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Introduction

One of the most frequently asked questions to geomodellers is, “How
much data do you need?” Knowing how many picks are necessary, how
much log analysis should be done, how many core samples must be
collected is an open question. The answer Is not straightforward due to
changes In the variables being modelled, the geology under
consideration, the scale of investigation, and the objective of the model.

Data Spacing for Geological Modelling

Duvernay Formation Shale

Three variables were used from the Duvernay Formation: net shale
thickness, total organic carbon content, and porosity. These data come
from well picks and log analyses used to assess the Duvernay in Rokosh
et al. (2012); Figure 1 shows the locations of the data points. Figure 2
shows histograms of the data distributions. Net shale thickness is the
most skewed and has the highest coefficient of variation, and TOC Is the

Figure 1. Location map of Duvernay data.

Figure 3. Graphs of data spacing and
density vs. average local uncertainty.

0.45

0.4

© o
) o w
o w ¢

Coefficient of Variation
o
N

0.15

o
[uny

Duvernay Data Spacing vs. Uncertainty

*

/

O/A/A/

—

Ve

/- e

¢ Net Shale
B TOC

A A Porosity

/o

AGS ~—
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Cardium Formation Tight Sandstone

The porosity-thickness variable (Phi-H) was chosen as a proxy to
represent the uncertainty in the Cardium Formation (D. Bechtel,
unpublished data, 2013). Figure 4 shows the locations of the data points.
Figure 5 shows a histogram of the data distribution. Seven data spacings
were considered: 800, 1600, 3200, 4800, 6400, 8000, and 9600 m:;
corresponding to data densities of 144, 36, 9, 4, 2.25, 1.44, and 1 data per
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Figure 5. Histogram of Cardium data.
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The examples presented here explore the relationship between data
spacing (or density) and uncertainty. While it is very difficult to determine
broadly applicable rules, some general guidelines and pitfalls are
presented below.

Geological Complexity
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Data Density (Data per Township)

-rom the data density vs. uncertainty graphs (Figures 3, 6, and 10), it can
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Figure 2. Histograms of Duvernay data.
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the univariate distribution and spatial structure of the data and is useful for
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Net Shale Thickness (m) TOC Content (%) Porosity (Fraction)

The clustered data sets from the synthetic example (Figure 8) show worse
RMSE and bias over the entire modelled area than the other sampling
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