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One of the most frequently asked questions to geomodellers is, “How 
much data do you need?” Knowing how many picks are necessary, how 
much log analysis should be done, how many core samples must be 
collected is an open question. The answer is not straightforward due to 
changes in the variables being modelled, the geology under 
consideration, the scale of investigation, and the objective of the model.

Introduction

Synthetic Grids

Duvernay Formation Shale

References

Four synthetic grids of varying complexity were created to explore the 
effects of data density and sampling arrangements on modelling errors. 
Figure 7 shows the four grids. Each grid (1-4) consists of 10201 grid 
nodes that were sampled using multiple sampling schemes varying the 
number of data points (n=49, 81, 196, and 400) using 3 different sampling 
arrangements (regular, random, and clustered). These sampling schemes 
are meant to mimic the number of data available and sampling 
arrangements for a real project. Table 1 shows a summary of the 
sampling. Figure 8 shows the sample data extracted from grid 3.

Cardium Formation Tight Sandstone

Methodology
Two different approaches were used to explore the relationship between 
data spacing/density and uncertainty. The unconditional simulation 
method of Wilde (2010) and Wilde and Deutsch (2013) was used to 
quantify the relationship between data spacing and uncertainty based on 
real data in the Duvernay and Cardium formations. This is a geostatistical 
simulation-based approach that resamples reference realizations at a 
variety of data spacings to quantify uncertainty in further realizations 
conditioned to the previously-simulated grids. This approach accounts for 
the univariate distribution and spatial structure of the data and is useful for 
situations where the true underlying variable is not exhaustively sampled.

In addition, synthetic grids were created to allow sampling at different 
spacings and for different sampling schemes. This approach has the 
advantage of using spatial variables that are defined at all locations, and 
so the models created using the artificial data can be compared to true 
values. The grids are modelled after real geologic features of varying 
complexity.

Three variables were used from the Duvernay Formation: net shale 
thickness, total organic carbon content, and porosity. These data come 
from well picks and log analyses used to assess the Duvernay in Rokosh 
et al. (2012); Figure 1 shows the locations of the data points. Figure 2 
shows histograms of the data distributions. Net shale thickness is the 
most skewed and has the highest coefficient of variation, and TOC is the 
most symmetrical and has the lowest coefficient of variation.

Six data spacings were considered using the method of Wilde and 
Deutsch (2013): 800, 1600, 3200, 4800, 9600, and 19200 m. These 
correspond to data densities of 144, 36, 9, 4, 1, and 0.25 data per 
township. The spatial extent of the simulated grids was 134 km by 150 km, 
with about half of the cells within the grids being active (i.e., within the 
Duvernay extents). This is a large domain compared to the data spacing, 
meaning that local uncertainty is an important consideration in areas of 
higher or lower sampling density.
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The porosity-thickness variable (Phi-H) was chosen as a proxy to 
represent the uncertainty in the Cardium Formation (D. Bechtel, 
unpublished data, 2013). Figure 4 shows the locations of the data points. 
Figure 5 shows a histogram of the data distribution. Seven data spacings 
were considered: 800, 1600, 3200, 4800, 6400, 8000, and 9600 m; 
corresponding to data densities of 144, 36, 9, 4, 2.25, 1.44, and 1 data per 
township. Figure 6 shows graphs of data spacing and data density vs. 
average local uncertainty. The spatial extent of the simulated grids was 
slightly larger than four townships in area, 21.2 km by 23.2 km. The 
domain is relatively small compared to the data spacing intervals 
considered, meaning the sampled univariate distribution had a significant 
impact on the results relative to the spatial distribution of data.

Discussion
The examples presented here explore the relationship between data 
spacing (or density) and uncertainty. While it is very difficult to determine 
broadly applicable rules, some general guidelines and pitfalls are 
presented below.

Geological Complexity
The Duvernay example is similar to the more complex grids (3 and 4) from 
the synthetic data, in that there is more complicated spatial structure and 
significant randomness that cannot be predicted, only accounted for. The 
Cardium example is similar to the simplest synthetic grid (1) in that there 
are more gradual changes and a clearer spatial structure. More complex 
geology requires more data to achieve the same level of confidence as 
simpler geology.

Diminishing Returns
From the data density vs. uncertainty graphs (Figures 3, 6, and 10), it can 
be seen that the first several data per township provide the most value; 
that is, there are diminishing returns as more data are added. The more 
complex geological scenarios have a greater decrease in uncertainty 
within the first few wells per township. The simpler scenarios have a 
shallower curve, suggesting that the returns diminish quicker when the 
geology is well-behaved and more predictable as long as the underlying 
univariate distribution has been sufficiently sampled.

Data Clustering
The clustered data sets from the synthetic example (Figure 8) show worse 
RMSE and bias over the entire modelled area than the other sampling 
schemes (Figures 9 and 10). In particular, additional sampling data from 
the more complex grids (3 and 4) adds little value when that data is 
clustered. If the important features (channels in this case) are not found 
already, clustering only reinforces existing data biases. Clustering adds 
risk to the modelling unless some other information, such as seismic, is 
available to guide the sampling. For simpler scenarios without the 
all-or-nothing channel features there is less risk in the clustering.

Domain Size
The Duvernay data domain is quite large compared to the data spacing 
(Figure 1). This means that there are subareas within the domain that 
effectively have different data densities. The spatial uncertainty in this 
case is a very important factor, and sparser areas can be infilled to provide 
more value. There are also significant changes in the variables of interest 
over the domain that make some minimum level of sampling in all areas 
necessary to detect a trend. The Cardium domain is relatively small 
compared to the data spacing (Figure 4). In this case the univariate 
sampling distribution has a larger impact and the spatial uncertainty is 
less of a concern.

The sampling schemes resulted in 48 datasets that were brought into 
Petrel 2013. Each dataset was interpolated to the full spatial extent of the 
original synthetic grids. The grids nodes (n=10201) of all 48 surfaces were 
extracted and compared back to the original synthetic grids. This allowed 
us to assess the impact of data spacing and sampling distribution on the 
prediction accuracy of surfaces of variable complexity.

Root-mean-square-error (RMSE) was chosen as a representative statistic 
for the modelling results. The mean error was also used to assess the bias 
resulting from having limited data in different arrangements.

Figure 9 shows the cumulative histograms of errors for the 
modelled surfaces of grid 3. Similar histograms were made for all of 
the models, but are omitted for space. The regular sampling 
patterns have the narrowest and most symmetrical distributions of 
errors, with the random sampling results being only slightly worse. 
The clusted data sets produced the largest errors and most biased 
results, although there is a noticeable vertical portion of the 
distribution near zero error that represents the modelled cells near 
the data clusters.

Figure 10 shows the relationship between number of data, RMSE, 
and bias. In general more data produced better results (lower 
RMSE and mean error), although for grid 3 the clustered 81 data 
point set the sampling happened to miss several of the channels. 
Grid 4 is very complex and therefore the clustered sampling 
produced mixed results.

Figure 3 shows graphs of data spacing and data 
density vs. the average local coefficient of 
variation. The coefficient of variation was chosen 
to represent the local uncertainty because it 
implicitly corrects for the proportional effect, that 
is, higher variance in areas of higher data values.
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Figure 3. Graphs of data spacing and 
density vs. average local uncertainty.

Figure 2. Histograms of Duvernay data.

Figure 1. Location map of Duvernay data.

Table 1. Data sampling schemes for synthetic grids.

Figure 4. Location map of Cardium data.

Figure 5. Histogram of Cardium data.

Figure 6. Graphs of data spacing and 
density vs. average local uncertainty.

Figure 7. Synthetic grids used in the example. Figure 8. The sample data extracted from grid 3, at four different data densities and three different arrangements. Figure 9. Cumulative histograms of the
modelling errors for grid 3.

Figure 10. Number of data vs. RMSE and mean error (bias) .
Blue is regular sampling; Red is random sampling; Green is clustered sampling.


