correction to True North: 25.08 (corrected 18.2 deg E on log)

Comments: Oil-based mud used, hole near gauge and breakout difficult to identify

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Ouality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)	0		×J	or Group
1203	1204	1	200	110	135	200	205	2.50%	25.79%	fair	Prairie Evanorite Em
1204	1205	1	195	105	130	200	205	2.50%	25.79%	fair	Prairie Evaporite Fm
1205	1206	1	190	100	125	200	210	5.00%	25.79%	fair	Prairie Evaporite Fm
1206	1207	1	190	100	125	200	205	2.50%	25.79%	fair	Prairie Evaporite Fm
1232	1233	1	355	265	290	200	210	5.00%	25.79%	fair	Prairie Evaporite Fm
1233	1234	1	355	265	290	200	210	5.00%	25.79%	fair	Prairie Evaporite Fm
1234	1235	1	345	255	280	200	210	5.00%	25.79%	fair	Prairie Evaporite Fm
	SD of Popula	tion 1 corre	ected CMA	X Az data:	25		·			I	

SD of Population 1 corrected CMAX Az data:

Well Name: UNOCAL KIDNEY 10-32-90-4

UWI: 00/10-32-090-04W5/0

Borehole Diameter: 158.9 mm

Correction to True North: 23.6

Comments: only one section of breakout at the top of the logged interval

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	<u>(m)</u>	(degrees)	(degrees)	(degrees)	_(mm)	(mm)	0	Ū		or Group
1138	1139	1	5	95	119	170	175	2.94%	6.92%	fair	BH LK Grp
1139	1140	1	10	100	124	170	175	2.94%	6.92%	fair	BH LK Grp
1140	1141	1	15	105	129	170	175	2.94%	6.92%	fair	BH LK Grp
1141	1142	1	20	110	134	170	175	2.94%	6.92%	fair	BH LK Grp
1142	1143	1	25	115	139	170	175	2.94%	6.92%	fair	BH LK Grp
1143	1144	1	30	120	144	170	175	2.94%	6.92%	fair	BH LK Grp
1144	1145	1	30	120	144	167	172	2.99%	5.03%	fair	BH LK Grp
1145	1146	1	30	120	144	165	170	3.03%	3.77%	fair	Slave Point Fm

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

1146	1147	1	30	120	144	159	164	3.14%	0.00%	fair	Slave Point Fm
SI) of Popula	tion 1 corre	ected CMAX	Az data:	18		····			1000	Save rent rin

Well Name: UNOCAL KIDNEY 9-5-91-4

UWI: 00/09-05-091-04W5/0

Borehole Diameter:	158.9 mm

Correction to True North:

Borehole Dia	ameter:	158.9	mm	Correction 1	to True North:	23.5					
Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Ouality	Formation
(m KB)	(m KB)	<u>(m)</u>	(degrees)	(degrees)	(degrees)	(mm)	(mm)	8		•	or Group
1016	1017	1	125	125	149	190	180	5.56%	13.21%	poor	BH LK Gm
1017	1018	1	125	125	149	200	180	11.11%	13.21%	poor	BH LK Grp
1018	1019	1	130	130	154	200	180	11.11%	13.21%	poor	BH LK Gm
1019	1020	1	130	130	154	200	180	11.11%	13.21%	poor	BHLK Grp
1020	1021	1	130	130	154	200	180	11.11%	13.21%	poor	BHLK Gm
1021	1022	1	125	125	149	200	180	11.11%	13.21%	poor	BHLK Grn
1022	1023	1	125	125	149	195	180	8.33%	13.21%	poor	BHLK Grn
1023	1024	1	120	120	144	190	180	5.56%	13.21%	poor	BHLK Grp
1024	1025	1	110	110	134	195	180	8.33%	13.21%	poor	BHLK Grp
1025	1026	. 1	105	105	129	200	185	8.11%	16.35%	poor	BHLK Grp
1026	1027	1	100	100	124	205	190	7.89%	19.50%	poor	BHLK Gm
1027	1028	1	95	95	119	205	185	10.81%	16.35%	poor	BH LK Grp
1028	1029	1	90	90	114	190	175	8.57%	10.06%	poor	BHLK Grp
1134	1135	1	260	260	284	175	162	8.02%	1.89%	good	Watt Mountain Fm
1135	1136	1	250	250	274	185	162	14.20%	1.89%	pood	Watt Mountain Fm
1136	1137	1	230	230	254	190	162	17.28%	1.89%	good	Watt Mountain Fm
1137	1138	1	230	230	254	195	165	18.18%	3.77%	good	Watt Mountain Fm
1138	1139	1	230	230	254	190	165	15.15%	3.77%	good	Watt Mountain Fm
1139	1140	1	230	230	254	185	165	12.12%	3.77%	good	Watt Mountain Fm
1140	1141	1	230	230	254	180	162	11.11%	1.89%	good	Prairie Evaporite Em
1264	1265	1	285	285	309	175	170	2.94%	6.92%	fair	Prairie Evaporite Fm
1265	1266	1	290	290	314	175	170	2,94%	6.92%	fair	Prairie Evaporite Em
1288	1289	1	285	285	309	175	159	10.06%	0.00%	fair	Prairie Evaporite Fm
1289	1290	1	290	290	314	172	159	8.18%	0.00%	fair	Prairie Evaporite Fm
1290	1291	1	290	290	314	175	163	7.36%	2.52%	fair	Prairie Evaporite Fm

AGI 10-122

Table E.2:	Detailed summary	of breakout data in	the Saskatchewan,	, Beaverhill Lake, and Elk Point C	Froups
------------	------------------	---------------------	-------------------	------------------------------------	--------

4004	1000					· · · · ·								
1291	1292	1	285	285	309	172	159	8.18%	0.00%	fair	Prairie Evaporite Fm			
1292	1293	1	290	290	314	172	159	8.18%	0.00%	fair	Prairie Evaporite Fm			
1293	1294	1	290	290	314	175	163	7.36%	2.52%	fair	Prairie Evaporite Fm			
1294	1295	1	290	290	314	175	163	7.36%	2.52%	fair	Prairie Evaporite Fm			
	SD	of all corre	ected CMA	X Az data:	53									
SD of Population 1 corrected CMAX Az data: 30 SD of Population 2 convected CMAX Az data: 9														
	SD of Popula	ation 2 corre	ected CMA	X Az data:	0									
Well Name:	MURPHY	TROUT 9)-3-89-3											
UWI:	00/09-03-089	9-03W5/0												
Borehole Di	iameter:	200	mm											
Correction t	to True North:	0	(log correc	ted 23 degre	ees to true north)									
Comments:	Comments: Breakout between 1403 and 1414 m KB seen in both the main and repeat passes													
Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Ouality	Formation			
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)			SC	or Group			
1291	1292	1	100	100	100	250	225	11.11%	41.51%	fair	Prairie Evaporite Fm			
1298	1299	1	105	105	105	265	250	6.00%	57.23%	fair	Prairie Evaporite Fm			
1299	1300	1	100	100	100	270	250	8.00%	57.23%	fair	Prairie Evaporite Fm			
1403	1404	1	205	115	115	200	205	2.50%	25.79%	fair	Prairie Evaporite Fm			
1404	1405	1	205	115	115	210	225	7.14%	32.08%	good	Prairie Evaporite Fm			
1405	1406	1	205	115	115	225	230	2.22%	41.51%	good	Prairie Evaporite Fm			
1406	1407	1	215	125	125	220	235	6.82%	38.36%	good	Prairie Evaporite Fm			
1407	1408	1	215	125	125	220	240	9.09%	38.36%	good	Prairie Evaporite Fm			
1408	1409	1	210	120	120	220	240	9.09%	38.36%	good	Prairie Evaporite Fm			
1409	1410	1	210	120	120	220	240	9.09%	38.36%	good	Prairie Evaporite Fm			
1410	1411	1	205	115	115	220	235	6.82%	38.36%	good	Prairie Evaporite Fm			
1411	1412	1	205	115	115	220	230	4.55%	38.36%	good	Prairie Evaporite Fm			
1412	1413	1	200	110	110	210	220	4.76%	32.08%	good	Prairie Evaporite Fm			
1413	1414	1	200	110	110	200	210	5.00%	25.79%	good	Prairie Evaporite Fm			
	SD of Popula	tion 1 corre	ected CMA	X Az data:	15				••••••••••••••••••••••••••••••••••••••					

Well Name: UNOCAL ET AL TROUT 8-10-89-3

UWI: 00/08-10-089-03W5/0

Borehole Diameter: 159 mm

											X
Correction t	to True North:	0	(log correc	ted 24 degre	es to true north)						
Comments:		Breakout sh	nows minor	population	between 1091 and 110	0 m KB :	approx. 9	0 degrees from	n the major	population	1
Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)	-	•		or Group
1091	1092	1	210	210	210	170	165	3.03%	3.77%	fair	BH LK Grp
1092	1093	1	215	215	215	180	170	5.88%	6.92%	fair	BH LK Grp
1093	1094	1	215	215	215	200	180	11.11%	13.21%	fair	BH LK Grp
1094	1095	1	220	220	220	210	175	20.00%	10.06%	fair	BH LK Grp
1095	1096	1	230	230	230	210	175	20.00%	10.06%	fair	BH LK Gro
1096	1097	1	235	235	235	200	165	21.21%	3.77%	fair	BH LK Grp
1097	1098	1	240	240	240	190	165	15.15%	3.77%	fair	BH LK Grp
1098	1099	1	245	245	245	185	160	15.63%	0.63%	fair	BH LK Grp
1099	1100	1	250	250	250	170	160	6.25%	0.63%	fair	BH LK Grp
1107	1108	1	230	140	140	170	175	2.94%	6.92%	poor	BH LK Grp
1108	1109	1	225	135	135	170	185	8.82%	6.92%	fair	BH LK Grp
1109	1110	1	225	135	135	170	190	11.76%	6.92%	fair	BH LK Grp
1110	1111	1	220	130	130	170	205	20.59%	6.92%	fair	BH LK Grp
1111	1112	1	215	125	125	170	200	17.65%	6.92%	fair	BH LK Grp
1112	1113	1	215	125	125	170	195	14.71%	6.92%	fair	BH LK Grp
1113	1114	1	210	120	120	170	190	11.76%	6.92%	fair	BH LK Grp
1114	1115	1	205	115	115	165	185	12.12%	3.77%	fair	BH LK Grp
1326	1327	1	135	135	135	285	260	9.62%	63.52%	good	Prairie Evaporite Fm
1330	1331	1	130	130	130	290	265	9.43%	66.67%	good	Prairie Evaporite Fm
1331	1332	1	130	130	130	295	270	9.26%	69.81%	good	Prairie Evaporite Fm
	SL) of all corre	ected CMA	X Az data:	102				5		
	SD of Popula	ation 1 corre	ected CMA	X Az data:	14						
	SD of Popula	ation 2 corre	ected CMA	X Az data:	28						
Well Name:	SUNCOR	STROME	E 11-16-4	4-16							
UWI:	00/11-16-044	4-16W4/0									
Borehole D	iameter:	222	mm								
Correction (to True North:	20.1	degrees								
Comments:	Breakout show	ws minor po	pulation be	tween 1710	and 1716 m KB approx	x. 90 dee	rees fror	n the major po	mulation		
Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Onality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)			Zumity	

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Advanced Geotechnology Inc.

(m) | (aegrees) | (aegrees) | (degrees) (mm) (mm) or Group

1470	1471	1	360	270	290	235	238	1.28%	47.80%	poor	BH LK Grp
1471	1472	-1	360	270	290	235	240	2.13%	47.80%	poor	BH LK Grp
1472	1473	1	355	265	285	235	242	2.98%	47.80%	poor	BHLK Grp
1473	1474	1	355	265	285	235	245	4.26%	47.80%	poor	BHLK Grn
1474	1475	1	350	260	280	240	248	3.33%	50.94%	noor	BH LK Grp
1475	1476	1	350	260	280	240	250	4.17%	50.94%	fair	BHIK Grp
1476	1477	1	350	260	280	240	250	4.17%	50.94%	fair	BHLK Gm
1477	1478	1	350	260	280	240	250	4.17%	50.94%	fair	BHIK Gm
1478	1479	1	350	260	280	240	250	4.17%	50.94%	fair	BH LK Grp
1479	1480	1	350	260	280	240	250	4.17%	50.94%	fair	BH LK Grp
1480	1481	1	355	265	285	240	250	4.17%	50.94%	fair	BHIK Gm
1481	1482	1	355	265	285	240	250	4.17%	50.94%	fair	BH LK Grn
1482	1483	1	355	265	285	240	250	4.17%	50.94%	fair	BH LK Grp
1483	1484	1	355	265	285	235	250	6.38%	47.80%	fair	BH LK Grp
1484	1485	1	350	260	280	235	250	6.38%	47.80%	fair	BH LK Grp
1485	1486	1	350	260	280	235	250	6.38%	47.80%	fair	BH LK Gm
1486	1487	1	350	260	280	235	245	4.26%	47.80%	fair	BH LK Grp
1487	1488	1	350	260	280	235	245	4.26%	47.80%	fair	BH LK Grp
1488	1489	1	345	255	275	235	250	6.38%	47.80%	fair	BH LK Grp
1489	1490	1	345	255	275	235	250	6.38%	47.80%	fair	BH LK Gm
1490	1491	1	340	250	270	245	250	2.04%	54.09%	noor	BHLK Grp
1710	1711	1	280	190	210	260	265	1.92%	63.52%	poor	Prairie Evaporite Em
1711	1712	1	280	190	210	260	275	5,77%	63.52%	fair	Prairie Evaporite Fm
1712	1713	1	280	190	210	260	275	5.77%	63.52%	fair	Prairie Evaporite Em
1713	1714	1	280	190	210	260	275	5.77%	63.52%	fair	Prairie Evaporite Em
1714	1715	1	280	190	210	260	275	5.77%	63.52%	fair	Prairie Evaporite Fm
1715	1716	1	280	190	210	260	275	5.77%	63.52%	fair	Prairie Evaporite Em
1731	1732	1	210	210	230	275	260	5.77%	63.52%	fair	Prairie Evaporite Em
1732	1733	1	215	215	235	265	255	3.92%	60.38%	poor	Prairie Evaporite Fm
1733	1734	1	215	215	235	265	255	3.92%	60.38%	poor	Prairie Evaporite Fm
1734	1735	1	215	215	235	275	265	3.77%	66.67%	poor	Prairie Evaporite Fm
1735	1736	1	210	210	230	275	265	3.77%	66.67%	poor	Prairie Evaporite Fm
	SD) of all corre	ected CMA	X Az data:	63	!					

9

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

SD of all corrected CMAX Az data:

SD of Population 1 corrected CMAX Az data:

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

23

SD of Population 2 corrected CMAX Az data:

Well Name: DORSET ET AL MARTENCK 11-12-80-5

UWI: 00/11-12-080-05W5/0

Borehole Diameter: 209.55 mm (8.25")

Correction to True North: 20.3 degrees

Comments: Log recorded in feet

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)	-			or Group
1339	1340	1	80	80	100	350	340	2.94%	113.84%	poor	BH LK Grp
1340	1341	1	80	80	100	365	340	7.35%	113.84%	poor	BH LK Grp
1341	1342	1	80	80	100	370	355	4.23%	123.27%	poor	BH LK Grp
1342	1343	1	80	80	100	375	355	5.63%	123.27%	poor	BH LK Grp
1343	1344	1	80	80	100	365	355	2.82%	123.27%	poor	BH LK Grp
1344	1345	1	75	75	95	360	340	5.88%	113.84%	poor	BH LK Grp
1521	1522	1	5	95	115	270	330	22.22%	69.81%	poor	Watt Mountain Fm
1522	1523	1	5	95	115	270	405	50.00%	69.81%	poor	Watt Mountain Fm
1523	1524	1	10	100	120	330	410	24.24%	107.55%	poor	Watt Mountain Fm
1524	1525	1	10	100	120	270	370	37.04%	69.81%	poor	Watt Mountain Fm
1525	1526	1	10	100	120	270	350	29.63%	69.81%	poor	Watt Mountain Fm
1526	1527	1	5	95	115	270	300	11.11%	69.81%	poor	Watt Mountain Fm
1527	1528	11	5	95	115	270	370	37.04%	69.81%	poor	Watt Mountain Fm

SD of Population 1 corrected CMAX Az data:

19

Well Name: PCI LEIGE 11-8-95-22

UWI: 00/11-08-095-22W4/0

Correction to True North: 23.4 degrees

Comments: P1AZ was calculated from adding hole azimuth (AZIM) to the relative bearing (RB)

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	(m KB)	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)		_		or Group
919	920	1	310	310	333	230	225	2.22%	41.51%	fair	Waterways Fm
920	921	1	310	310	333	240	225	6.67%	41.51%	good	Waterways Fm
921	922	1	310	310	333	240	225	6.67%	41.51%	good	Waterways Fm

AGI 10-122

1256

1257

355

1

265

288

220

225

2.27%

		1			Contraction of the second s						
922	923	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
923	924	1	300	300	323	240	230	4.35%	44.65%	good	Waterways Fm
924	925	1	300	300	323	240	230	4.35%	44.65%	good	Waterways Fm
925	926	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
926	927	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
927	928	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
928	929	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
929	930	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
930	931	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
931	932	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
932	933	1	300	300	323	240	225	6.67%	41.51%	good	Waterways Fm
933	934	1	305	305	328	240	225	6.67%	41.51%	good	Waterways Fm
934	935	1	305	305	328	250	225	11.11%	41.51%	good	Waterways Fm
935	936	1	310	310	333	250	225	11.11%	41.51%	good	Waterways Fm
936	937	1	310	310	333	250	230	8.70%	44.65%	good	Waterways Fm
937	938	1	310	310	333	250	230	8.70%	44.65%	good	Waterways Fm
938	939	1	300	300	323	250	230	8.70%	44.65%	good	Waterways Fm
939	940	1	300	300	323	245	235	4.26%	47.80%	good	Waterways Fm
940	941	1	300	300	323	230	225	2.22%	41.51%	fair	Waterways Fm
1041	1042	1	5	95	118	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1042	1043	1	5	95	118	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1043	1044	1	5	95	118	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1044	1045	1	0	90	113	260	270	3.85%	63.52%	fair	Prairie Evaporite Fm
1045	1046	1	350	260	283	260	270	3.85%	63.52%	fair	Prairie Evaporite Fm
1046	1047	1	345	255	278	230	240	4.35%	44.65%	fair	Prairie Evaporite Fm
1047	1048	1	340	250	273	225	240	6.67%	41.51%	fair	Prairie Evaporite Fm
1048	1049	1	340	250	273	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1049	1050	1	340	250	273	225	235	4.44%	41.51%	fair	Prairie Evaporite Fm
1248	1249	1	365	275	298	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1249	1250	1	365	275	298	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1250	1251	1	365	275	298	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1251	1252	1	360	270	293	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1255	1256	1	360	270	293	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

Advanced Geotechnology Inc.

Prairie Evaporite Fm

Prairie Evaporite Fm

fair

38.36%

Table E.2: Detailed summary of breakout data in the Saskatchewan, Beaverhill Lake, and Elk Point Groups

1257	1258	1	355	265	288	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
1258	1259	1	355	265	288	220	225	2.27%	. 38.36%	fair	Prairie Evaporite Fm
1259	1260	1	360	270	293	220	225	2.27%	38.36%	fair	Prairie Evaporite Fm
	SD of Popula	ected CMA	X Az data:	40							

SD of Population 1 corrected CMAX Az data:

Well Name: SCEPTRE MURPHY T'FLAGS A1-26-52-25

UWI: 11/01-26-052-25W3/2

Borehole Diameter: 251 mm

Correction to True North: 0 (log corrected using magnetic declination of 21 degrees)

Comments: Breakout occurs at bottom of hole and, therefore, may be influenced by drilling effects. Breakout does occur in both the main and repeat pass.

8

Тор	Bottom	Thickness	P1AZ	CMAX Az	CMAX Az wrt true N	C1	C2	% Enlarge	% Gauge	Quality	Formation
(m KB)	<u>(m KB)</u>	(m)	(degrees)	(degrees)	(degrees)	(mm)	(mm)	-	-	- ·	or Group
578	579	1	335	335	335	270	265	1.89%	66.67%	poor	Duperow Fm
579	580	1	335	335	335	270	265	1.89%	66.67%	poor	Duperow Fm
580	581	1	335	335	335	270	265	1.89%	66.67%	poor	Duperow Fm
581	582	1	330	330	330	270	265	1.89%	66.67%	poor	Duperow Fm
582	583	1	325	325	325	270	265	1.89%	66.67%	poor	Duperow Fm

SD of Population 1 corrected CMAX Az data:

ALL WELLS IN ANALYZED IN THE EXPANDED AREA

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 80 Degrees Maximum Azimuth ... 180 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 188 Maximum Percentage 22.9 Percent Mean Percentage 14.3 Percent Standard Deviation ... 6.86 Percent Vector Mean 301.39 Degrees Confidence Interval .. 5.09 Degrees R-mag 0.82

Population 2

Figure E.2.1: Roseplot of borehole breakout data in the Beaverhill Lake Group and Elk Point Group for all wells analyzed in the expanded area. A small 5 m breakout zone from the Saskatchewan Group from Sceptre Murphy T'Flags A1-26-52-25W3 is also included in the data set.

ALL WELLS FROM ATLAS IN EXPANDED AREA

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 6 Maximum Percentage 33.3 Percent Mean Percentage 25 Percent Standard Deviation ... 8.91 Percent Vector Mean 319.09 Degrees Confidence Interval .. 17.46 Degrees R-mag 0.93

Figure E.2.2: Roseplot of borehole breakout data for all wells given in the Geolgical Atlas of the Western Canadian Sedimentary Basin (Bell et al., 1994) in the expanded area. Note that only average values for each of the 6 wells are presented and data are not presented on a per metre basis as in other roseplots. It should be also noted that the recorded breakout in these wells, although from Paleozoic-age rocks, are determined from above the Beaverhill Lake Group and Elk Point Group.

Population 1

Population 2

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 0 Degrees Maximum Azimuth ... 80 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 1 Maximum Percentage 100 Percent Mean Percentage 100 Percent Mean Percentage 100 Percent Standard Deviation ... 0 Percent Vector Mean 73 Degrees Confidence Interval .. 15.84 Degrees R-mag 1

Figure E.2.3: Roseplot of borehole breakout data in the Beaverhill Lake Group and Elk Point Group for Murphy et al Graham 12-18-87-3W5.

COLIN ET AL KIDNEY 10-19-91-4W4

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 25 Maximum Percentage 40 Percent Mean Percentage 33.3 Percent Standard Deviation ... 7.45 Percent Vector Mean 290.58 Degrees Confidence Interval .. 4.52 Degrees R-mag 0.98.

Figure E.2.4: Roseplot of borehole breakout data in the Elk Point Group for COLIN ET AL KIDNEY 10-19-91-4W4.

NCE ENER SENEX 14-9-92-4W5

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 7 Maximum Percentage 28.6 Percent Mean Percentage 25 Percent Standard Deviation ... 6.61 Percent Vector Mean 299.39 Degrees Confidence Interval .. 17.33 Degrees R-mag 0.92

Figure E.2.5: Roseplot of borehole breakout data in the Elk Point Group for NCE ENER SENEX 14-9-92-4W5.

UNOCAL KIDNEY 10-32-90-4W5

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 9 Maximum Percentage 44.4 Percent Mean Percentage 25 Percent Standard Deviation ... 12.94 Percent Vector Mean 315.76 Degrees Confidence Interval .. 11.98 Degrees R-mag 0.95.

Figure E.2.6: Roseplot of borehole breakout data in the Beaverhill Lake Group for UNOCAL KIDNEY 10-32-90-4W5.

UNOCAL KIDNEY 9-5-91-4W5

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 80 Degrees Maximum Azimuth ... 180 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 24 Maximum Percentage 29.2 Percent Mean Percentage 14.3 Percent Standard Deviation ... 9.2 Percent Vector Mean 314.33 Degrees Confidence Interval .. 12.02 Degrees R-mag 0.87

Population 2

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 0 Degrees Maximum Azimuth ... 80 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 5 Maximum Percentage 100 Percent Mean Percentage 100 Percent Mean Percentage 100 Percent Standard Deviation ... 0 Percent Vector Mean 74 Degrees Confidence Interval .. 7.09 Degrees R-mag 1

Figure E.2.7: Roseplot of borehole breakout data in the Beaverhill Lake Group and Elk Point Group for UNOCAL KIDNEY 9-5-91-4W5.

MURPHY TROUT 9-3-89-3W5

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 14 Maximum Percentage 50 Percent Mean Percentage 33.3 Percent Standard Deviation ... 13.3 Percent Vector Mean 293.6 Degrees Confidence Interval .. 8.55 Degrees R-mag 0.96.

Figure E.2.8: Roseplot of borehole breakout data in the Elk Point Group for MURPHY TROUT 9-3-89-3W5.

UNOCAL ET AL TROUT 8-10-89-3W5

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 80 Degrees Maximum Azimuth ... 180 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 11 Maximum Percentage 54.5 Percent Mean Percentage 25 Percent Mean Percentage 25 Percent Standard Deviation ... 19.89 Percent Vector Mean 309.12 Degrees Confidence Interval .. 8.36 Degrees R-mag 0.97

Population 2

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 0 Degrees Maximum Azimuth ... 80 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 9 Maximum Percentage 33.3 Percent Mean Percentage 20 Percent Standard Deviation ... 8.76 Percent Vector Mean 48.83 Degrees Confidence Interval ... 18.01 Degrees R-mag 0.89

Figure E.2.9: Roseplot of borehole breakout data in the Beaverhill Lake Group and Elk Point Group for UNOCAL ET AL TROUT 8-10-89-3W5.

SUNCOR STROME 11-16-44-16W4

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 80 Degrees Maximum Azimuth ... 180 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 21 Maximum Percentage 76.2 Percent Mean Percentage 33.3 Percent Standard Deviation ... 33.27 Percent Vector Mean 281.43 Degrees Confidence Interval ... 3.48 Degrees R-mag 0.99

Population 2

Calculation Method ... Frequency
Class Interval 10 Degrees
Filtering Activated
Minimum Azimuth ... 0 Degrees
Maximum Azimuth ... 80 Degrees
Data Type Bidirectional
Rotation Amount 0 Degrees
Population 11
Maximum Percentage 54.5 Percent
Mean Percentage 50 Percent
Standard Deviation 5.25 Percent
Vector Mean 40.37 Degrees
Confidence Interval ... 13.81 Degrees
R-mag 0.92

Figure E.2.10: Roseplot of borehole breakout data in the Beaverhill Lake Group and Elk Point Group for SUNCOR STROME 11-16-44-16W4.

DORSET ET AL MARTENCK 11-12-80-5W5

Population 1 Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population 13 Maximum Percentage 38.5 Percent Mean Percentage 25 Percent Standard Deviation ... 12.16 Percent Vector Mean 288.86 Degrees Confidence Interval .. 9.98 Degrees R-mag 0.95

Figure E.2.11: Roseplot of borehole breakout data in the Beaverhill Lake Group and Elk Point Group for DORSET ET AL MARTENCK 11-12-80-5W5.

PCI LEIGE 11-8-95-22W4

Population 1

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Deactivated Data Type Bidirectional Rotation Amount 0 Degrees Population Amount 0 Degrees Population 40 Maximum Percentage 40 Percent Mean Percentage 20 Percent Standard Deviation ... 12.02 Percent Vector Mean 310.25 Degrees Confidence Interval .. 12.36 Degrees R-mag 0.78

Figure E.2.12: Roseplot of borehole breakout data in the Beaverhill Lake Group and Elk Point Group for PCI LEIGE 11-8-95-22W4.

SCEPTRE MURPHY T'FLAGS A1-26-52-25W3

Population 1

Figure E.2.13: Roseplot of borehole breakout data in the Saskatchewan Group (Duperow Formation) for SCEPTRE MURPHY T'FLAGS A1-26-52-25W3.

VOYAGER ET AL BRUCE 6-14-48-14W4

Population 1 No breakouts observed.

Population 2

Calculation Method ... Frequency Class Interval 10 Degrees Filtering Activated Minimum Azimuth ... 0 Degrees Maximum Azimuth ... 80 Degrees Data Type Bidirectional Rotation Amount 0 Degrees Population 17 Maximum Percentage 58.8 Percent Mean Percentage 33.3 Percent Mean Percentage 33.3 Percent Standard Deviation ... 23.72 Percent Vector Mean 75.78 Degrees Confidence Interval ... 3.87 Degrees R-mag 0.99

Figure E.2.14: Roseplot of borehole breakout data in the Elk Point Group for VOYAGER ET AL BRUCE 6-14-48-14W4. The breakout for this well has been reclassified as population 2 from the original work.

APPENDIX F

CD of Report Contents

