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Abstract

This report presents the results and findings of a hydrogeological mapping project conducted by the
Alberta Geological Survey to better understand groundwater conditions in an area of west-central Alberta,
centred on the Town of Fox Creek. This study used fluid pressure, fluid chemistry, and temperature data
to map the hydrogeological properties of 24 bedrock formations or grouped geological units spanning
from the Upper Cretaceous Wapiti Formation, at depths of less than 500 m, to the base of the Cambrian
succession, at depths of over 4000 m. For each formation or unit, maps were created showing aquifer
delineation based on water-recovering drillstem tests, potentiometric surface, total dissolved solids, and
water driving force. In addition to the hydrogeological mapping, pressure-elevation plots were created to
examine vertical pressure gradients and hydraulic communication between formations. Water chemistry
data were also analyzed using Piper plots and major ion data to determine the chemical composition of
the formation water. The pressure gradients and Piper plots provide a summary of groundwater conditions
at the regional-scale and can be used to understand the hydrogeological characteristics for deep saline
formations in west-central Alberta.
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1 Introduction

Unconventional resource plays in the Duvernay and Montney formations are undergoing development in
west-central Alberta. Multistage hydraulic fracturing used in unconventional resource recovery has led to
an increase in water demand, from both surface water and nonsaline groundwater sources. The amount of
water used for hydraulic fracturing varies widely depending on the completion practice and the properties
of the target formation. Reported water volumes used for hydraulic fracturing wells in the Duvernay
unconventional resource play range from 10 000 to 60 000 m® per well (Alessi et al., 2017). The increase
in water use and need for adequate disposal zones for flowback and produced water has led to a demand
for hydrogeological information in this area. In addition, since 2006, the Alberta Government has
encouraged oil and gas operators to minimize the use of nonsaline water in enhanced oil and bitumen
recovery processes, and search for alternative water sources and technological alternatives (Alberta
Government, 2014).

This report describes the methodology, results, and interpretation of the regional hydrogeological
investigation of saline (>4000 mg/L total dissolved solids [TDS]) and mixed (nonsaline and saline)
aquifers within a portion of west-central Alberta (Figure 1, Table 1), completed by the Alberta Geological
Survey (AGS). Based on the permeability inferred from the general lithology of the investigated
stratigraphic units, sandstone- and carbonate-dominated formations are considered aquifers, whereas
shales and evaporites are considered aquitards. This study introduces further delineation of aquifers based
on the location of water-recovering drillstem tests, and the amount of recovered water. This delineation
represents a reasonable approximation of where a formation has shown it is capable of producing water,
and provided an aquifer extent within which further mapping was completed.

The primary objective of this study is to portray groundwater information through a series of
hydrogeological maps depicting different attributes, which can in turn be utilized to further characterize
aquifer potential and support the development of water source and disposal scenarios. In addition to water
sourcing and disposal, this hydrogeological information is beneficial for the planning and management of
other development activities in the subsurface including CO, sequestration, geothermal resources
evaluation, and evaluation of mineral resources found in formation waters.

This study produced up to four maps for each aquifer:

« amap showing the location of water-recovering drillstem tests (DSTs) and delineated aquifers

» ahydraulic head map (predevelopment), created to illustrate hydraulic head conditions excluding any
production/injection-influenced data

o aTDS map, depicting the distribution of salinity

* awater driving force map, illustrating the net vectoral water driving force considering the density of
fluid, hydraulic potential, and structural gradient within each aquifer

In addition, pressure-elevation plots, major ion plots and Piper diagrams, as well as schematic
hydrogeological cross-sections, were created to support further analysis of groundwater compositions and
conditions. For completeness, all maps, plots, summary tables, and supporting documentation are
presented in the appendices at the end of this report as follows:

Appendix 1 — Hydrogeological Maps
Appendix 2 — Water Chemistry Plots
Appendix 3 — Summary Tables of Results

Appendix 4 — Culling Steps
Appendix 5 — Sources of Errors, Uncertainties, and Limitations
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Figure 1. Location of the study area relative to the extents of the Duvernay, Muskwa, and Montney
formations in Alberta. Formation extents from Alberta Geological Survey (2019a).

Table 1. Aquifers examined as part of the study, west-central Alberta.

Cretaceous Mississippian—Jurassic Cambrian—-Devonian
Wapiti Nordegg Wabamun

Cardium Middle—Upper Triassic Blue Ridge
Dunvegan Montney Nisku

Viking Belloy Leduc

Spirit River Debolt Swan Hills

Bluesky Shunda Elk Point

Gething Pekisko Cambrian

Cadomin Banff

Nikanassin
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2 Location of the Study Area

The study area is located in west-central Alberta, centred on the Town of Fox Creek, and extends from
Township 52, Range 7, west of the 5th Meridian in the southeastern corner to Township 70, Range 5,
west of the 6th Meridian in the northwestern corner (Figure 1). The area covers parts of the subsurface
extents of both the Duvernay and Montney formations. The topography within the study area is highly
variable (Figure 2), ranging from 490 to 1606 m asl, with high elevations in the benchlands bordering the
eastern edge of the Rocky Mountains in the southwest and the Swan Hills in the northeast, and low
elevations in the valleys of the Athabasca River and tributaries to the Peace River. Several sandstone-
dominated Cretaceous formations subcrop underneath Quaternary sediments north of the study area, in
the vicinity of the Peace River valley (Figure 2), and may influence hydrogeological flow patterns and
water chemistry within the study area.
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Figure 2. Location of subcrop areas of sandstone-dominated Cretaceous formations in relation to
the west-central Alberta (WCAB) study area. Topography from provincial digital elevation model
(DEM; Alberta Environment and Parks, 2015) and subcrop locations from Bedrock Geology of
Alberta (Prior et al., 2013).
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3 Hydrostratigraphy

The stratigraphic succession in the study area is divided into three hydrostratigraphic groups, based on
similar lithology, hydrogeological attributes, and the presence of aquitards. This hydrostratigraphic
breakdown consists of aquifers from the Cretaceous, Mississippian—Jurassic, and Cambrian—Devonian
successions (Figures 3—5). Similar hydrostratigraphic breakdowns have been made in other parts of the
Alberta Basin and throughout the province (Hitchon et al., 1990; Bachu, 1995; Michael, 2002).

The mapped Cretaceous succession in the study area (Figure 3) begins, at the top, with the Wapiti
Formation, which, based on the general sandstone lithology, represents a relatively continuous aquifer,
which subcrops beneath Quaternary sediments in the northern portion of the study area where it also
reaches its zero edge. The Wapiti aquifer attains a thickness greater than 1300 m along the edge of the
Rocky Mountain Foothills and thins towards the east (Dawson et al., 1994).

The Wapiti aquifer is underlain by the shales of the Lea Park and Wapiabi formations, which are part of a
major continuous aquitard throughout the Alberta Basin (Bachu, 1995, 1999). The sandstone-dominated
Cardium, Dunvegan, and Viking aquifers are isolated from each other by the Shaftesbury—Kaskapau
aquitard. Within the three-dimensional (3D) geological model of west-central Alberta (Babakhani et al.,
2019; Corlett et al., 2019), which was used as the geological framework for data allocation in the present
study, the sandstone-dominated Viking Formation and the sandstone-dominated Paddy and Cadotte
members of the Peace River Formation have been mapped as a single combined interval. As a result, the
hydrogeological data used for mapping of the Viking aquifer were also combined. The Viking aquifer
extends over the entire study area. The relatively thin Joli Fou aquitard, which includes shales of the Joli
Fou Formation and Harmon Member of the lower Peace River Formation (Corlett et al., 2019), separates
the Viking aquifer from the underlying Spirit River aquifer. The Spirit River aquifer comprises strata of
the Spirit River Formation and correlative upper Mannville Group (Corlett et al., 2019). The Wilrich
aquitard, where present, separates the Spirit River aquifer from the underlying Bluesky, Gething, and
Cadomin aquifers. In the southeastern part of the study area, the Gething Formation transitions to the
Ellerslie Member and Ostracod Beds (Corlett et al., 2019). In the western part of the study area, the lower
Mannville Group—equivalent sandstones and conglomerates directly overlie the sandstones of the Upper
Jurassic to Lower Cretaceous Nikanassin Formation at the sub-Cretaceous (sub-Aptian) unconformity,
and are referred to as the Nikanassin—lower Mannville aquifer (Figure 3).

A summary of the general stratigraphy and hydrostratigraphy of the Mississippian—Jurassic succession is
shown in Figure 4. The Mississippian—Jurassic succession is separated from the Cretaceous succession by
the Fernie aquitard, which is present throughout the majority of the study area and pinches out in the east.
The limestone aquifer of the Nordegg Member is found below the Fernie aquitard. The Nordegg aquifer is
present throughout the study area and overlies subcropping formations of various ages, a result of major
unconformities being present within the study area such as the sub-Jurassic, sub-Triassic, and sub-
Permian unconformities. The Middle to Upper Triassic succession (Charlie Lake, Halfway, and Doig
formations) is present in the northwestern part of the study area where it is eroded by the sub-Jurassic
unconformity and subsequently pinches out (Corlett et al., 2019). The Middle to Upper Triassic
succession in this area is characterized by variable lithology consisting of sandstones, evaporites, and
carbonates. As a result, this succession acts as an aquifer in some areas and an aquitard in others. The
Lower Triassic Montney Formation extends from the western to the central part of the study area,
thinning eastwards as a result of depositional pinchout and erosion below the sub-Jurassic unconformity
(Corlett et al., 2019). The general lithology of the Montney Formation changes from sandstone in the
centre of the study area to siltstone and shale towards the west (Edwards et al., 1994). The Montney
Formation can be considered an aquifer in the central part of the study area and an aquitard in the western
part. In the west, the thick Montney aquitard separates the Middle—Upper Triassic aquifer from the
underlying Permian Belloy aquifer. In the central and eastern parts of the study area, the Montney and
Belloy formations form a continuous aquifer with the underlying Mississippian carbonates of the Debolt,
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Shunda, Pekisko, and Banff formations, which, with the exception of the Banff Formation, all have their
zero-thickness edge within the study area (Michael, 2002).

The Cambrian—Devonian succession is confined by the aquitard formed by the overlying shales of the
Devonian—Mississippian Exshaw Formation and lower portion of the Mississippian Banff Formation, and
the underlying crystalline Precambrian basement, which acts as an aquiclude (Hitchon et al., 1990; Bachu,
1995). The Devonian succession from top to bottom consists of Wabamun, Winterburn, Woodbend,
Beaverhill Lake, and Elk Point groups (Figure 5). Generally, the carbonates act as aquifers, whereas the
intervening evaporites and basinal shales act as aquitards.

The Wabamun aquifer comprises a thick succession of predominantly limestone and dolostone. The
Wabamun aquifer overlies the siltstone of the upper Graminia Formation (Graminia Silt member), which
may form a thin aquitard between the Blue Ridge and Wabamun aquifers. The Blue Ridge Member of the
Graminia Formation underlies the Graminia Silt member and was mapped in this study as the Blue Ridge
aquifer. The Blue Ridge aquifer is underlain by the Calmar Formation shales, which form a thin aquitard
separating the Blue Ridge aquifer from the Nisku aquifer. Underlying the Nisku aquifer are Woodbend
Group strata consisting of dolomitized Leduc Formation reef buildups forming the Leduc aquifer, and
shale deposits of the Ireton, Duvernay, and Majeau Lake formations, which form the Woodbend aquitard.

The Swan Hills Formation carbonate reef buildups and basinal carbonates of the Slave Point Formation
were mapped together as one geological unit within the 3D geological model for the study area (Corlett et
al., 2019). As a result, the hydrogeological data from the two formations were combined to map the Swan
Hills aquifer. This aquifer is underlain by the mixed nearshore clastics and carbonates of the Elk Point
Group, representing the Elk Point aquifer, and the underlying upper portion of the Cambrian succession,
representing the Cambrian aquifer. A summary of the stratigraphy and hydrostratigraphy of the
Cambrian—Devonian succession is shown in Figure 5.

4 Data and Methodology

The majority of data used to map hydraulic head and salinity originate from drillstem tests (DSTs) of oil
and gas wells, accessed through AccuMap™ (IHS Markit, 2019). Some of the data used to map the
shallower part of the Wapiti aquifer originate from the Alberta Water Well Information Database
(AWWID; Alberta Environment and Parks, 2013). Stratigraphic allocation of data was completed using
the 3D geological model of west-central Alberta (Babakhani et al., 2019). In this model, the stratigraphic
interval between the top of the Precambrian and the top of the Watt Mountain Formation has not been
subdivided, and includes strata of the Elk Point Group and the underlying Cambrian succession. As a
result, hydrogeological data were first allocated based on the top of the Watt Mountain Formation
followed by additional screening of individual tests to allocate data to either the Elk Point aquifer or the
underlying Cambrian aquifer.

Representative pressure data was extracted from DST data in order to calculate hydraulic head values.
The raw DST data were subjected to culling criteria modified from Jensen et al. (2013) to identify
representative aquifer pressure tests. In addition to the automated culling, select DSTs were individually
examined on an aquifer-by-aquifer basis to remove any remaining nonrepresentative fluid pressures. The
DSTs passing the culling criteria were subsequently examined using a cumulative interference index (CII)
methodology (Singh et al., 2017) to determine if pressures were influenced by production or injection
activities.

Formation water analyses data were analyzed in order to select samples representative of formation water
chemistry. Total dissolved solids (TDS) values were calculated by summing the major chemical
constituents (Ca>", Mg®", Na", K*, CO5, HCO; " CI, and SO,”) as reported in the dataset extracted from
AccuMap. Chemical analyses were subjected to a culling procedure used in previous studies (Hitchon and
Brulotte, 1994; Hitchon, 1996; Palombi, 2008) to identify potential contamination of formation water by
drilling fluids, such as acid water, corrosion inhibitors, mud filtrates, and alcohols.
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4.1 Aquifer Delineation Using DST Water Recovery

The first step in the aquifer mapping process was the delineation of regions within each formation where
water was expected to be the predominant fluid present. This delineation was based on the locations of
drillstem and other industry tests (initial production and wireline formation tests) that recovered formation
water. An arbitrary cutoff of a minimum of 100 m of water recovery was used for this delineation. It was
assumed that DSTs recovering 100 m of water or more indicate formations where water is the dominant
fluid. Smaller recoveries may incorrectly be reported as formation water, and may instead be water and
drilling mud introduced in the drilling process. The delineation represents a reasonable approximation of
where the formation has shown it is capable of producing water, and provided an aquifer extent within
which further mapping was completed. Since the resulting aquifer extent is controlled by the locations of
DSTs, which often explicitly target areas of potential hydrocarbon pools, the actual aquifer might extend
beyond the limit defined in this study. Maps showing the location of water-recovering DSTs and
delineated aquifers can be found in Appendix 1.1. Information on water-recovering DSTs for each
formation is summarized in Appendix 3, Table 2.

4.2 Hydraulic Head

Regional hydraulic head maps were created using pressure data from DSTs. Pressure data were converted
to equivalent freshwater hydraulic heads using the relationship:

pressure (kPa)

hydraulic head (m asl) = + elevation (m asl) @)

where p = fluid density (1000 kg/m’ for freshwater); g = gravitational acceleration (9.81 m?/s); and
m asl = metres above sea level.

Density variations of the formation water and their effect on groundwater flow were taken into
consideration with the construction and interpretation of water driving force (WDF) maps (Section 4.6).

Hydraulic head maps were created for all aquifers for which there was a sufficient amount of data. The
maps were created using kriging or inverse distance weighting interpolation methods, depending on the
number and spatial distribution of data points. The aquifer extent (as defined in Section 4.1) and the
spatial distribution of representative pressure data determine the extent of the hydraulic head maps.
Hydraulic head maps can be found in Appendix 1.2. The results of hydraulic head mapping for each
aquifer are summarized in Appendix 3, Table 3.

4.3 Cumulative Interference Index (CIlI)

The results of a DST at a given location can be influenced by nearby production or injection activity. In
order to identify potential production and injection influences, the CII methodology (Singh et al., 2017)
was used. A 5 km and a 10 km search radius around locations where DSTs were conducted were used to
assess the CII. Data from DSTs that were interpreted to have been influenced by production or injection
were removed from the dataset, resulting in a hydraulic head map representative of predevelopment
conditions.

4.4 Pressure-Elevation Plots

Pressure-elevation plots are useful for understanding basin-scale flow dynamics, inferring the potential
for cross-formational flow or hydraulic connectivity. Pressure data, obtained from the culled hydraulic
head dataset, are plotted against elevation, and their linear trend is compared to a reference gradient that is
calculated using an ambient reference density, which is calculated using the Chierici equation (Chierici,
1994). If the data fall on a gradient with a slope greater than the reference hydrostatic gradient, an upward
component of flow is indicated (superhydrostatic). If the data plot on a gradient less than the reference
gradient, a downward component of flow is indicated (subhydrostatic). Data that plot on a gradient equal
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or close to the hydrostatic gradient indicate constant hydraulic head between data points and, therefore, no
vertical flow potential.

4.5 Total Dissolved Solids (TDS) and Water Chemistry

Maps showing the distribution of total dissolved solids (TDS) were created for all aquifers for which there
was a sufficient amount of data. The maps were created using kriging or inverse distance weighting
interpolation methods, depending on the number and spatial distribution of TDS data points. The aquifer
extent (as defined in Section 4.1) and the spatial distribution of representative formation water analyses
determine the extent of the TDS maps. Maps showing the distribution of TDS in various aquifers can be
found in Appendix 1.3. Water chemistry is also displayed graphically in Piper plots and major ion plots
(Appendix 2). The results of TDS mapping for each aquifer are summarized in Appendix 3, Table 2.

4.6 Water Driving Force (WDF)

Although using freshwater density is common practice when mapping regional groundwater flow,
neglecting density variations can have considerable effect on groundwater flow direction and magnitude,
particularly in aquifers containing dense brines, having a steep structural dip, or having small hydraulic
gradients (Bachu and Michael, 2002).

The WDF approach incorporates the effects of hydraulic gradient and density-related buoyant forces on
the direction and magnitude of groundwater flow (Singh et al., 2017). The WDF is defined as

WDF = Vh + i—pVE )

where h = freshwater hydraulic head; Ap = density difference between in situ brine and freshwater; p, =
density of freshwater; and E = structural elevation of the aquifer base. The first term represents the force
due to the hydraulic gradient whereas the second term represents the force due to buoyancy.

In order to identify areas where density-driven flow might be important and can change the inferred
magnitude and direction of groundwater flow, WDF maps (Appendix 1.4) were created to accompany the
hydraulic head maps. Arrows shown in the WDF maps illustrate the direction and relative magnitude of
the WDF. The background colour in WDF maps indicates the angle between the WDF vector and
hydraulic gradient vector. Smaller angles between the WDF vector and hydraulic gradient vector (<30°)
indicate no significant effect of buoyancy on groundwater flow. For more details about the WDF method
and its implementation refer to Singh et al. (2017). The results of the WDF mapping for each aquifer are
summarized in Appendix 3, Table 4.

5 Regional Groundwater Flow and Chemistry Interpretation

The results from this study build upon the knowledge and insights of previous studies (Hitchon et al.,
1989, 1990; Thompson, 1989; Anfort, 1998; Anfort et al., 2001; Michael and Bachu, 2001; Michael,
2002; Michael and Buschkuehle, 2008) to interpret regional groundwater flow and chemistry within the
west-central Alberta study area. Although previous work was performed in overlapping areas, there is no
published work for the eastern part of the study area where Mississippian formations subcrop. In addition
to the hydraulic head, TDS, and WDF maps, pressure-elevation plots were created and interpreted to
evaluate regional flow patterns and the vertical component of groundwater flow. The effectiveness of
intervening aquitards to impede flow (i.e., aquitard strength) was examined by comparing
hydrogeological attributes and pressure-elevation trends of the aquifers.

Figure 6 shows the location of the present study area in relation to the locations of some previously
completed studies. A summary of the flow of formation waters in the Alberta Basin is presented in Bachu
(1995). This summary separates flow within the post-Jurassic hydrostratigraphic succession from that in
the pre-Cretaceous hydrostratigraphic succession (Figure 7). Flow patterns observed in pre-Cretaceous
aquifers in the Alberta Basin indicate flow away from the deformation front towards the northeast, and
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deep recharge from high elevations in Montana, discharging in northern Alberta as part of the Grosmont
drain along the Peace River valley (Hitchon et al., 1989). Flow in these aquifers is driven by basin-scale
topography with strong buoyancy forces (blue arrows in the schematic cross-section in Figure 7). The
post-Jurassic succession is characterized by local-scale topographic flow (black arrows in schematic
cross-section), and an area of flow opposing the topographic gradient towards an underpressured area in
the ‘deep basin’ part (orange arrows in the schematic cross-section) of the province (Bachu, 1995). All of
these flow regimes are observed in the west-central Alberta study area.

5.1 Cretaceous Aquifers

The presence of several sandstone units separated by shale results in several Cretaceous aquifers isolated
by aquitards. The Wapiti, Cardium, Dunvegan, Viking, and Spirit River aquifers, which are separated by
aquitards, were analyzed independently, whereas the Bluesky, Gething, Cadomin, and Nikanassin
aquifers were analyzed together and comprise the Nikanassin—lower Mannville aquifer (Figure 3). The
hydrochemistry and groundwater flow from these aquifers are discussed below.

5.1.1 Wapiti Aquifer
5.1.1.1 Groundwater Flow

Local-scale flow systems in the Alberta Basin developed in areas with topographic highs, such as the
Cypress Hills, Pelican Mountain, Caribou Mountains, and Swan Hills, with flow being directed to the
nearest topographic low, usually a river valley (Bachu, 1999). In the west-central Alberta study area,
groundwater flow in the Wapiti aquifer is directed from topographic highs, such as the Swan Hills, toward
topographic lows, such as the Athabasca River valley (Figure 52).

The pressure-elevation plot (Figure 8) shows that most of the pressure data in the Wapiti aquifer plot
along a trend with a pressure gradient of 10.2 kPa/m. Some scatter in the data is observed with upward
and downward deviations from this trend line representing components of recharge and discharge,
respectively. Data from the shallow (<150 m depth) water wells (shown in turquoise) do not align with
this trend line. The low salinity and resulting low density of Wapiti formation water causes no observable
buoyancy effects on the groundwater flow in the Wapiti aquifer (Figure 93).

5.1.1.2 Hydrochemistry

The concentration of TDS in the Wapiti aquifer varies from around 660 mg/L in the northern portion of
the study area to over 8000 mg/L in the southern portion (Figure 73). Examination of the Wapiti aquifer
Piper plot (Figure 112) revealed the presence of two distinct water types, one dominated by Na" and CI,
and the other by Na" and HCO;". Major ion plots for the Wapiti aquifer (Figure 135) show a strong linear
(positive correlation) relationship of Na” and K™ with TDS values, with Na" being the dominant cation
with values up to 3820 mg/L. A slight trend of increasing cationic percentage of Ca*” with decreasing
TDS values can be seen, with the highest values just exceeding 10%. The anionic percentage of HCO5
increases exponentially with decreasing TDS values. At TDS values of less than 3000 mg/L, HCO5
makes up over 80% of the total anions. A slight increase in SO4 concentration is also observed in lower
salinity waters, with maximum anionic percentages of around 19% SO,".
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Figure 8. Pressure-elevation plot for the Wapiti aquifer in the west-central Alberta study area with
the hydraulic head map shown as an inset.

5.1.2 Cardium Aquifer
5.1.2.1 Groundwater Flow

The Cardium aquifer occupies only a small portion on the western side of the study area (Figure 53).
Hydraulic head throughout the majority of the Cardium aquifer ranges from 700 to 750 m asl
corresponding to the elevation of Cardium subcrop found northwest of the study area. The similarities
between the hydraulic head and the Cardium subcrop elevation were also observed by Michael (2002) and
may relate to recharge occurring in the subcrop area. Further formation-scale mapping of the Cardium
aquifer shows a continuation of the low hydraulic gradient and decreasing salinity (<4000 mg/L) towards
the Cardium subcrop northwest of the study area (Brinsky, in press a, b).

Pressure data in the Cardium aquifer plot along a trend with a pressure gradient of 10.2 kPa/m, which is
similar to the reference (hydrostatic) pressure gradient of 9.9 kPa/m for the Cretaceous succession
(Figure 9). The pressure-elevation plot and hydraulic head distribution map reveal an abrupt change in the
pressure regime in the southeastern portion of the aquifer. Michael (2002) related this pressure transition
to a permeability barrier caused by the change from Cardium aquifer barrier sandstone in the west to
isolated offshore barrier sandstone surrounded by fine sedimentary rocks to the east. Sufficient
permeability in the Cardium aquifer through this barrier-bar sandstone (in the west) may be the reason for
the low hydraulic gradient within the western portion of the aquifer. Towards the east, the decrease in
permeability related to the fine sedimentary rocks that surround the isolated offshore barrier sandstones
may isolate the eastern portion of the Cardium aquifer from the lower TDS and higher hydraulic head
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observed in the western portion. The low salinity and resulting low density of Cardium formation water
causes no observable buoyancy effects on the groundwater flow in the Cardium aquifer (Figure 94).

5.1.2.2 Hydrochemistry

Salinity in the Cardium aquifer increases from TDS values of less than 9000 mg/L in the north to more
than 20 000 mg/L in the south (Figure 74). Examination of the Cardium aquifer Piper plot (Figure 113)
revealed that Na” and CI” are the major components of Cardium formation water. Major ion plots for the
Cardium aquifer (Figure 136) show that Na™ forms a strong linear (positive correlation) relationship with
TDS values and has maximum concentrations exceeding 30 000 mg/L. Both K™ and Mg”*" are minor
components with highest measured values of 242 and 591 mg/L, respectively. The Ca>" content appears
more variable as the cationic percentage ranges from less than 1% to over 20%. The anionic percentage of
SO,* is low with values of less than 6%, whereas the HCO5™ content increases with decreasing TDS
values, where it exceeds 40% of the total anions at its lowest measured TDS value of less than

9000 mg/L.
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Figure 9. Pressure-elevation plot for the Cardium aquifer in the west-central Alberta study area
with hydraulic head map shown as an inset. Abbreviation: DST, drillstem test.
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5.1.3 Dunvegan Aquifer
5.1.3.1 Groundwater Flow

A hydraulic head map for the Dunvegan aquifer was not created because of the small spatial extent of the
water-recovering DSTs and the insufficient amount of representative pressure data. However, hydraulic
head values were calculated for the limited number of pressure data points, ranging from approximately
450 to 600 m asl. Plotting pressure versus elevation (Figure 10) shows that pressure data in the Dunvegan
aquifer plot along a trend with a pressure gradient of 10.0 kPa/m, similar to the reference (hydrostatic)
pressure gradient of 9.9 kPa/m for the Cretaceous succession.

5.1.3.2 Hydrochemistry

There was not enough data to create a map of the TDS distribution in the Dunvegan aquifer. The only
sample left after culling is from well 100/02-27-066-25W5/0 and it has a TDS value of 11 333 mg/L. The
main ions were Na" and CI' (F igure 114).

5.1.4 Viking Aquifer
5.1.4.1 Groundwater Flow

Hydraulic head in the Viking aquifer varies between 360 m asl in the northwestern and southeastern parts
of the study area and 500 m asl in the central part of the study area (Figure 54). The contour pattern
suggests divergent groundwater flow towards the northwest and southeast. The flow pattern in the Viking
aquifer was analyzed using a pressure-elevation plot (Figure 11), which shows three different pressure
trends within three respective areas of the study area.
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Figure 10. Pressure-elevation plot for the Dunvegan aquifer in the west-central Alberta study area
with the location of pressure data shown as an inset map. Abbreviation: DST, drillstem test.
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Figure 11. Pressure-elevation plot for the Viking aquifer in the west-central Alberta study area with
the hydraulic head map shown as an inset. Abbreviation: DST, drillstem test.

Hydraulic head in area 1 (orange outline) shows two different flow directions. In the northern portion of
area 1, groundwater flow is towards the northwest, whereas in the southern portion groundwater flows
towards the south. The pressure-elevation plot for area 1 follows a trend with a pressure gradient of

10.1 kPa/m. The scatter of the data is the result of two opposite flow directions, and upward and
downward components of flow. Thompson (1989) concluded that flow in the Peace River Formation
(mapped together with the Viking Formation in the present study) follows decreasing ground surface
elevations towards the Peace River valley and discharges where the formation outcrops at elevations
below 350 m asl (Figure 2). Thompson’s conclusion explains the northward-flow trend observed for a
portion of the data in area 1, whereas the reversal of flow towards the gas-saturated deep basin appears to
occur in a zone that transitions from flow dependent on local/regional topography to flow controlled by
underpressuring in the deep basin (Bachu, 1999).

Data from area 2 (red outline) form a potentiometric mound. The potentiometric surface of this mound
exceeds 500 m asl and corresponds to data plotting on a trend with a higher pressure gradient on the
pressure-elevation plot (Figure 11). This potentiometric mound is discussed further in Section 5.4.1. The
Viking aquifer in area 3 (purple outline) has a flat potentiometric surface of less than 400 m asl. Regional
flow in this area is to the south towards the deep basin (Masters, 1979; Michael and Bachu, 2001; Bachu
and Adams, 2003). Viking aquifer pressure data in this area plot on a trend with a subhydrostatic gradient
of 9.6 kPa/m. The southward flow may be driven by underpressuring caused by erosional rebound as
suggested by Bachu (1999). The density of Viking formation water results in no observable buoyancy
effects on formation water flow in the Viking aquifer (Figure 95).

5.1.4.2 Hydrochemistry

The TDS values in the Viking aquifer range from 14 855 to over 28 000 mg/L (Figure 75). Examination
of the Viking aquifer Piper plot (Figure 115) show that Na" and CI" are the major ionic components of
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Viking formation water. Major ion plots for the Viking aquifer (Figure 137) show that Na" forms a strong
linear (positive correlation) relationship with TDS values and has maximum concentrations exceeding

11 000 mg/L. Both K™ and Mg*" are minor components with highest measured values of 252 and

560 mg/L, respectively. The cationic percentage of Ca®” has a positive association with TDS values and in
places exceeds 10%. The anionic percentage of SO, is low with values below 6%, whereas the HCO;’

content increases with decreasing TDS values. The maximum anionic percentage of HCOj;™ recorded was
28%.

5.1.5 Spirit River (Upper Mannville) Aquifer
5.1.5.1 Groundwater Flow

The hydraulic head map (Figure 55) and pressure-elevation plot (Figure 12) of the Spirit River aquifer
revealed the presence of two pressure gradients. In the majority of the aquifer (area 1), groundwater flow
is towards the northeast. On the pressure-elevation plot, data from this area forms a trend with a
superhydrostatic pressure gradient of 11.5 kPa/m, indicating an upward component of flow, which may be
the result of flow in the updip direction. Towards the southeastern portion of the Spirit River aquifer (area
2), the hydraulic head decreases with a change in flow direction towards the south. Data from this area
correspond to the lower pressure data on the pressure-elevation plot (red data points, Figure 12). The flow
direction may be the result of underpressuring caused by erosional rebound as suggested by Bachu
(1999). Alternatively, this lower pressured system could be the result of interaction with the lower
pressured Viking aquifer in this area (see Section 5.4). The density of the Spirit River formation water
causes no observable buoyancy effects on groundwater flow in the Spirit River aquifer.
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Figure 12. Pressure-elevation plot for the Spirit River aquifer in the west-central Alberta study area
with the hydraulic head map shown as an inset. Abbreviation: DST, drillstem test.
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5.1.5.2 Hydrochemistry

The TDS values in the Spirit River aquifer range from 10 965 to over 58 000 mg/L (Figure 76).
Examination of the Piper plot for the Spirit River aquifer (Figure 116) revealed that Na" and CI are the
major ionic components of the water. Major ion plots for the Spirit River aquifer (Figure 138) show that
Na' forms a strong linear (positive correlation) relationship with TDS values and reaches concentrations
of over 26 000 mg/L. Both K™ and Mg®" also show positive relationships with TDS values, with
maximum measured concentrations of 500 and 912 mg/L, respectively. The cationic percentage of Ca*"
appears more varied ranging from <1% to 20% of the total cations. Both HCO;™ and SO4show a general
decrease in anionic percentage with increasing TDS values, with the maximum anionic percentage of
HCO;" reaching 34%, whereas the anionic percentage of SO4* reaches a maximum of 15%.

5.1.6 Nikanassin—-Lower Mannville Aquifer
5.1.6.1 Groundwater Flow

Pressure data from the Bluesky, Gething, Cadomin, and Nikanassin aquifers, which together comprise the
Nikanassin—lower Mannville aquifer, were plotted versus elevation to analyze fluid flow within the
Nikanassin—lower Mannville aquifer (Figure 13).

Little variation is observed between the hydraulic head maps for the Bluesky (Figure 56) and Cadomin
aquifers (Figure 58), with the majority of hydraulic head values ranging between 600 and 700 m asl.
Pressure data from these two aquifers plot on a slightly subhydrostatic gradient of 9.4 kPa/m (Figure 13).
This gradient is near the Cretaceous data hydrostatic gradient (9.9 kPa/m), which indicates sluggish flow
between the Bluesky and Cadomin aquifers. A hydraulic head map of the Nikanassin aquifer was not
created due to an insufficient amount of representative pressure data. Some of the data from the
Nikanassin aquifer plot on the same gradient as the Bluesky and Cadomin aquifers, implying a potential
for vertical communication whereas other data from the Nikanassin aquifer plot at a slightly lower
pressure trend. The water driving force (WDF) map for the Cadomin aquifer (Figure 98) suggests
potential buoyancy effects in the western portion of the Cadomin aquifer that may result in flow at an
angle to the head vector.

The Gething aquifer extent appears discontinuous and hydraulic head is more variable ranging from less
than 450 m asl to greater than 750 m asl (Figure 57). On the pressure-elevation plot (Figure 13), data from
the Gething aquifer show a higher degree of scatter than those from the other aquifers, with some data
points overlapping the data from the Bluesky and Cadomin aquifers, indicating potential for hydraulic
communication between aquifers in these areas. The scatter observed in the Gething aquifer data may be
caused by a channelized system where pressure regimes are discontinuous. The Gething aquifer pressure
data were evaluated in more detail (Figure 14). The majority of Gething aquifer data fall near either the
light blue trend line (area lor the dark blue trend line (area 2). Both trends show a slightly subhydrostatic
gradient (9.4 kPa/m), indicative of a downward component of flow.

Towards the east, more complexity is observed with four other clusters of data (areas 3 to 6). The data
from these areas were further evaluated in relation to neighbouring formations (see Section 5.4). The
WDF map for the Gething aquifer suggests that buoyancy does not have an impact on groundwater flow

(Figure 97).
5.1.6.2 Hydrochemistry

The TDS values in the Gething aquifer vary from less than 18 000 mg/L in the western portion, to more
than 78 000 mg/L in the eastern portion of the aquifer (Figure 77). The TDS values in the Cadomin
aquifer range from less than 33 000 mg/L to greater than 68 000 mg/L (Figure 78).
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Figure 13. Pressure-elevation plot for the Nikanassin—lower Mannville aquifer in the west-central
Alberta study area. The inset map shows the location of the data in relation to the zero edges of
the formations. Abbreviation: DST, drillstem test.
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Figure 14. Pressure-elevation plot for the Gething aquifer in the west-central Alberta study area
with the hydraulic head map shown as an inset. Abbreviation: DST, drillstem test.
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Examination of the Piper plots for the Bluesky, Gething, and Cadomin aquifers (Figures 117—119)
revealed that Na™ and CI” are the major ionic components of the water. The major ion plots for the data
from Bluesky, Gething, Cadomin, and Nikanassin aquifers (Figure 139) show that Na' forms a strong
linear (positive correlation) relationship with TDS values and reaches concentrations above 32 000 mg/L.
Both K™ and Mg*" are minor components with highest measured values of 933 and 620 mg/L,
respectively. The cationic percentage of Ca>” appears variable and ranges from <1% to 9%. The anionic
percentage of SO, is low with values of less than 4%. A general increase is observed in the anionic
percentage of HCO;™ with decreasing TDS values. The maximum anionic percentage of HCO; recorded
was 28%.

5.2 Mississippian—Jurassic Aquifers
5.2.1 Groundwater Flow

Pressure data from the Mississippian—Jurassic aquifers were plotted against elevation (Figure 15) and
used to create hydraulic head maps (Figures 59-65) for each aquifer in order to evaluate flow in the
Mississippian to Jurassic succession.
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Figure 15. Pressure-elevation plot for the Mississippian—Jurassic aquifers in the west-central

Alberta study area. The inset map shows the location of the data in relation to the zero edges of
the formations/member.
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Flow patterns of the Montney, Belloy, and Debolt aquifers (Figures 60—62), whose mapped extents
overlap and occupy the western part of the study area, are similar and show a northeastward groundwater
flow direction with hydraulic head values ranging between 526 m asl in the Debolt aquifer and 707 m asl
in the Belloy aquifer. The pressure-elevation plot (Figure 15) shows that pressure data from the Montney,
Belloy, and Debolt aquifers combined with some pressure data from the Shunda and Pekisko aquifers
found in the western portion of the study area, plot along a trend line with a pressure gradient of

10.6 kPa/m. A very limited aquifer extent of the Middle—Upper Triassic succession was delineated in the
northwestern part of the study area (Figure 38). In contrast, water-recovering DSTs were not found in the
overlying Nordegg Member and underlying Montney Formation in this area, suggesting that these units
act as aquitards in the northwestern part of the study area isolating the Middle—Upper Triassic aquifer.
The limited aquifer extent of the Middle—Upper Triassic succession did not allow for a hydraulic head
map to be created.

Flow patterns of the Nordegg, Shunda, Pekisko, and Banff aquifers (Figures 59, 63—65), whose mapped
extents mainly occupy the eastern part of the study area, also suggest a northeastward groundwater flow
direction towards the zero edges of the formations/member. The pressure-elevation plot (Figure 15)
shows that pressure data from the Nordegg, Shunda, and Pekisko aquifers in the eastern area, as well as
most of the data from the Banff aquifer, plot along a lower pressure trend. These data from the eastern
part of the study area were evaluated in greater detail and are further discussed in Section 5.4.

5.2.2 Hydrochemistry

The TDS concentrations throughout the Mississippian—Jurassic aquifers range between a low of

24 339 mg/L in the Nordegg aquifer to a high of 174 813 mg/L found in the Debolt aquifer (Figures 79—
85). The horizontal distribution of TDS concentrations shows a general trend of decreasing values from
west to east. Examination of the Piper plots of the Mississippian—Jurassic aquifer data (Figures 120-127)
revealed that Na” and CI” are the major ionic components of the water. The major ion plots (Figure 140)
show that Na" forms a strong linear (positive correlation) relationship with TDS values and reaches
concentrations up to 64 000 mg/L. Both K™ and Mg*" also show a positive relationship with TDS values,
and reach maximum concentrations of 3714 and 2379 mg/L, respectively. The cationic percentage of Ca**
shows an increase with increasing TDS values, with values up to 18%. Both HCO;5™ and SO,* increase
with decreasing TDS values but remain low, making up less than 7% of the anions.

5.3 Cambrian—-Devonian Aquifers
5.3.1 Groundwater Flow

The presence/absence of Leduc reefs appears to have a significant influence on the hydrogeological
characteristics of the entire Cambrian—Devonian succession. Where the Leduc reefs are present in the
western portion of the study area, similar hydrogeological characteristics are observed throughout the
entire succession, and pressure-elevation data plot on a continuous superhydrostatic gradient of

11.9 kPa/m (Figure 16), indicative of an upward component of flow. The hydraulic head maps for the
individual aquifers (Figures 66—72) indicate updip flow towards the east. In the eastern portion, where the
Leduc reefs are replaced by thick shales deposited during the Late Devonian, data from the Wabamun,
Blue Ridge, and Nisku aquifers show a lower pressure trend than in the western portion of the study area
where the Leduc reefs are present. The hydraulic head values in these aquifers decrease to less than

500 m asl, whereas the deeper Devonian (Swan Hills, Elk Point) and Cambrian aquifers maintain
hydraulic head values over 750 m asl. This suggests a clear distinction in hydrogeological properties of
aquifers above and below the shales deposited during the Late Devonian in the eastern part of the study
area.
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Figure 16. Pressure-elevation plot for the Cambrian-Devonian aquifers in the west-central Alberta
study area. The inset map shows the location of the data and the extent of the Leduc Formation
(reefs) in the study area. Abbreviation: DST, drillstem test.

The WDF analysis (Figures 106—111) suggests that density-related buoyancy forces are having a
significant effect on fluid flow in the Upper Devonian succession in the western portion of the study area
and the Swan Hills, Elk Point, and Cambrian aquifers throughout the entire study area. This effect results
in sluggish updip flow, or even flow reversal in the downdip direction.

Density-related buoyancy forces do not appear to have a strong influence on flow in the eastern portion of
the study area for the Wabamun, Blue Ridge, and Nisku aquifers.

5.3.2 Hydrochemistry

High TDS concentrations of more than 200 000 mg/L are observed in all the Devonian aquifers in most of
the western portion of the study area (Wabamun, Blue Ridge, Nisku, Leduc, Swan Hills, Elk Point), as
well as in the Cambrian aquifer (Figures 86-92). The TDS values in the Wabamun (Figure 86) and Blue
Ridge (Figure 87) aquifers show a large decrease from over 250 000 mg/L in the west to under

150 000 mg/L in the east. In the Nisku aquifer, TDS values decrease from 240 000 mg/L in the west to
180 000 mg/L in the east (Figure 88). The Leduc (Figure 89) and Swan Hills (Figure 90) aquifers did not
have data on the far eastern edge of the study area but also showed a general decrease in TDS values from
west to east. The TDS values in the Elk Point (Figure 91) and Cambrian (Figure 92) aquifers remain over
200 000 mg/L in the eastern portion of the study.

Examination of the Piper plots (Figures 128—134) revealed that Na' and CI  are the major ionic
components of the water in the Cambrian—Devonian aquifers. An increase in the Ca®* component is noted
within these aquifers.
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The major ion plots for the Cambrian—Devonian aquifers (Figure 141) show that Na” forms a strong linear
(positive correlation) relationship with TDS values and has concentrations up to 100 000 mg/L. Both K*
and Mg®* show an increase in concentration with increasing TDS values, with concentrations up to 4742
and 8228 mg/L, respectively. The cationic percentage of Ca** shows an increase with increasing TDS
values, with values up to 38%. Both HCO;™ and SO,> are minor components with anionic percentages
below 5%.

5.4 Cross-Formational Flow

This section focuses on the cross-formational flow, interpreted from detailed pressure-elevation plots and
the analysis of hydraulic head and TDS maps. Understanding cross-formational flow allows aquitard
strength and aquifer connectivity to be inferred, which is important for both water-sourcing and water-
disposal activities. Cross-formational flow was analyzed between the Viking and Spirit River aquifers in
the entire study area, and throughout the Cretaceous to Cambrian aquifers focusing on the northeastern
and southeastern portions of the study area (Figure 17).

5.4.1 Cross-Formational Flow Between the Viking and Spirit River Aquifers

The cross-formational flow between the Viking and Spirit River aquifers was analyzed by plotting
pressure versus elevation, and looking into the correlation between the location of pressure data and the
thickness of the Joli Fou aquitard (Figure 18). The pressure-elevation plot shows that data from the
Viking and Spirit River aquifers plot along two distinct pressure trends, suggesting that the intervening
Joli Fou aquitard is an effective barrier to vertical flow on a regional scale. The majority of the Viking
aquifer data plot along a trend with pressure gradient of 9.8 kPa/m, whereas the majority of the Spirit
River aquifer data plot along a trend with a higher pressure gradient of 11.7 kPa/m. However, the
pressure-elevation plot also shows some scatter of pressure data, which may suggest that vertical
hydraulic communication between the aquifers is possible in some areas.
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of Cambrian to Cretaceous aquifers.
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Hydraulic communication between the Viking and Spirit River aquifers was further analyzed by
examining pressure-elevation plots for specific areas (Figure 19). These plots show that the Joli Fou acts
as a strong aquitard in the northwestern part of the study area (Figure 19a), where in places it exceeds

25 m in thickness. In the north-central part (Figure 19b), the Joli Fou aquitard weakens. In this area, a
potentiometric mound in the Viking aquifer was observed, and more scatter was observed on the pressure-
elevation plot. Viking and Spirit River aquifer data from this area plot on the same trend with a pressure
gradient of 12.4 kPa/m, suggesting hydraulic communication between the aquifers is possible.

The Joli Fou aquitard continues to thin towards the east, where in places it can be less than 10 m thick.
The pressure-elevation plot of data from the northeastern area (Figure 19¢) suggests hydraulic
communication between the Viking and Spirit River aquifers, with data plotting on a trend with a pressure
gradient of 12.5 kPa/m.

There are not many Spirit River aquifer data in the southeastern part of the study area, with no data at all
in the farthest southeastern corner where the Joli Fou aquitard begins to thicken again (Figure 19d). As a
result, hydraulic communication was difficult to interpret in this area. However, the three Spirit River
aquifer data points fall on the same trend as the Viking aquifer data with a pressure gradient of 9.6 kPa/m,
suggesting hydraulic communication.

Other studies suggest that in areas where the Joli Fou aquitard is absent, such as south of the west-central
Alberta study area, vertical flow communication between the Viking and Spirit River aquifers may be
possible (Rostron, 1995).

Salinity values in the Viking and Spirit River aquifers throughout the majority of the study area are
similar, ranging between 13 000 and 30 000 mg/L (Figures 75 and 76), which may also support the idea
of vertical hydraulic communication. Higher salinity is observed in the eastern part of the Spirit River
aquifer with values greater than 58 000 mg\L. In this area, no Viking aquifer data are present.

5.4.2 Cross-Formational Flow in the Northeastern Focus Area

In the northeastern focus area, several Mississippian and Jurassic formations subcrop below Lower
Cretaceous strata at the sub-Cretaceous unconformity creating hydrogeological complexity and allowing
for the possibility of cross-formational flow between aquifers. The cross-formational flow throughout the
Cretaceous (Gething) and Mississippian (Debolt, Shunda, Pekisko, Banff) aquifers was analyzed and
numerous pressure gradients were identified and are described below.

Data from the Gething, Shunda, and Pekisko aquifers (Figure 20) located near the Fernie Formation zero
edge (data points outlined in green) plot on a superhydrostatic gradient of 10.7 kPa/m, slightly higher than
the reference hydrostatic gradient (10.0 kPa/m) calculated for Mississippian aquifers. The similar pressure
trends between aquifers suggest hydraulic communication through the thinning Fernie aquitard down to
the Pekisko aquifer. However, examination of TDS values in this area shows that the Gething aquifer has
TDS values of <60 000 mg/L (Figure 77), whereas the TDS values for the Mississippian aquifers range
from 80 354 to 117 062 mg/L (Figures 82—85), suggesting that the similar pressure trends may not be
related to communication.
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Abbreviation: DST, drillstem test.
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Figure 20. Pressure-elevation plot for the Mississippian (Banff, Pekisko, Shunda, Debolt) and
Lower Cretaceous (Gething) aquifers in the northeastern focus area (west-central Alberta study
area). The inset map shows the location of the data in relation to the zero edges of the
formations/member. The colour of the square outline indicates which gradient the data plots on.
Abbreviation: DST, drillstem test.

Another pressure gradient is noted in the data from the Gething, Debolt, and Banft aquifers (Figure 20,
data points outlined in red) in locations where the Fernie and Nordegg aquitards are absent (i.e., where the
Gething aquifer directly overlies the subcropping Debolt or Banff aquifers). These data plot on a
superhydrostatic gradient of 15.4 kPa/m suggesting hydraulic communication. Furthermore, in locations
where the Gething aquifer directly overlies the Banff aquifer, salinity in both aquifers is similar

(~60 000 mg/L). Unfortunately, due to a lack of data in the Gething aquifer, salinity could not be
compared in places where the Gething aquifer overlies the Debolt aquifer. However, the Debolt aquifer
salinity in this area is greater than 100 000 mg/L (Figure 82). Farther south, where the Gething aquifer
directly overlies the Banff aquifer, data from the Gething and Banff aquifers fall on another
superhydrostatic gradient of 11.5 kPa/m (Figure 20, data points outlined in brown). Although the Gething
and Banff aquifers appear to be in communication in this area, the gradient is at a slightly lower pressure,
unique from the gradient formed by tests found to the north, suggesting a different flow system. Another
superhydrostatic gradient (10.9 kPa/m) is formed by data from the Gething, Shunda, Pekisko, and Banff
aquifers (Figure 20, data points outlined in blue). These data points are in close proximity to the Nordegg
Member’s zero edge. Salinity in the Mississippian aquifers in this area has decreased to ~60 000 mg/L,
similar to what is observed in the Gething aquifer. The salinity and pressure trends in this area suggest
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that mixing is taking place across the sub-Cretaceous unconformity. Farther east, anomalously high
pressure data from the Gething and Pekisko aquifers form two separate subhydrostatic gradients
(Figure 20, data points outlined in yellow and purple), indicating downward vertical flow. Salinity in
these aquifers in this area is also similar, suggesting communication across the sub-Cretaceous
unconformity between these aquifers. The origin of these anomalously high pressures is unknown.

On the pressure-elevation plot of data from the Cambrian—Devonian aquifers in the northeastern focus
area, two flow systems have been identified (Figure 21). The majority of the data from the Blue Ridge,
Nisku, Swan Hills, and Elk Point aquifers plot on a superhydrostatic gradient of 11.2 kPa/m (brown trend
line). Some data from the Blue Ridge and Nisku aquifers (east of the dashed blue line on the inset map in

Figure 21) along with the Wabamun aquifer data form another superhydrostatic gradient of 13.0 kPa/m
(blue trend line).
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Figure 21. Pressure-elevation plot for the Cambrian and Devonian aquifers in the northeastern
focus area (west-central Alberta study area). The inset map shows the location of the data; the
dashed blue line denotes the separation of data from the Blue Ridge aquifer plotting on the blue
gradient (east of the dashed line) and the brown gradient (west of the dashed line). The colour of
the square outline indicates which gradient the data plots on. Abbreviation: DST, drillstem test.
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The transition of the Blue Ridge and Nisku aquifers to a lower pressure similar to that seen in the
Wabamun aquifer may be related to the increasing distance from a Leduc reef in the southwestern corner
of the focus area. Close to the Leduc reef (west of the dashed blue line, Figure 21), the Blue Ridge and
Nisku aquifers plot with a similar trend to the underlying aquifers. Farther away from the reef (east of the
dashed blue line), the Blue Ridge and Nisku aquifers plot at lower pressures similar to that of the
Wabamun aquifer. Both gradients suggest upward cross-formational flow from deeper to shallower
aquifers (Leduc to Blue Ridge and Nisku to Wabamun). Examination of the individual potentiometric
surface maps for these aquifers show eastward flow in the updip direction.

5.4.3 Cross-Formational Flow in the Southeastern Focus Area

As previously shown in Section 5.2, the pressure regime of Mississippian—Jurassic aquifers across the
eastern part of the west-central Alberta study area differs from that in the western part. The southeastern
focus area was examined in greater detail to assess its potential for cross-formational flow within the
Mississippian—Cretaceous interval. Several flow systems were defined for the Mississippian—Cretaceous
interval in the southeastern focus area.

The majority of the data from the Gething, Shunda, Pekisko, and Banff aquifers fall on a subhydrostatic
gradient of 8.4 kPa/m (Figure 22, data points outlined in red), suggesting communication between these
aquifers with downward flow. Throughout the eastern portion of the focus area, TDS values in the
Gething and Banff aquifers appear similar, ranging from ~28 000 to 80 000 mg/L (Figures 77 and 85)
supporting the interpretation of communication across the sub-Cretaceous unconformity. Many pressure
data from the Gething aquifer (data points outlined in green) plot on a superhydrostatic gradient of

14.9 kPa/m suggesting upward flow. The cause of these higher pressures is unknown. Throughout the
western portion of the focus area, pressures from the Gething, Nordegg, and Shunda aquifers (data
outlined in blue) plot on a superhydrostatic gradient of 12.2 kPa/m indicating upward flow between these
aquifers. However, further evaluation of salinity data in this area revealed that salinities in the Gething
and Nordegg aquifers appear to be lower than in the Mississippian aquifers, suggesting that the similar
pressure trends may not be related to communication.

Data from the Blue Ridge, Nisku, Leduc, Swan Hills, Elk Point, and Cambrian aquifers from the western
portion of the focus area plot on a superhydrostatic gradient of 11.1 kPa/m (Figure 23, data points
outlined in brown). The placement of the Blue Ridge and Nisku data points on this gradient suggests
communication throughout the entire interval from the Blue Ridge aquifer to the Cambrian aquifer, which
is likely due to the presence of Leduc reefs in the western portion of the study area. Farther east, the Blue
Ridge aquifer data plot with the Wabamun aquifer data on a superhydrostatic gradient of 11.3 kPa/m
(Figure 23, data points outlined in blue), indicating a clear separation of these aquifers from the Swan
Hills to Cambrian aquifers in this area. This is due to the presence of the Devonian Woodbend and
Waterways shale aquitards in this area, separating the Wabamun, Blue Ridge, and Nisku aquifers from the
Swan Hills, Elk Point, and Cambrian aquifers, creating two flow systems.
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Figure 23. Pressure-elevation plot for the Cambrian—Devonian aquifers in the southeastern focus
area (west-central Alberta). The inset map shows the location of the data. The colour of the square
outline indicates which gradient the data plot on. Abbreviation: DST, drillstem test.
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6 Summary and Conclusions

This study evaluated the hydrogeological attributes and regional flow of 24 aquifers in an area of west-
central Alberta, from the near-surface bedrock down to the Precambrian basement.

Groundwater flow in the Cretaceous aquifers is mainly influenced by surface topography and the location
of formation subcrops, which are underneath Quaternary sediments north of the study area. The ionic
compositions of Cretaceous waters are mainly dominated by Na" and CI', but may contain significant
HCO; and Ca®" in waters with lower total dissolved solids values. Cross-formational flow analyses of the
Viking and Spirit River aquifers showed that in areas where the intervening Joli Fou aquitard thins,
communication between the two aquifers may occur. Generally, buoyancy has no effect on the
groundwater flow direction and magnitude within the Cretaceous aquifers, however, there are some areas
within the Cadomin aquifer where buoyancy can play a role, and care should be taken when interpreting
groundwater flow direction and magnitude in these areas.

The Mississippian—Jurassic aquifers share similar hydrogeological properties and generally show the
potential for updip groundwater flow from west to east, which is consistent with the expected flow that
follows decreasing basinal elevation towards the low hydraulic heads found in the Devonian Grosmont
Formation, which acts as a basin-scale drain (Hitchon, 1969; Anfort et al., 2001). Mixing of formation
waters associated with cross-formational flow occurs in the eastern part of the study area, where
Mississippian—Jurassic aquifers subcrop at the sub-Cretaceous unconformity. The highest salinity values
are observed in the western portion of the study area and gradually decrease towards the east. Waters
within Mississippian—Jurassic aquifers are dominated by Na" and CI".

Groundwater flow in the Devonian aquifers is generally in the updip direction in the eastern portion of the
study area, where the potentiometric surfaces of the Upper Devonian Wabamun, Blue Ridge, and Nisku
aquifers are similar to the potentiometric surface of the Mississippian—Jurassic aquifers. This resemblance
of hydrogeological characteristics of the Mississippian—Jurassic aquifers and the Upper Devonian aquifers
in the eastern part of the study area may be a result of decreased effectiveness of the Exshaw confining
unit in the area. Leduc reefs, which are present in the western part of the study area, provide a permeable
conduit that allows for vertical hydraulic communication between the aquifers in the Devonian—Cambrian
interval. In the eastern portion of the study area, where the reefs are replaced by Devonian shales, two
separate flow systems are observed. In the western part of the study area, the high salinities in the
succession cause density to have a large influence on the flow of water. The composition of waters from
the Cambrian—Devonian aquifers is mainly dominated by Na” and CI’, although high Ca®" content is
observed in waters with high total dissolved solids values, with Ca®" accounting for up to 38% of the total
cations.

Hydraulic head and salinity maps as well as pressure-elevation plots created in this study help gain a
better understanding of the groundwater flow systems within west-central Alberta. The water recovery
maps made as part of this study were used to delineate the aquifer portions of mapped formations. The
water driving force maps identify regions within an aquifer where density-driven flow needs to be taken
into consideration. In addition, schematic hydrogeological cross-sections were created to summarize the
hydrogeological attributes and groundwater flow interpretations in the west-central Alberta study area

(Figures 24-27).
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distribution of hydraulic head in the west-central Alberta study area. Abbreviation: DST, drillstem
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Figure 25. Schematic southwest (SW)—northeast (NE) hydrogeological cross-section depicting the
distribution of total dissolved solids (TDS) in the west-central Alberta study area. Abbreviation:
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Appendix 1 — Hydrogeological Maps

1.1 Location of Water-Recovering Drillstem Tests and Delineated Aquifers
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Figure 28. Water recoveries from drillstem tests (DSTs) in the Wapiti aquifer, west-central Alberta

study area, and location of water wells.
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Figure 29. Water recoveries from drillstem tests (DSTs) in the Cardium aquifer, west-central

Alberta study area.
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Figure 30. Water recoveries from drillstem tests (DSTs) in the Dunvegan aquifer, west-central
Alberta study area.
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Figure 31. Water recoveries from drillstem tests (DSTs) in the Viking aquifer, west-central Alberta
study area.
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Figure 32. Water recoveries from drillstem tests (DSTs) in the Spirit River aquifer, west-central
Alberta study area.
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Figure 33. Water recoveries from drillstem tests (DSTs) in the Bluesky aquifer, west-central

Alberta study area.
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Figure 34. Water recoveries from drillstem tests (DSTs) in the Gething aquifer, west-central
Alberta study area.
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Figure 35. Water recoveries from drillstem tests (DSTs) in the Cadomin aquifer, west-central

Alberta study area.
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Figure 36. Water recoveries from drillstem tests (DSTs) in the Nikanassin aquifer, west-central

Alberta study area.
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Figure 37. Water recoveries from drillstem tests (DSTs) in the Nordegg aquifer, west-central

Alberta study area.
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Figure 38. Water recoveries from drillstem tests (DSTs) in the Middle-Upper Triassic aquifer, west-

central Alberta study area.
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Figure 39. Water recoveries from drillstem tests (DSTs) in the Montney aquifer, west-central
Alberta study area.
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Figure 40. Water recoveries from drillstem tests (DSTs) in the Belloy aquifer, west-central Alberta

study area.
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Figure 41. Water recoveries from drillstem tests (DSTs) in the Debolt aquifer, west-central Alberta
study area.
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Figure 42. Water recoveries from drillstem tests (DSTs) in the Shunda aquifer, west-central Alberta

study area.
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Figure 43. Water recoveries from drillstem tests (DSTs) in the Pekisko aquifer, west-central

Alberta study area.
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Figure 44. Water recoveries from drillstem tests (DSTs) in the Banff aquifer, west-central Alberta

study area.
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Figure 45. Water recoveries from drillstem tests (DSTs) in the Wabamun aquifer, west-central
Alberta study area.
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Figure 46. Water recoveries from drillstem tests (DSTs) in the Blue Ridge aquifer, west-central
Alberta study area.
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Figure 47. Water recoveries from drillstem tests (DSTs) in the Nisku aquifer, west-central Alberta

study area.
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Figure 48. Water recoveries from drillstem tests (DSTs) in the Leduc aquifer, west-central Alberta

study area.
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Figure 49. Water recoveries from drillstem tests (DSTs) in the Swan Hills aquifer, west-central
Alberta study area.
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Figure 50. Water recoveries from drillstem tests (DSTs) in the Elk Point aquifer, west-central

Alberta study area.
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Figure 51. Water recoveries from drillstem tests (DSTs) in the Cambrian aquifer, west-central

Alberta study area.
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1.2 Hydraulic Head Maps
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Figure 52. Hydraulic head distribution in the Wapiti aquifer, west-central Alberta study area
(extracted from Singh and Nakevska, 2017). Abbreviation: DST, drillstem test.
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Figure 53. Hydraulic head distribution in the Cardium aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 54. Hydraulic head distribution in the Viking aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 55. Hydraulic head distribution in the Spirit River aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 56. Hydraulic head distribution in the Bluesky aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 57. Hydraulic head distribution in the Gething aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 58. Hydraulic head distribution in the Cadomin aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Abbreviation: DST, drillstem test.
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Figure 60. Hydraulic head distribution in the Montney aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 61. Hydraulic head distribution in the Belloy aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 62. Hydraulic head distribution in the Debolt aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 63. Hydraulic head distribution in the Shunda aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 64. Hydraulic head distribution in the Pekisko aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 65. Hydraulic head distribution in the Banff aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 66. Hydraulic head distribution in the Wabamun aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 67. Hydraulic head distribution in the Blue Ridge aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 68. Hydraulic head distribution in the Nisku aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 69. Hydraulic head distribution in the Leduc aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 70. Hydraulic head distribution in the Swan Hills aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 71. Hydraulic head distribution in the Elk Point aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 72. Hydraulic head distribution in the Cambrian aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 73. Distribution of total dissolved solids (TDS) in the Wapiti aquifer, west-central Alberta
study area (extracted from Nakevska and Singh, 2017). Abbreviation: DST, drillstem test.
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Figure 74. Distribution of total dissolved solids (TDS) in the Cardium aquifer, west-central Alberta

study area. Abbreviation: DST, drillstem test.
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Figure 75. Distribution of total dissolved solids (TDS) in the Viking aquifer, west-central Alberta

study area. Abbreviation: DST, drillstem test.
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Figure 76. Distribution of total dissolved solids (TDS) in the Spirit River aquifer, west-central
Alberta study area. Abbreviation: DST, drillstem test.
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study area. Abbreviation: DST, drillstem test.
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Figure 78. Distribution of total dissolved solids (TDS) in the Cadomin aquifer, west-central Alberta

study area.
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Figure 79. Distribution of total dissolved solids (TDS) in the Nordegg aquifer, west-central Alberta

study area.
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Figure 80. Distribution of total dissolved solids (TDS) in the Montney aquifer, west-central Alberta
study area. Abbreviation: DST, drillstem test.
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Figure 81. Distribution of total dissolved solids (TDS) in the Belloy aquifer, west-central Alberta
study area.
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Figure 82. Distribution of total dissolved solids (TDS) in the Debolt aquifer, west-central Alberta

study area.
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Figure 83. Distribution of total dissolved solids (TDS) in the Shunda aquifer, west-central Alberta
study area.
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Figure 84. Distribution of total dissolved solids (TDS) in the Pekisko aquifer, west-central Alberta

study area.
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Figure 85. Distribution of total dissolved solids (TDS) in the Banff aquifer, west-central Alberta
study area.
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Figure 86. Distribution of total dissolved solids (TDS) in the Wabamun aquifer, west-central
Alberta study area. Abbreviation: DST, drillstem test.
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Figure 87. Distribution of total dissolved solids (TDS) in the Blue Ridge aquifer, west-central

Alberta study area. Abbreviation: DST, drillstem test.
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Figure 88. Distribution of total dissolved solids (TDS) in the Nisku aquifer, west-central Alberta
study area. Abbreviation: DST, drillstem test.

AER/AGS Report 100 « 100



118°

116°

A Y/
J / (
N, S /
s
- >
J L h\\_ -
A
BN R
3 ]
00. J*_‘J;V\E > i
% )Z ! F!‘ hitecourt
EnAES:
MR
e NN S
k& T
//

0510 20 30 40
[ = 5 e )

Total Dissolved Solids (mg/L)
[ 175590 - 180 000 [ | 220 001 - 240 000
[ 180001 -200 000 [ | 240 001 - 260 000
[ ]200001-220000 [ ] 260001 -271485

m Area where DST recovered >100 m water
but no quality data was found

I:' Formation extent

@ Representative water analysis

Alberta

s Eneray AGS /7N
-_ Regulator ALBERTA GEOLOGICAL SURVEY

55°

54°

53°

52°

Figure 89. Distribution of total dissolved solids (TDS) in the Leduc aquifer, west-central Alberta

study area. Abbreviation: DST, drillstem test.
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Figure 90. Distribution of total dissolved solids (TDS) in the Swan Hills aquifer, west-central
Alberta study area. Abbreviation: DST, drillstem test.
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Figure 91. Distribution of total dissolved solids (TDS) in the Elk Point aquifer, west-central Alberta
study area.
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Figure 92. Distribution of total dissolved solids (TDS) in the Cambrian aquifer, west-central Alberta

study area.
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1.4 Water Driving Force Maps
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Figure 93. Water driving force (WDF) map for the Wapiti aquifer, west-central Alberta study area

(extracted from Nakevska and Singh, 2017).
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Figure 94. Water driving force (WDF) map for the Cardium aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 95. Water driving force (WDF) map for the Viking aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 96. Water driving force (WDF) map for the Spirit River aquifer, west-central Alberta study

area. Abbreviation: DST, drillstem test.
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Figure 97. Water driving force (WDF) map for the Gething aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 99. Water driving force (WDF) map for the Nordegg aquifer, west-central Alberta study area.
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Figure 100. Water driving force (WDF) map for the Montney aquifer, west-central Alberta study

area. Abbreviation: DST, drillstem test.
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Figure 101. Water driving force (WDF) map for the Belloy aquifer, west-central Alberta study area.
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Figure 103. Water driving force (WDF) map for the Shunda aquifer, west-central Alberta study

area. Abbreviation: DST, drillstem test.

AER/AGS Report 100

115



118°

116°

Fox
ree

Water Driving Force

WDF magnitude (x10%)
0.25-1

1-10
10 - 100

* 100-219
Angle between WDF and head vector (°)

[ Jo-z0 [l s -90
[ ]31-e0[  |o1-180
|:| Formation extent

Alberta

@il Eneray AGS /7N
- Regulator ALBERTA GEOLOGICAL SURVEY

55°

54°

53°

52°

Figure 104. Water driving force (WDF) map for the Pekisko aquifer, west-central Alberta study

area.
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Figure 105. Water driving force (WDF) map for the Banff aquifer, west-central Alberta study area.
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Figure 106. Water driving force (WDF) map for the Wabamun aquifer, west-central Alberta study

area. Abbreviation: DST, drillstem test.
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Figure 107. Water driving force (WDF) map for the Blue Ridge aquifer, west-central Alberta study
area. Abbreviation: DST, drillstem test.
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Figure 108. Water driving force (WDF) map for the Nisku aquifer, west-central Alberta study area.

Abbreviation: DST, drillstem test.
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Figure 109. Water driving force (WDF) map for the Leduc aquifer, west-central Alberta study area.
Abbreviation: DST, drillstem test.
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Figure 110. Water driving force (WDF) map for the Swan Hills aquifer, west-central Alberta study

area. Abbreviation: DST, drillstem test.
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Appendix 2 — Water Chemistry Plots
2.1 Piper Plots
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Figure 112. Piper plot for the Wapiti aquifer, west-central Alberta study area. Abbreviation: meq,
milliequivalent.
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Figure 113. Piper plot for the Cardium aquifer, west-central Alberta study area. Abbreviation: meq,
milliequivalent.
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Figure 114. Piper plot for the Dunvegan aquifer, west-central Alberta study area. Abbreviation:
meq, milliequivalent.
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Figure 115. Piper plot for the Viking aquifer, west-central Alberta study area. Abbreviation: meq,
milliequivalent.
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Figure 116. Piper plot for the Spirit River aquifer, west-central Alberta study area. Abbreviation:
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Figure 117. Piper plot for the Bluesky aquifer, west-central Alberta study area. Abbreviation: meq,
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Figure 118. Piper plot for the Gething aquifer, west-central Alberta study area
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Figure 119. Piper plot for the Cadomin aquifer, west-central Alberta study area. Abbreviation: meq,
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Figure 120. Piper plot for the Nordegg aquifer, west-central Alberta study area. Abbreviation: meq,
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Figure 122. Piper plot for the Montney aquifer, west-central Alberta study area. Abbreviation: meq,
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Figure 123. Piper plot for the Belloy aquifer, west-central Alberta study area. Abbreviation: meq,
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Figure 124. Piper plot for the Debolt aquifer, west-central Alberta study area

. Abbreviation: meq,
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Figure 125. Piper plot for the Shunda aquifer, west-central Alberta study area. Abbreviation: meq,
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Figure 126. Piper plot for the Pekisko aquifer, west-central Alberta study area. Abbreviation: meq,
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Figure 127. Piper plot for the Banff aquifer, west-central Alberta study area. Abbreviation: meq,
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Figure 128. Piper plot for the Wabamun aquifer, west-central Alberta study area. Abbreviation:
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Figure 129. Piper plot for the Blue Ridge aquifer, west-central Alberta study area. Abbreviation:
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Figure 130. Piper plot for the Nisku aquifer, west-central Alberta study area
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Figure 131. Piper plot for the Leduc aquifer, west-central Alberta study area. Abbreviation: meq,

AER/AGS Report 100

133



Q
e
= e
3 5
>
£ 2%
< x
o Z
oy %
S Y
& Y
§ %,
¢ 3
& 8
. e
A
Mg

>
3
< %
e & N
% o
2 &
Z
“Z
&£ %, £ %
QF o € g -
& 3 z )
& % §
¥ g 2% . L9 B~
£ ¢
b &
&
o % & g ¥, 3
2 a
ca “ & 0 NatK HCO3+CO 3
Calcium (Ca)
CATIONS

0 &
Y%meg/]

= h
= cl

Chioride (CI)

ANIONS

meq, milliequivalent.

Figure 132. Piper plot for the Swan Hills aquifer, west-central Alberta study area. Abbreviation:
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Figure 133. Piper plot for the Elk Point aquifer, west-central Alberta study area. Abbreviation: meq,
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Figure 134. Piper plot for the Cambrian aquifer, west-central Alberta study area. Abbreviation:
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Figure 135. Major ion plots for the Wapiti aquifer, west-central Alberta study area. Abbreviation:
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Figure 136. Major ion plots for the Cardium aquifer, west-central Alberta study area. Abbreviation:
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Figure 137. Major ion plots for the Viking aquifer, west-central Alberta study area. Abbreviation:
TDS, total dissolved solids.
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Figure 138. Major ion plots for the Spirit River aquifer, west-central Alberta study area.
Abbreviation: TDS, total dissolved solids.

AER/AGS Report 100 + 139



35,000

30,000
25,000
=
S 20,000
£
s 15,000
=2
10,000
5,000
0
700
600
500
=
® 400
E
4, 300
=
200
100
0
1,000
800
I 600
oo
E
L 400
200
0

10 +
., * )
. ] .
8 + ¢ P
gg."" ] i
s‘{ ¢ 6 + . ) +*
”0 r:“ L | *
". Q ] * < *y
. ES 4 1 .
» ] & PR * *
*
1 PN ot oo
] by .
* 2 t_ 0'.‘ » ‘.
J - P ot e
‘ 1 NS S IR SN SN
0 20,000 40,000 60,000 80,000 100,000 0 20,000 40,000 60,000 80,000 100,000
TDS (mg/L) TDS (mg/L)
T 4 1
Ei 1 e
] .« * 3 .
’ :
E, . @ bo & ]
1 ‘s s Qo 2+ . -
] . wn il
T » = 4 *
- *
] a ]
= . £ St ]
u . . 1. &
] . T 1 %
Ei * ". : *
0 20,000 40,000 60,000 80,000 100,000 0 20,000 40,000 60,000 80,000 100,000
TDS (mg/L) TDS (mg/L)
— 35 T
: 30 E_
i 25 é,
1 . . ]
4 oﬁ 20 E,
] % ]
1 ® 15 --
E . . . 10 é_ . .
ol * + 1 & .o o
.| - . ’0: ¢ 5 3+ - e
J « ] G
1 Il b “‘s’ 5 ‘: ) ) | 0 ] 1 ’ 1 ,' ’.:. ?2:0" .,0. * ]
0 20,000 40,000 60,000 80,000 100,000 0 20,000 40,000 60,000 80,000 100,000
TDS (mg/L) TDS (mg/L)
Gething
+ Bluesky
« Cadomin

+ Nikanassin

Figure 139. Major ion plots for the Bluesky, Gething, Cadomin, and Nikanassin aquifers, west-
central Alberta study area. Abbreviation: TDS, total dissolved solids.
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Figure 140. Major ion plots for the Mississippian—Jurassic aquifers, west-central Alberta study
area. Abbreviation: TDS, total dissolved solids.
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Figure 141. Major ion plots for the Cambrian—Devonian aquifers, west-central Alberta study area.
Abbreviation: TDS, total dissolved solids.
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Appendix 3 — Summary Tables of Results

Table 2. Results summary from the water recovery and total dissolved solids (TDS) mapping, west-central Alberta study area.

Water Recovery Mapping TDS Mapping
Aquifer Figure | Number | % with Maximum | oo | Initial | Final TDS Range Gridding 'l‘E"fri': RMSE
of DSTs Water Recovery (m) Points Points (mglL) Method (mglL) (mglL)
Wapiti* 28 754 54 1332 73 N/A N/A 662—-8294 N/A N/A N/A
Cardium 29 78 20 1348 74 173 28 8 425-29 541 EBK -54 3332
Dunvegan 30 30 15 1082 N/A 129 1 N/A N/A N/A N/A
Viking 31 207 50 1463 75 286 31 14 855-29 171 OK -56 4009
Spirit River 32 162 36 1950 76 730 43 10 965-58 224 EBK 252 8881
Bluesky 33 43 17 1460 N/A 96 12 9019-72 839 NA NA NA
Gething 34 290 35 1950 17 856 46 17 357-81 661 EBK 445 15748
Cadomin 35 50 40 1737 78 155 28 31614-70 789 EBK 20 9018
Nikanassin 36 7 28 1460 N/A 35 6 N/A N/A N/A N/A
Nordegg 37 57 12 2165 79 1445 25 24 339-130 396 IDW 3935 16 388
Middle—Upper Triassic 38 66 8 1678 N/A 83 9 N/A N/A N/A N/A
Montney 39 92 14 1992 80 535 42 125 125-167 496 IDW 302 9109
Belloy 40 98 40 1844 81 146 34 143 570-153 103 SK 52 10 191
Debolt 41 88 43 2273 82 343 42 70 755-174 813 SK -1054 17 351
Shunda 42 80 9 1966 83 413 35 65 160—121 948 IDW 290 10 451
Pekisko 43 74 15 1725 84 566 37 34 892-148 388 IDW -1657 29 160
Banff 44 69 9 1118 85 533 40 42 539-125 999 IDW -1449 13 967
Wabamun 45 130 76 3125 86 552 38 148 655-240 482 SK 572 11 953
Blue Ridge 46 72 61 2557 87 292 15 154 189-264 406 SK 567 19754
Nisku AT 127 52 3658 88 638 36 161 745-250 223 IDW 2016 17 265
Leduc 48 106 74 4370 89 516 40 175 590-271 485 IDW 403 17 756
Swan Hills 49 136 62 2747 920 1879 73 158 015-254 665 IDW -2160 13 843
Elk Point 50 60 39 2801 91 213 69 166 883-336 478 IDW 205 30 659
Cambrian 51 45 48 3159 92 77 15 188 566—279 921 IDW -5644 23 032

*See Nakevska and Singh (2017) for details.

Abbreviations: DST, drillstem test; EBK, empirical Bayesian kriging; IDW, inverse distance weighting; N/A, not available; OK, ordinary kriging; RMSE, root mean square error; SK,
simple kriging
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Table 3. Results summary from the hydraulic head (HH) mapping, west-central Alberta study area.

Aquifer Figure Initial Final HH Range Gridding “é'fr‘;‘)’: RMSE
Points Points (m asl) Method (m asl) (m asl)
Wapiti* 52 N/A N/A 614-921 N/A N/A N/A
Cardium 53 243 40 383-809 IDW 0.2 22.0
Dunvegan N/A 109 14 N/A N/A N/A N/A
Viking 54 407 83 366-509 SK 0.8 39.0
Spirit River 55 299 75 366-681 SK 0.12 42.0
Bluesky 56 70 28 592-721 EBK 06 24
Gething 57 1046 ) 401-790 EBK 3.0 68.0
Cadomin 58 75 31 574-604 EBK 0.1 12.0
Nikanassin N/A 13 5 N/A N/A N/A N/A
Nordegg 59 274 11 365-757 EBK 13.3 127.2
iddie-Upper N/A 29 5 N/A N/A N/A N/A
Montney 60 190 50 573-674 EBK 0.2 24.8
Belloy 61 74 40 556-707 EBK 0.7 16.9
Debolt 62 79 61 526-698 EBK 0.0 28.2
Shunda 63 79 29 563-682 EBK 0.2 65.2
Pekisko 64 153 21 385-708 EBK 1.5 45.1
Banff 65 185 17 434-694 EBK 3.4 58.4
Wabamun 66 154 53 356-1102 EBK 0.7 50.7
Blue Ridge 67 89 27 385-1083 EBK 5.1 76.6
Nisku 68 155 19 414-1182 EBK 33.2 130.3.6
Leduc 69 112 24 811-1068 EBK 0.4 70.1
Swan Hills 70 361 23 921-986 EBK 2.3 69.0
Elk Point 71 72 36 762-1070 EBK 2.5 37.0
Cambrian 72 33 17 789-981 EBK 0.9 26.1

'see Singh and Nakevska (2017) for details

Abbreviations: DST, drillstem test; EBK, empirical Bayesian kriging; IDW, inverse distance weighting; N/A, not available; OK,

ordinary kriging; RMSE, root mean square error; SK, simple kriging
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Table 4. Results summary from the water driving force mapping, west-central Alberta study area.

Hydraulic Head Gradient

Buoyancy Gradient

Aquifer Figure Dominated Areas Dominated Areas
Wapiti 93 Throughout None
Cardium 94 Throughout None
Dunvegan N/A N/A N/A
Viking 95 Throughout None
Spirit River 96 Throughout None
Bluesky N/A Throughout None
Gething 97 Throughout Isolated areas
Cadomin 98 Some Some
Nikanassin N/A N/A N/A
Nordegg 99 Throughout None
Middle-Upper Triassic N/A N/A N/A
Montney 100 Northern portion Southern portion
Belloy 101 Majority Some areas
Debolt 102 Majority Isolated areas
Shunda 103 Majority Small area
Pekisko 104 Throughout None
Banff 105 Majority Small area
Wabamun 106 Western portion Eastern portion
Blue Ridge 107 Western portion Eastern portion
Nisku 108 West/central portion Eastern portion
Leduc 109 Minor Throughout
Swan Hills 110 Minor Throughout
Elk Point N/A N/A N/A
Cambrian a1 Small areas Majority

Abbreviation: N/A, not available
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Appendix 4 — Culling Steps

Pressure Culling

Useful drillstem tests (DSTs) were selected based on the following selection criteria:

DST had information on the top and bottom of the tested interval

DST was conducted over a reasonably defined interval (<50 m)

tested interval did not straddle multiple formations

DST recovered water

DST was mechanically sound (i.e., no misruns)

DST pressure had stabilized or was close to stabilization (Pmax was provided)
flow and shut-in times were reported

Outliers were investigated with an emphasis on the following conditions:

small water recoveries (less than 100 to 300 m, depending on the formation)
final shut-in and final flow times less than 30 minutes
difference between final and initial shut-in pressures was more than 25%

The DSTs passing the above culling criteria were subsequently examined using the cumulative
interference index methodology (Singh et al., 2017), to determine if the pressure was influenced by
production/injection activities.

Total Dissolved Solids Culling

Useful formation water samples were selected based on the following selection criteria:

charge balance error was between -10% and 10%
sampled interval was <50 m

sampled interval did not straddle multiple formations
DST recovered water

Additional culling was performed in order to identify contaminated samples. The ratios are mass-based
unless indicated otherwise. Samples were excluded if

pH <5 or >8 (indication of acid water, or corrosion-inhibitor completion fluid),

COj;™ or OH  reported (only a concern if pH <8.3, in which case CO3” should not exist or if pH <10.2
in which case OH’ should not exist, both indicative of drilling-fluid contamination or mud recovery),

density <1 g/cc (indication of alcohol contamination),

Ca/Cl1 >0.3 and pH <5.7 (indication of acid water completion fluid),

Na/Ca <1.2 (indication of acid water completion fluid),

Na/Cl >1 (characteristic of a large mud recovery),

sampling locations such as a separator, pressure/mud tank, stock, swab, gas meter, meter run,
manifold, sight glass, treater, frack manifold, flare line, rig tank, tubing, choke manifold indicate
higher chance of contamination,

Na/K <20 and Na/Cl (milliequivalents/litre) <0.6 and ‘water type’ field shows KCI.

Outliers were examined with an emphasis on the following conditions:

small water recoveries (less than 100 to 300 m, depending on the formation)

various criteria can’t be examined because of missing information, including missing major ions
(Ca®*, Mg*, Na", K*, CO;, HCO5" CI" and SO,*), pH, or density values

analyses show <80% milliequivalents/litre of total anions present as CI’

indication of contamination in the ‘remarks’ or ’recovery/description’ fields, such as the terms
alcohol, acid, ammonium, condensate, coloured sample

Stiff diagram indicates mud filtrate or acid
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Appendix 5 — Sources of Errors, Uncertainties, and Limitations

Efforts were made throughout the study to reduce potential sources of error. However, it is acknowledged
that potential errors and uncertainties exist, which are described below.

Errors in Pressure Data

The drillstem tests (DSTs) used in this study have undergone a documented culling process so only the
tests with the most representative pressures were used. However, certain errors in the recorder and
calculation of reservoir pressures are possible.

Relative errors in DST pressure gauge readings are in the range of 0.05% (Reid, 2011). This relative error
typically has a minimal effect on the results of pressure determinations within lower pressured formations
but could have a more substantial impact on pressure determinations in higher pressure (deeper)
formations.

The data comes from DSTs conducted over multiple decades. Some of the pressures were recorded in
relation to ambient atmospheric pressure (i.e., gauge pressure) and others in relation to an absolute
pressure. The difference in reference could lead to an approximate error of 101.325 kPa in the pressure,
which is equivalent to an error of 10.3 m in hydraulic head.

Although recorded DST pressures are related to a specific recorder at a specific depth, this information
was not readily available. To overcome this lack of information, the pressure data was allocated to the
midpoint between the top and bottom packer of the test interval. The average error for this varies
depending on the length of the DST interval and the placement of recorders.

The DSTs that do not reach reservoir pressure during a shut-in period require a Horner plot extrapolation
to determine the reservoir pressure. This extrapolation assumes radial flow in the reservoir. Due to the
number of DSTs in the project, individual analysis of every published extrapolation was not completed.

Errors in Chemistry Data

The chemical analysis data were subjected to culling criteria in order to select the most representative
formation water samples, however, errors may still exist in the reported concentration of constituents.
Possible errors in reported values may come from the various techniques used for sample preservation,
collection, and analysis. As data originate from different laboratories, detection limits for parameters may
be different or have changed over the years.

Error in Data Allocation

Pressure and salinity data were assigned to a specific geological unit based on the reported test interval
and the structural geology framework grids created for the west-central Alberta study area (Corlett et al.,
2019). The structural framework grids are based on picks from wells, modelled to create a continuous
surface. A geological unit top pick is not made in every well for each geological unit included in the
geological model. There may be a discrepancy between DST or water sample collection depth, the
geological unit top pick for that given location, and the structural framework grids. The net result could
be some error in allocation of data to geological units, especially where located near to a unit top or
bottom. However, the utmost care was taken for hydrogeological data located near the vertical boundary
between units. For more information on the error and assumptions related to the stratigraphic surfaces, the
reader is referred to Corlett et al. (2019). The DSTs that appeared to straddle multiple formations were not
used in this study. It is acknowledged that valid data may have been omitted in certain cases. Towards
some subcrop edges, DSTs with a packer set in an above formation or where the gridding process placed
the top of the DST interval in another formation were considered straddles and were not included in the
study area.

Data Limitation and Interpolation Error

Hydraulic head and TDS maps have uncertainties associated with the spatial distribution of data. Areas
lacking data inherently have higher uncertainties than data-dense areas.
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Hydraulic head and TDS grids are associated with interpolation errors. A root mean square error (RMSE)
is reported to provide a measure of the grid interpolation error. The RMSE is used to show how similar
interpolated grid values are to the original input data for the entire grid.

In general, all maps and analyses for this study have been completed at a regional scale and show
generalized trends over the west-central Alberta study area. A more local-scale analysis of the
hydrogeology and hydrochemistry is required for site-specific studies.
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