Depositional Environments, Stratigraphic Packages, and Petrography of the Basal Cambrian Sandstone

Dave Herbers¹, John Gordon², Tyler Hauck¹

- 1) Alberta Geological Survey
 - 2) Spectrum Geosciences

Quest CCS Facility

- First commercial scale Carbon Capture and Sequestration (CCS) Facility in Alberta.
 - Over 6 million tonnes of CO₂ has been sequestered from the Scotford
 Upgrader, ~48% of plant's emissions.
- Sequestering CO₂ into Basal Cambrian
 Sandstone (BCS).

Quest Annual Summary Report, 2015

Basal Cambrian Sandstone

 Σ Middle Cambrian coarse-grained clastic deposit uncomformably overlying Proterozoic basement

THEM / ERA

CAMBRIAN

UPPER

LOWER

UPPER

LOWER

Basal Cambrian Sandstone

- Middle Cambrian coarse-grained
 clastic deposit uncomformably
 overlying Proterozoic basement.
- Good relationship between porosity and permeability.
- D Limited wellbore penetrations
 - Reduced wellbore integrity uncertainty.

BCS Cores

- A range (9) of recent and legacy BCS cores.
- Cores record burial depths from 1400m-3600m.
- Poor data coverage an issue in evaluating the BCS, few wells go to Proterozoic, even fewer core the BCS.

Paleogeography

- Laurentia sitting on the equator, rotated 90*.
- BCS deposited within the
 Lloydminster Embayment (van
 Hees, 1964). X
- Large ephemeral braided fluvial systems delivering large amounts of sediment to the arid coast.
 - No land vegetation to trap sediment.

Basal Cambrian Sandstone

 BCS deposited within a fluvio-tidal compound dune field with 3 partitions.

- 4 progressively transgressive cycles identified.
- BCS deposition terminated by a significant maximum flooding surface (MFSx).

- Thick accumulations of trough-cross stratified (TCS) medium- to very-coarse sandstone with trace mudstone.
- Abundant wavy muddy laminae (couplets), commonly demarcating TCS bed set boundaries.
- Prolific grain size striping.
- > Well to poorly sorted.
- Sporadic fluid muds
- \succ High net to gross sand.

103/07-11-059-20W4/00, 2056m

- Thick accumulations of trough-cross stratified (TCS) medium to very coarse sandstone with trace mudstone.
- Abundant wavy muddy laminae (couplets), commonly demarcating TCS bed-set boundaries.
- Prolific grain size striping.
- Well to poorly sorted.
- Sporadic fluid muds
- \succ High net to gross sand.

103/07-11-059-20W4/00, 2050m

- Thick accumulations of trough-cross stratified (TCS) medium to very coarse sandstone with trace mudstone.
- Abundant wavy muddy laminae (couplets), commonly demarcating TCS bed set boundaries.
- Prolific grain size striping.
 - > Alternating coarser-finer laminae.
- \succ Well to poorly sorted.
- Sporadic fluid muds
- ➢ High net to gross sand.

100/08-19-059-20W4/00, 2081.5m

- Thick accumulations of trough-cross stratified (TCS) medium to very coarse sandstone with trace mudstone.
- Abundant wavy muddy laminae (couplets), commonly demarcating TCS bed set boundaries.
- Prolific grain size striping.
- Moderate to poorly sorted.
 - Interpreted to record adjacency to immature fluvio-tidal mouth bars.
- Sporadic fluid muds
- ➢ High net to gross sand.

100/01-27-060-26W4/00, 2064.4m

- Thick accumulations of trough-cross stratified (TCS) medium to very coarse sandstone with trace mudstone.
- Abundant wavy muddy laminae (couplets), commonly demarcating TCS bed set boundaries.
- Prolific grain size striping.
- > Well to poorly sorted.
- Sporadic fluid mud beds.
 - Reflect the episodic and rapid deposition of fluvially derived suspended mud.
 - Mantle and swirl (swimming) biogenic structures indicate soupground conditions.

103/11-32-055-21W4/00 2182.4m 100/08-19-059-20W4/00 2070.7m

- Intense hydraulic currents coupled with prolific sediment supply result in an abundance of clean TCS sandstone.
- Tidal currents rework coarse clastic material cannibalized from fluvial derived mouth bars.
- ➢ High net-gross sand, ~0.97 (Winkler, 2011).

- Medium to coarse grained TCS sandstone interbedded with bioturbated (BI 3-5) muddier fine-medium grained sandstone.
- Abundant wavy mud laminae, often found in couplets or rhythmites.
- > Rare herringbone cross-stratification.
- Sporadic tubular tidalites.

103/07-11-059-20W4/00, 2047.6m

- Thickly bedded fine-medium grained sandstone with minor mudstone.
- ▶ Intercalated bioturbated (BI 3-5) and TCS sandstone.
- Abundant wavy mud laminae, often found in couplets or rhythmites.
 - Diagnostic of tidal environments.
- Mud draped foresets on dunes and ripples common.
 - > Interpreted to record slack water periods.
- Rare herringbone cross-stratification.
- Sporadic tubular tidalites.

102/05-35-059-21W4/00, 2066m

- Thickly bedded fine-medium grained sandstone with minor mudstone.
- ▶ Intercalated bioturbated (BI 3-5) and TCS sandstone.
- Abundant wavy mud laminae, often found in couplets or rhythmites.
- Rare herringbone cross-stratification.
 - Indicates bi-directional currents, diagnostic of tidal environments.
- Sporadic tubular tidalites.

102/05-35-059-21W4/00, 2064.1m

- Thickly bedded fine-medium grained sandstone with minor mudstone.
- ▶ Intercalated bioturbated (BI 3-5) and TCS sandstone.
- Abundant wavy mud laminae, often found in couplets or rhythmites.
- > Rare herringbone cross-stratification.
- Sporadic tubular tidalites.
 - Rhythmic mud laminae preserved within *Thalassinoides*-like arthropod burrows (likely trilobites).
 - Combined physical and biogenic sedimentary structures that are unique to tidal environments.

100/08-19-059-20W4, 2038.7m

- Medial position within the compound dune field.
- Reduced sediment supply and tidal energy result in an increased percentage of bioturbated lithosomes.
 - > Dunes migrating across bioturbated troughs.
- Lower net-gross sand when compared with the core part of the system, ~0.93 (Winkler, 2011).

100/08-19-059-20W4, 2059m

- Thinly laminated to medium-bedded heterolithic sandstone and mudstone. Variable BI, 2-4.
- Background sedimentation dominates.
- Large dune bedforms nearly disappear.
 - Overall greater proportion of mudstone and siltstone.
 - Bioturbation intensity increases. Deposit feeding behaviors dominate. *Thalassinoides*, *Teichichnus*, *Palaeophycus*, and *Planolites*.
 - Impoverished diversity.
 - Dune bedform tops bioturbated and reworked, illustrating sporadic migration. Static long enough for colonization.
- 2 expressions identified, proximal and distal.

- Thinly laminated to medium-bedded heterolithic sandstone and mudstone. Variable BI, 1-4.
- Sporadic wave ripples.
- Abundant sediment gravity flow beds.
- Flame, ball and pillow structures common. -->
- Prevalent fluid mud beds.
- Mantle and swirl biogenic structures, soupground mud conditions. -->

103/11-32-059-20W4/00, 2166.5m

- Thinly laminated to medium bedded heterolithic sandstone and mudstone. Variable BI, 2-4.
- Sporadic wave and current ripples.
- Sediment gravity flow beds are common.
- Prevalent fluid mud beds.
- Episodic sharp-based cross-bedded sand intervals.
 - Significantly coarser (medium) white quartzose cross-bedded \geq intervals.
 - Dune bedforms migrating at the fringes. \geq
 - Background sedimentation dominates deposition. \geq

103/11-32-059-20W4/00, 2166.5m

- Most distal position within the compound dune field.
- Sediment starvation and reduced tidal energy result in an increased percentage of bioturbated lithosomes.
 - Sporadic dune bedforms, limited to sediment supply/energy.
- Lower net-gross sand when compared with the core part of the system, ~0.35-0.50 (Winkler, 2011).
- Record the most recognizable parasequences or cycles.
 - Distal to proximal margin facies.

Currents

Summary

BCS deposited within a fluvio-tidal
 compound dune field with 3 partitions.

- 4 progressively transgressive cycles identified.
- BCS deposition terminated by a significant maximum flooding surface (MFSx).

Summary

Core tied to logs: surfaces are correlatable.

100081905920W400 2,132 103071105920W400 2,105

Bay of Fundy

Shaw et al., 2012

Fluvio-Tidal Compound Dune Field

Distal

Proximal <

Petrography and Mineralogy

- A slew of BCS cores (9) sampled for thin section, XRD, and PoroPerm plugs.
- Cores record burial depths from 1400m-3600m.
- > 86 XRD Points
- 64 Thin Sections
- 600 PoroPerm Plugs

XRD Results

- ➢ 86 XRD samples from 6 cores.
- > Why not QFL?
 - Lithics are very rare, only a couple of slides had tiny fragments of interpreted granitic basement material.
- BCS is dominated by quartz with potassium feldspar as an accessory mineral.

BCS Composition: 07-11 Case Study

- High-resolution XRD study on 07-11, active injection well at Quest.
- This is important because CCUS Hub modeling and forecasting will need to determine potential geochemical reactions with sequestered carbon.
- XRD samples taken on the original core analysis plugs at ~75cm spacing.
 - 62 XRD samples with thin sections spaced in.
 - This gives us a comprehensive mineralogical dataset that can be tied back to the original PoroPerm and grain density data.

BCS Composition: 07-11 Case Study

- Distinct mineralogical changes evident in the BCS.
 - BCS becomes more felspathic, less quartzose as we move up.
- Aligns with our progressively transgressive depositional cycles.
- Each transgressive cycle becomes increasingly feldspathic and less quartzose.
- The proximal compound dune core environments contain very little feldspar, too energetic, feldspar isn't as competent as quartz.

BCS Composition: 07-11 Case Study

Feldspar aligns with smaller scale \geq depositional cycles as well, marking the shifts from dune field core-front-margin environments.

A

B

C

Conclusions: Mineralogy

- Potassium feldspar can significantly degrade the PoroPorm system through alteration to Kaolinite clay.
 - > This clay plugs up the pore throats and coats quartz grains.

103/11-32-055-21W4/00: 2192.68m

Burial Diagenesis

- What happens to the BCS as we bury it?
- ➢ 3 cores:
 - 103/07-11-059-20W4, Quest, ~2000m
 - > 103/08-17-050-26W4, Leduc Area, ~2700m
 - > 100/04/12-015-27W4, Lethbridge , ~3600m

Petrography and Mineralogy

- 01-27-060-26W4 shows significant destruction of PoroPerm system at ~2250m.
- 3 orders of magnitude reduction in permeability, <1mD.

What is driving this?

Petrography and Mineralogy

01-27-060-26W4. 2252.9m, 10x

Quartz Sutures

Conclusions: Sorting and Perm

- BCS deposited near syn-depositional basement highs has an elevated risk of permeability destruction due to elevated clays and fines in conjunction with very poor sorting.
 - Sucker Sand": porosity is excellent, however tortuosity is very high and pore throats are plugged up with fines.

This won't show up on density logs

01-27-060-26W4 2261.25m

Petrography Tied to Exploration

- 01-27 happens to be deposited very close to the Snowbird Tectonic Zone, an interpreted paleo-high during BCS deposition.
- Extremely coarse-grained with very poor sorting and an abundance of interstitial fines.
- Interpreted to record deposition closer to the fan deltas interpreted to be supplying sediment to the coast.
- We are out of the "tidal fairway" that is cleaning and winnowing sand.

- You're after the "Goldilocks Zone", not too proximal, not too distal, just right.
- Too proximal? You're at 01-27, close to fluvially derived braid mouth bars.
 - Lots of Feldspar and interstitial fines, which degrade permeability.
- Too distal?
 - You're introducing bioturbated lithosomes into the system with a much higher percentage of fines and feldspar.
- You want the depositional environment that is closest to the sediment source while still being actively washed and winnowed by tidal forces.
 - Compound Dune Field Core and Proximal Front.

San Francisco Strait

GOOD

Take Home Points

- BCS becomes more feldspathic you move up, directly related to the facies and environment encountered.
- Feldspar has a negative effect on PoroPerm through the degradation into Kaolinite clay.
- Spectral gamma logs are worth running on new appraisal wells
- Sorting and grain size matter.
 - > Very poor sorting can have great PoroPerm.
 - > Very poor sorting with abundant interstitial fines destroys perm.
- It's not just sorting, it's what is being sorted.
- Compaction and associated quartz overgrowths become significant around ~2300m depth, PoroPerm begins to significantly degrade.

Acknowledgements

- Alex MacNeil
- Jesse Peterson
- Per Pedersen
- CRC Staff
 - Susan Co
 - Lukus Wagstaff
 - Ashley Moisson
 - Ashleigh Sedrovic
 - Jessa Turple

Questions, concerns, comments?

References

- Winkler, M., 2011. Generation -4 Integrated Reservoir Modeling Report. Shell Heavy Oil Controlled Document. AER Submission.
- Olariu, C., Steel, R.J., Dalrymple, R.W. and Gingras, M.K., 2012. Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sedimentary Geology, 279, pp.134-155.
- Shaw, J., Todd, B.J., Li, M.Z. and Wu, Y., 2012. Anatomy of the tidal scour system at Minas Passage, Bay of Fundy, Canada. *Marine Geology*, 323, pp.123-134.