

Alberta Hydrocarbon-Bearing Shales and Siltstones

Steve Lyster and Dean Rokosh

Alberta Geological Survey

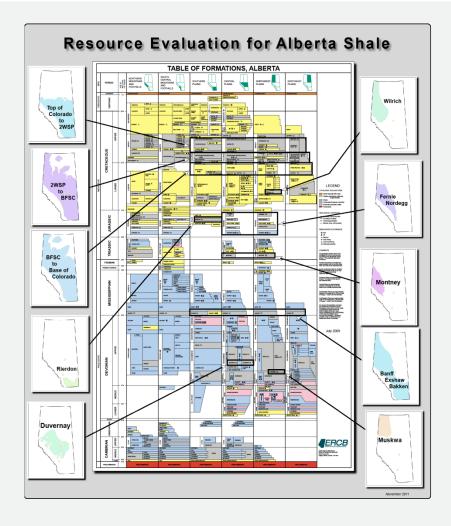
February 11, 2014

Outline

- >> Alberta Shale Project
- Data Collection
- >> Resource Evaluation Methodology
- D Porosity and Grain Density
- >> Assessed Shales and Siltstones
- Discussion

Alberta Shale Project

- Shale is a hot topic in the industry
- Land sales are
 significant (>\$3B in
 2011)
- Drilling (jobs, regulation)
- Conventional production is declining


- Environmental issues (water, fracking)
- Need to know the "size of the prize"

Alberta Shale Project

- Duvernay
- D Muskwa
- D Montney / Doig Siltstone
- D Banff / Exshaw / Bakken
- >> Fernie / Nordegg
- D Wilrich
- D Rierdon
- D Colorado

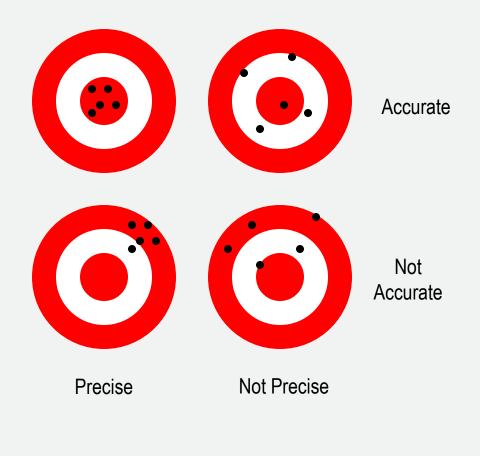
What is a shale-hosted unconventional hydrocarbon ?

- Shale gas typically refers to hydrocarbons both sourced and trapped within a source rock, either by adsorption onto organic matter or trapped as free gas in very low permeability/porosity shale.
- D The hydrocarbon can be oil, gas or NGL depending on:
 - 1. the type of organic matter in the shale, and
 - 2. the thermal maturity of the organic matter
- The tight nature of the rock requires stimulation to open up conduits so hydrocarbon can move from the rock to the wellbore

www.ags.gov.ab.ca

Data Collection

In an ideal setting, we collect core, sample immediately for gas content, also get fresh samples for analysis.

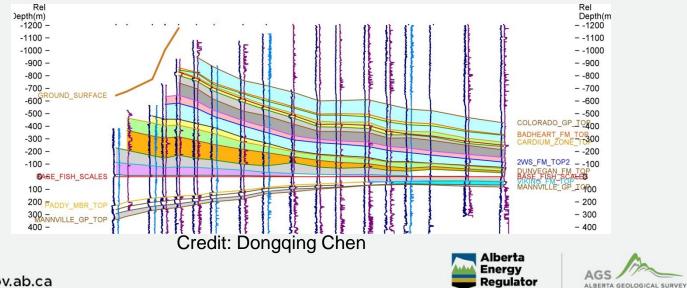


Data in Unconventional Reservoirs

- Standard tests weren't made for shale / siltstone
- Results may be questionable
- D Have to account for uncertainty

Data Sources

- D Geological picks and interpretation
- Sample core from CRC
- D Geophysical log analysis
- Reservoir data from IHSAccumap
- D Published reports,releases

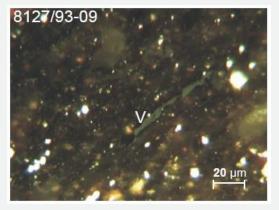


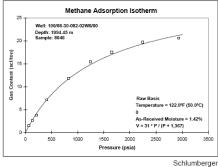
Geological Picks

- Expert interpretations and picks build the skeleton of this framework
- >> We need to be sure we're talking about the same thing

Core Samples

- Σ Little has been done to study shales in the past
- Samples had to be taken and tests run
- **D** The Core Research Centre proved invaluable

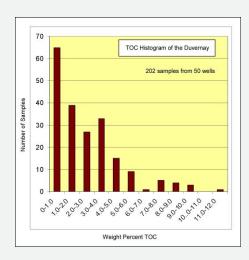


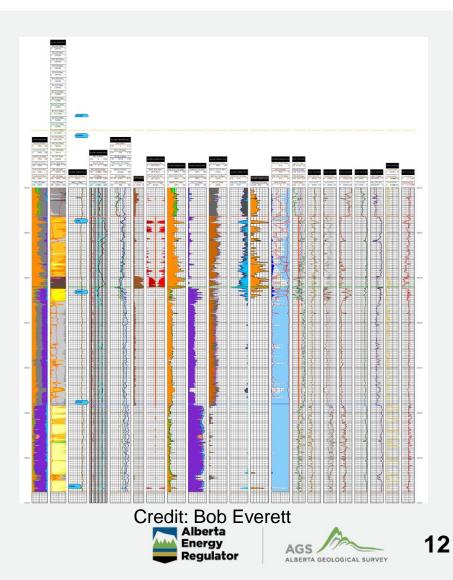


Core Testing

- D Thin sections
- \square Adsorption isotherms
- > RockEval and TOC
- > XRD for grain density
- Dean Stark
- D Pycnometry

al Survey	Otherm Well: 100/08-30-0 Depth: 1994.45 m TOC = 1.66%					
.36 g lesh 'F (50.0°C)	As-Received Moistur	e = 1.42%				
dsorption						
sure	Gas Conten	(Raw Basis)				
(MPa)	(scf/ton)	(scc/gm)				
0.44	1.5	0.05				
0.93	2.7	0.08				
1.46	3.8	0.12				
2.83	7.2	0.22				
5.72	11.8	0.37				
8.60	15.4	0.48				
11.40	17.4	0.54				
15.47	19.7	0.61				
20.24	20.6	0.64				
oefficients	V = 31.1 * P / (P + 1,366.7)					
L	VL (Ray	w Basis)				
(MPa)	(scf/ton)	(scc/gm)				
9.42	31.1	1.0				
	36 g lesh F (50.0°C) dsorption 38/€ (MPa) 0.44 0.93 1.46 2.83 5.72 8.60 11.40 15.47 20.24 coefficients (MPa)	Depth: 1994.45 m TOC = 1.66% 36 g (seh (FG0.0°C) As-Received Moistur (FG0.0°C) dsorption 38 38.0 Gas.Content (scfnon) 0.44 1.5 0.93 2.7 1.46 3.8 2.83 7.2 5.72 11.8 8.60 15.4 11.40 17.4 15.47 19.7 20.24 20.6 oefficients V = 31.1* P / (P + 1, (MPa) (MPa) (scffron)				





11

Geophysical Log Analysis

- Once the framework is built, fill in properties
 - \square Net Shale
 - D Porosity
 - D Total Organic Carbon
- D Calibrate to core samples

Reservoir Data

- D Reservoir conditions have an effect on storage
- Solution Series Seri
- Σ Oil also affected, mainly by dissolved gas
- Data is from early test wells or conventional reserves

Field/Stri	ike	Field	Pool	Gas in Place	Recovery Factor	Producible	Initial Reserves	Net Cum. Prodn	Remaining Reserves	Initial Soln Reserves	Area	Average Pay Thickness		Porosity	Gas Saturation	Initial Pressure	Temp	Compress ibility	Raw Gas Relative Density	M3/M3	Gas-Water Interface		Mean Formation Depth	Analysis Code	Discovery Year	Discovery Well	Formation Top	Formation Base		Zone BaseType
GRS		Field and P	ool Code	8	Raw Gas		м	arketable G	as	Solution Gas					Reservoir	Parameters			-						Other I	ool Information				
ALBRIGHT	MONTNEY B	400	52400	2 61	0.75	46	41		41		64	9.2	589	0.07	0.75	21740	83	0.878	0.67	10.384	1		2549.1	VO	2005	12-27-071-09VV6	2541	2557.2	770.1	PB
ANTE CREEK	MONTNEY G	550	52400	7 251	0.75	188	179	81	98		513	4.1	2103	0.134	0.8	17140	67	0.835	0.67	18,405			1918.5	PD	2003	13-30-066-24V/5	1923.6	1932.7	735.2	PB
ANTE CREEK NORTH	MONTNEY A	560	52400	1 275	0.75	206	185	103	82		573	2.74	1570	0.128	0.8	16640	67	0.813	0.7	17.53		-1125.5	1894.6	VO	2001	06-07-067-23\/\5	1896.5	1902	788.6	PB
ANTE CREEK NORTH	MONTNEY D	560	52400	4						2									0.72						2001	01-01-068-24\\5				
BEATON	MONTNEY C	1070	52400	3 12	0.75	9	9	6	3		64	2	128	0.18	0.65	7150	34	0.857	0.64	9.042			893.5	VO	2000	12-22-087-02006	892	895	697.1	PB
BEATON	MONTNEY E	1070	52400	5						6									0.66						2007	01-01-089-02006				
BELLOY	MONTNEY A	1130	52400	1 534	0.8	427	406	348	58		1957	1.55	3033	0.139	0.6	8290	40	0.862	0.63	7.287		-493.5	1069.8	PD	1969	11-18-078-01W6	1068.9	1070.7	580.9	PB
BELLOY	MONTNEY D	1130	52400	4 25	0.8	20	19	13	6		64	2.6	166	0.18	0.7	10780	40	0.834	0.61	14.797			1075.3	VO	1997	08-33-078-024/6	1073	1077.5	567.7	PB
BELLOY	MONTNEY F	1130	52400	6 111	0.75	83	79	65	14		128	9.95	1274	0.13	0.6	10340	40	0.838	0.62	8.744			1067.6	VO	1995	06-22-078-01W6	1060	1075	576	PB
BELLOY	MONTNEY G	1130	52400	7 22	0.8	18	17	8	9		128	2.2	282	0.12	0.55	10690	40	0.834	0.62	7.688			1070.1	VO	1997	12-02-079-02006	1068.3	1070.5	567	PB
BELLOY	MONTNEY H	1130	52400	8 49	0.85	42	40	14	26							10300	53	0.866	6 0.61				1459.5	PE	2000	08-33-078-02\\6	1457	1462	570.1	ZB
BELLOY	MONTNEY K	1130	52401	1 8	0.75	6	5	5			10	4.5	45	0.18	0.85	9980	38	0.84	0.61	16.622			1015.7	CP	1987	08-19-078-25W5	1013.5	1018	574.5	PB
BELLOY	MONTNEY L	1130	52401	2 3	0.75	2	2	2			16	1	16	0.18	0.85	9950	39	0.851	0.61	16.305	-428.6		1001.1	CP	2001	13-29-078-25W5	1000.2	1002	573.4	GW
BELLOY	MONTNEY M	1130	52401	3 38	0.75	27	26	15	11		227	1.7	386	0.15	0.6	9790	43	0.852	2 0.61	9.307			1145.4	PD	2001	06-22-078-01VV6	1144.5	1146.2	575.9	PB
BERWYN	MONTNEY D	10060	52400	4 15	0.75	11	10	9	1		85	1.6	136	0.18	0.7	7910	31	0.866	0.59	10.768			853.7	PD	2006	06-16-082-24\\\5	852.9	854.5	588.9	PB
BERWYN	MONTNEY E	10060	52400	5 14	0.75	11	10		10		64	2	128	0.18	0.7	7990	31	0.865	0.59	10.888			865 1	VO	2006	06-16-082-24W5	863.5	866.5	588.9	PB
BLUEBERRY	MONTNEY A	1470	52400	1 117	0.75	88	84	84			248	3.63	900	0.18	0.6	11270	48	0.832	2 0.64	12.98			1198.1	PD	1994	08-16-082-07VV6	1192.2	1197	647.6	PB
BLUEBERRY	MONTNEY B	1470	52400	2 144	0.75	108	103	100	3		93	11	1023	0.18	0.6	11930	46	0.818	0.65	14.042			1254	PD	1997	08-16-082-07W6	1225	1283	647.4	PB
BLUEBERRY	MONTNEY C	1470	52400	3 13	0.75	10	9	9			356	1.3	463	0.06	0.5	9100	46	0.845	0.65	2.88			1228.3	CP	1973	11-16-082-07W6	1227.7	1229	653.2	PB

Reserves and reservoir data report

Published Information

Encana buys rights in hunt for liquid gas

Rebecca Penty, Calgary Herald: Postmedia News Published: Friday, June 17 2011

Encana Corp. took part in Alberta's record land sale recently to target a new gas opportunity potentially as liquids-rich as the hottest current play in the U.S., executive vicepresident Mike Graham says.

The continent's second-largest producer of natural gas participated in the \$842-million rights sale on June 1. Graham admitted, not revealing how much Encana spent or how much land it bought up.

He said the firm is trying to prove the potential of liquids-rich gas in the Duvernay formation in the Rimbey area, about 60 kilometres northwest of Red Deer

Email to a friend Printer friendly Font: A A A A

🖸 Bookmark 📲 🗐 🧳 ..

record for the province

Research analysts at boutique investment-banking firm Peters and Co. estimated in a note that and chief executive c Conference Told majority of money spent - \$750 million -was on deen rights likely targetion the Duagram whole of the and chief executive c majority of money spent -\$750 million -was on deep rights likely targeting the Duvernay shale a significant portion of acquired Crown acreage is interspersed with freehold title lands, with Enc the dominant owner

"We're excited about results from the

wells in the shale this year

submit offers on their behalf.

Encana owns just over 76 000 bectares of land underlain by the Duvernay. Graham said noting competitors have been producing more than five million cubic feet of gas a day from the shale, with 50 to 200 barrels of liquids per mcf of gas.

and competing for busy contractors to get drilling and completion work done.

Murphy Oil Corp, senior vice-president and chief financial officer Kevin Fitzgerald, who heard Graham's

presentation, said the Eagle Ford play is "very hot" south of t "The Eagle Ford is the big new play, the big current play, dov whose company paid \$1,800 an acre there in 2009 -compar The Duvernav focus is part of Encana's shift away from dry o prices closer to those of oil, which has been hovering aroun Graham said he doesn't expect natural gas prices to move n

another couple of years.

Yoho Adds To Duvernay Acreage As Alberta Takes In \$19.48 Million Top Busines More Busine At Land Sale Stories

BY RICHARD MACEDO - DEC 5 2013 Local Update:

Alberta oli and gas companies paid an average of \$3.100 per he¹ average of \$4,414.4? June 1 for leases or licences on 271,000 hectares -the largest si petroleum and natu **Boost Duvernay Results**,

Yoho's Duvernay acre BY ELSIE ROSS - SEPT 16. 2013 - VIEW ISSUE

> The prize in the Duvernay is 100 to 120 bcf per section of gas in An early will con place with liquids rich gas of 100 to 160 bbls per mmcf (65 per ultima cent condensate), with expected average well recoveries of Theim approximately one million boe. slightly

Trilogy Boosts Production During Challenging Quarter

AUG. 8. 2013 - VIEW ISSUE

© Edmonton Journa

e Trilogy Energy Corp.'s average second quarter 2013 production improved eight per cent over second-quarter 2012 chnology to 37, 209 boe per day, thanks to success in the Montney oil and magazine gas plays of the Kaybob area where it was focused, and despite nun Duvernay shale development Trilog Trilogy budgeted \$75 million to manage its Duvernay land ofthe expiries in 2013 through the drilling of five or six net wells. Mont This year, the company has drilled and completed two wells in Drilli the Tony Creek area; both wells are on production and yielding said t 250 to 300 bbls per mmcf of 50-degree API oil/condensate. But the company was also faced with unanticipated plant Northern Gateway Pledges Ongoing Work

issues, weather-related delays and operational issues during the second quarter

To Address Concerns Following JRP Approval

CANADIAN WELL LOGGING SOCIETY

Shale Gas Petrophysics - Montney and Muskwa, are they Barnett Look-Alikes?

John Nieto, Robert Bercha and Jim Chan, (CANBRIAM Energy Inc, Calgary) Copyright 2009, held jointly by the Society of Petrophysicists and Well Log Analysts (SPWLA) and the comparison of the second second second second second second second second second second

Para

Dept

TUC

Tota

Gan

Wate

cont

Rese Prus

Wel

Com 5100

Nel

/Sect

sistor data

This paper was prepared Logging Symposium hel Maps, figures and equat

authors, Canbriam Ene responsible for any loss, resulting from the use of

e

COUT ABOY

Ľ

Neft LECK

ameter	Barnett	Muskwa	Montney	Muskwa,
15.11	6500 4500	6000 - 9000	5000 -6500	rinsically s coarser, gard, the
is Thickness II	200 - 300	60 - 220	820 - 1300	unding of
Thickness ft	50 - 100	30 - 160	100 - 275*	
om Hole perature *F	200	150-190	131 - 170	
N	4.50%	2.5% - 4.5%	2.0%-4.5%	
Porosity %	4%-5%	m-m	216-2216*	
Filled Porosity	2.50%	1% - 4.5%	2.0% - 7%	
erFilled sity%	1.90%	1.0% - 2.0%	1% - 3%	
id-tt	0.01-2	0.15-1	6-16.5	
ent,scf/ton	105+115	10-60	16-48	
orbed Gas, %	20	60-45	15	
ervoir sure, psi	3,000-4,000	2208-2900	2690 - 3800	
sure Gradient,	0.43-0.44	0.15	0.52-0.63	
Costs, \$1800	1,000	2508-3000	2,200	
pletion Costs, 0	1,250 - 750	1008-3000	2,250	
l spacing, 5	55-160	80-320	640 - 160	
in Place, Bcf tion	38-40	60 - 100 * *	6-68*	
oric luction area			Swan, Bawson RC	

TOC. Net pay, porosity and TOC maps are presented in the

paper. Further, we show that although both are prolific gas pro-

ducing formations, only one, the Muskwa, can truly be called a

Down to to the The Management to the rid shale,

and silt-

Figure 31. Summary Table of published Barnett, Muskwa and Montney Reservoir Properties.

Wise Co., Texas

report 8365

al. 2005

Montgomery et.

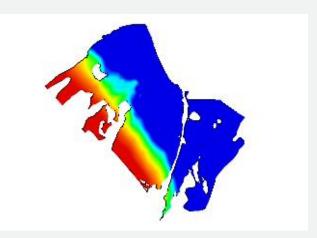
N.F.B.C; Canada

www.ags.gov.ab.ca

+ Upper Montney Only

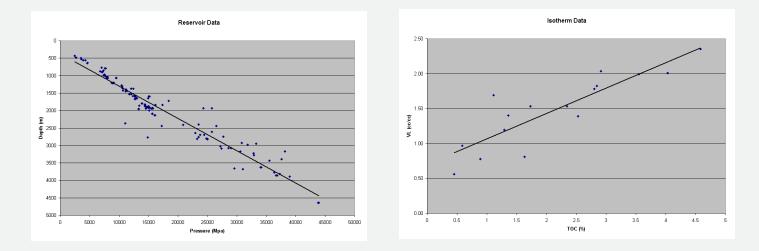
Evaluation Methodology

- 1. Map variables that have sufficient density
- 2. Calculate dependent variables
- 3. Determine other variables
- 4. Calculate resources
- 5. Simulate all variables



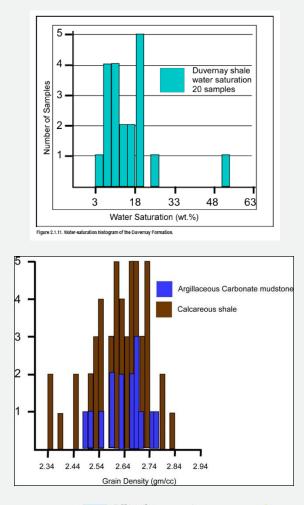
Mapping Primary Variables

- Variables that have
 enough data should be
 mapped spatially
 - Depth
 - D Gross thickness
 - D Net thickness (or N:G)
 - D Porosity
 - \supset TOC
 - > Vitrinite relfectance
- D Hydrogen index www.ags.gov.ab.ca

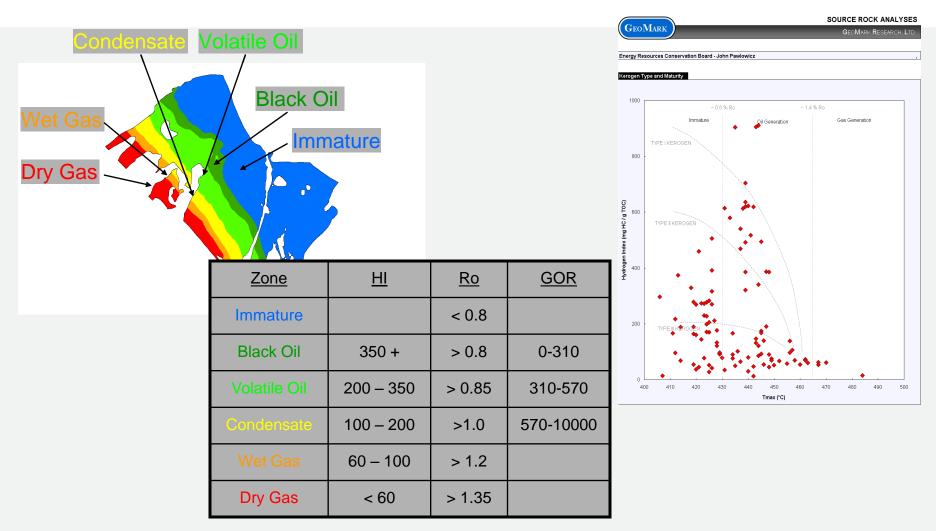


Calculating Dependent Variables

- Some variables are sampled too sparsely to map spatially
- >> BUT: They are dependent on other variables



Other Variables


- Some data are too
 sparse to map or use
 bivariate relationships
- Depends on data, logs,time constraints

Fluid Zones

19

Resource Calculations

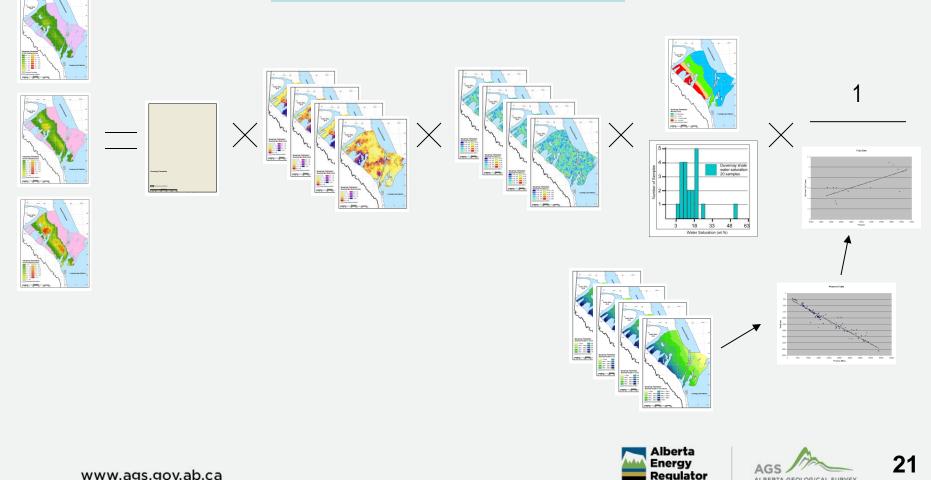
With all the necessary parameters, calculate the resources in place:

$$GIP_{free} = AREA \cdot NET \cdot PHI \cdot SG \cdot \frac{PRES}{101} \cdot \frac{288}{TEMP} \cdot \frac{1}{ZI}$$

$$GIP_{ads} = AREA \cdot NET \cdot \frac{VL}{(PRES + PL)}$$

$$GIP = GIP \cdot CGR$$

$$OIP = AREA \cdot NET \cdot PHI \cdot SO \cdot \frac{1}{BOI}$$



20

Simulation and Uncertainty

 $OIP = AREA \cdot NET \cdot PHI \cdot SO \cdot \frac{1}{2}$ BOI

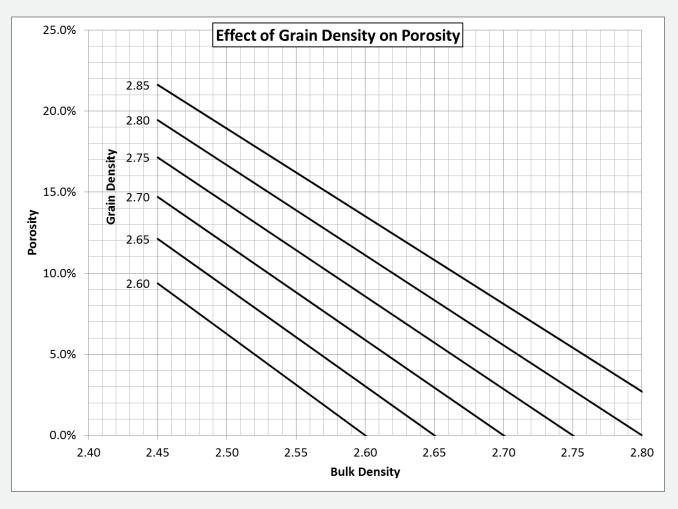
ALBERTA GEOLOGICAL SURVEY

Why Uncertainty?

Duvernay shale play:

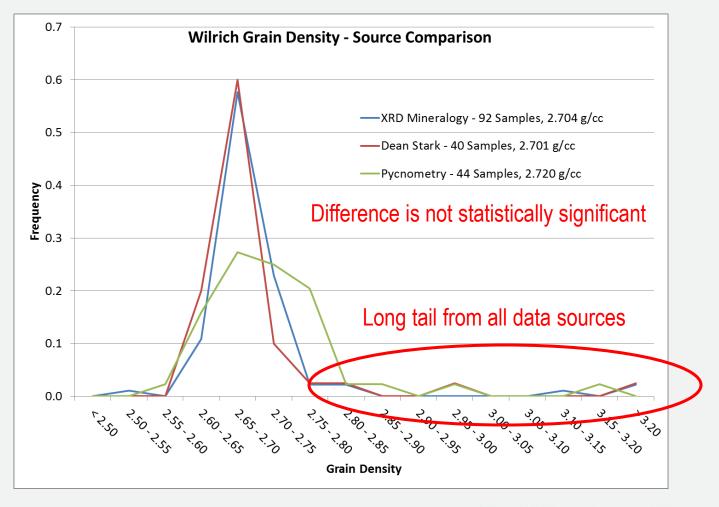
 $60000 km^2 \times 16m \approx 960 km^3$ $960 km^3 \times 2.55t / m^3 \approx 2.5Tt$

∑ Total samples taken: $16kg/2.5Tt \approx 0.000000000064\%$ $\approx 0.0000064 \, ppb$

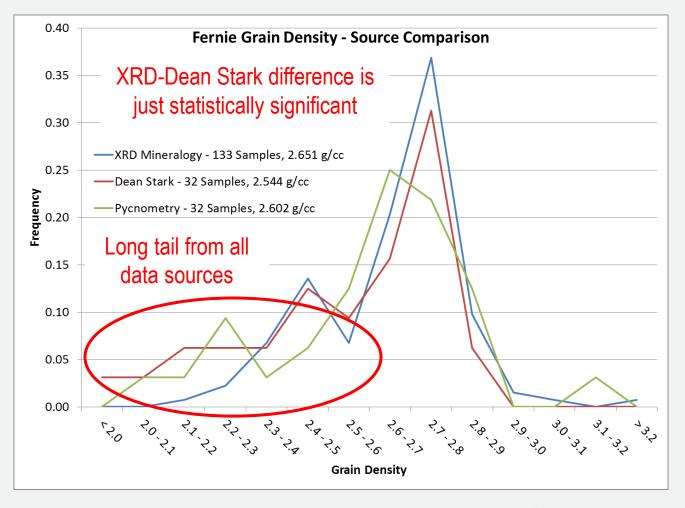

Grain Density and Porosity

- Porosity is a major driving factor in hydrocarbons-in-place
- Density log analysis is a standard tool for calculating porosity
- Shales and siltstones do not follow normal log scales
- Small variations in grain density make a huge difference at low porosity

Grain Density and Porosity


Sources of Grain Density

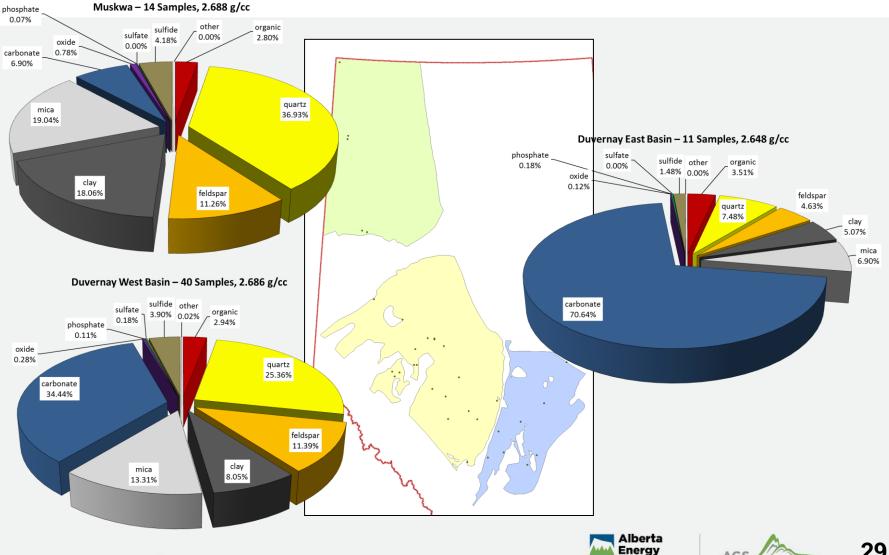
- 1. Calculated from XRD Mineralogy
 - Use density of constituents
 - Have to include TOC as a mineral
- 2. Helium Pycnometry
 - Crush sample, measure pressure difference
- 3. Dean Stark Analysis
 - Includes GRI and pycnometry
 - Meant for saturations


Source Comparison

Source Comparison

Grain Density from Mineralogy

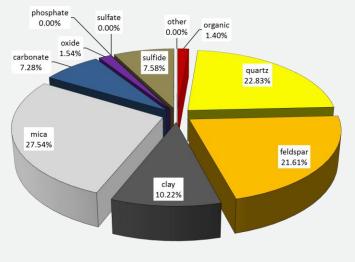
- 1. Add kerogen to the minerals
- 2. Renormalize to 100%: $W'_{i} = \frac{W_{i}}{\sum_{i=1}^{n+1} W_{i}}$ 3. Convert to volume percent: $V_{i} = \frac{\frac{V'_{i}}{\rho_{i}}}{\sum_{i=1}^{n+1} W'_{i}/\rho_{i}}$
- 4. Calculate volume-weighted average grain **density:** $\rho_g = \sum_{i=1}^{n+1} V_i \cdot \rho_i$


or shortcut:
$$\rho_g = \sum_{i=1}^{n+1} \frac{W'_i}{\sum_{i=1}^{n+1} W'_i / \rho_i}$$

Duvernay/Muskwa Mineralogy

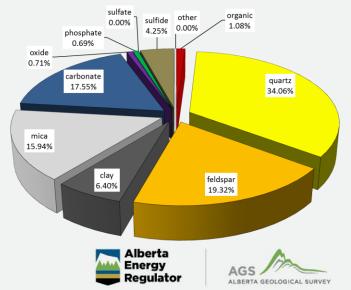
www.ags.gov.ab.ca

AGS


ALBERTA GEOLOGICAL SURVEY

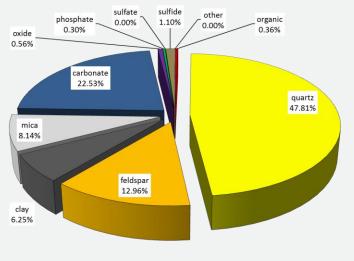
Regulator

Montney Mineralogy



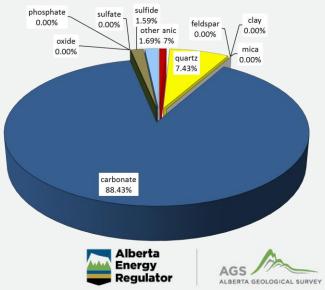
Montney Shale – 3 Samples, 2.779 g/cc

Montney Siltstone - 34 Samples, 2.748 g/cc

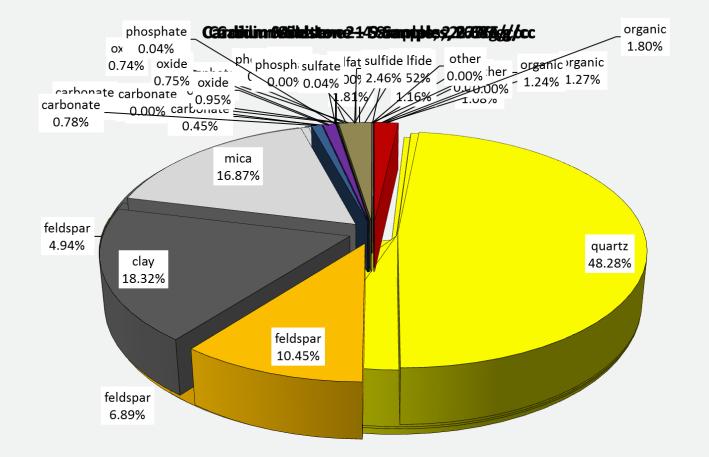


www.ags.gov.ab.ca

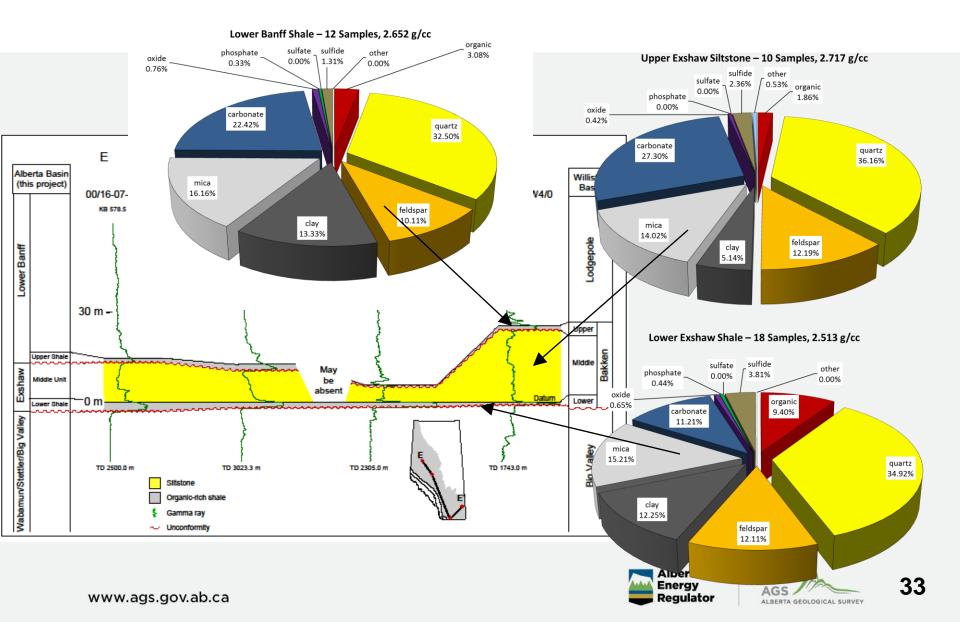
Montney Mineralogy

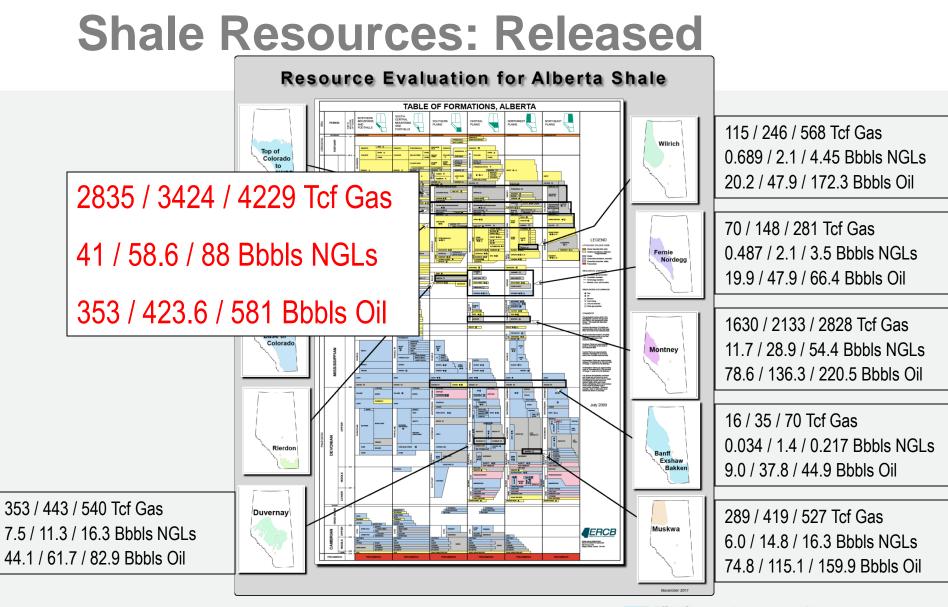


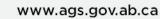
Montney Sandstone – 3 Samples, 2.722 g/cc



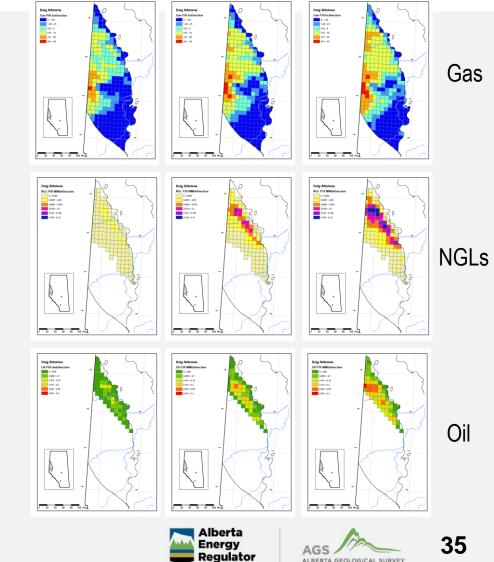
Montney Coquina – 1 Sample, 2.831 g/cc


Cardium Mineralogy



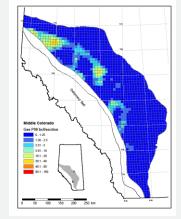


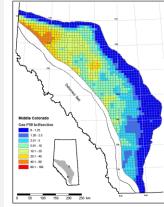
Lower Banff / Exshaw Mineralogy

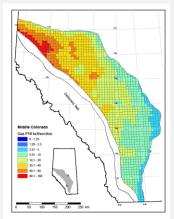


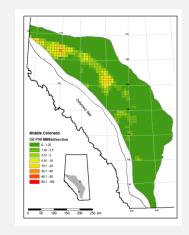
Shale Resources: Doig Siltstone

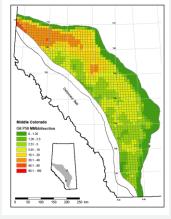
- Equivalent to BC UpperMontney
- D Recent NEB report:

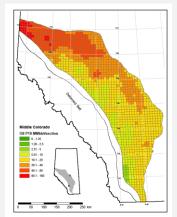

1699 / 2309 / 2947 Tcf Gas 12.0 / 30.6 / 56.2 Bbbls NGLs 79.6 / 138.7 / 222.6 Bbbls Oil

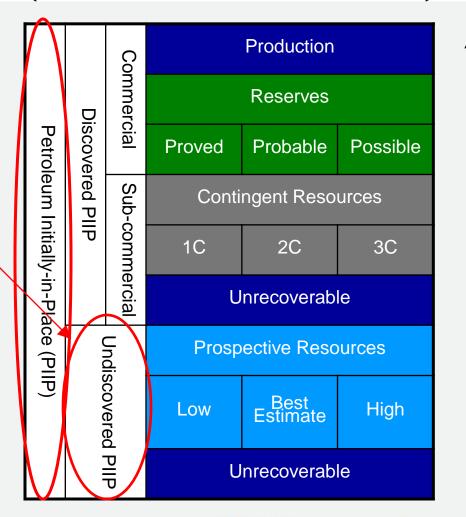

Combined Montney andDoig Siltstone




Shale Resources: M Colorado


- D Top of 2WS to BFSZ
- Includes 2WS interval
- \square Extensive and thick
- \square High clay minerals





Resource Classification Range of Uncertainty

- D Currently, we only look at PIIP
 - For new plays, this is all undiscovered PIIP
- May tackle commerciality in the future
 - \square Frackability
 - \square Local hot spots
 - >> Well performance

37

Challenges and Issues

- Shales haven't been studied in the past
- Data and core is limited
- D Log analysis requires new approaches
- D Traditional assumptions don't hold
- D Every shale is different

Comments

- D Uncertainty is key: identify and quantify
- Reality check: is everything reasonable?
 "Tomato test"
- Strain density is a major consideration
 - Affects log porosity significantly

Next Steps

- > Evaluate more formations
- > Move towards technically recoverable
 - Prospective resources, contingent resources, marketable hydrocarbons, etc.
- $\ensuremath{\triangleright}$ Refine analyses and zoom in
 - \square Divide formations into plays
 - Subdivide stratigraphic intervals

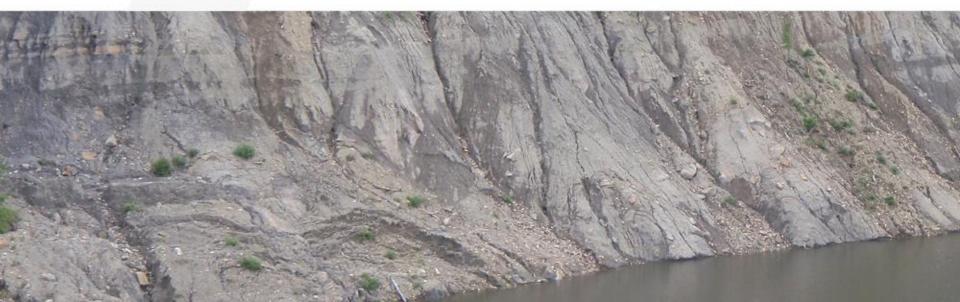
40

Publications

http://ags.gov.ab.ca/publications/pubs.aspx?tkey=shale%20gas

AGS Website -> Activities -> Shale Gas -> Shale Gas Publications

				- O X
Alberta Geol	ogical Survey Pu 🗙 💽			
÷ → C	ags.gov.ab.ca/	publications/pubs.aspx?tkey=shale%20gas		☆ =
	^	Geological Survey	or AGS ALBERTA GEOLOGICAL SUBVEY	
	All Repor	ts for SHALE GAS		
	Search found 2	3 records.		
	Report Code	Title and Abstract	PDF/Zip	
	DIG 2013-0024	Alberta Shale Report: Outlines of Evaluated Shale and Siltstone Units (GIS data, polygon features) Rokosh, C.D.; Lyster, S.; Anderson, S.D.A.; Beaton, A.P.; Berhane, H.; Brazzoni, T.; Chen, D.; Cheng, Y.; Mack, T.; Pana, C.; Pawlowicz, J.G., 2013.	(0.08 MB)	
	DIG 2013-0023	Alberta Shale Report: Shale- and Siltstone-Hosted Hydrocarbon Resources of Alberta (tabular data, tab-delimited format, to accompany Open File Report 2012-06) Rokosh, C.D.; Lyster, S.; Anderson, S.D.A; Beaton, A.P.; Berhane, H.; Brazzoni, T.; Chen, D.; Cheng, Y.; Mack, T.; Pana, C.; Pawlowicz, J.G., 2013.	(0.10 MB)	
	DIG 2013-0016	Pycnometry of Alberta Geological Units for Shale- and Siltstone-Hosted Hydrocarbon Evaluation (tabular data, tab-delimited format) Rokosh, C.D.; Crocq, C.S.; Pawlowicz, J.G.; Brazzoni, T., 2013.	™ ∞ (0.04 MB)	
	DIG 2013-0015	Fluid Saturations of Alberta Geological Units for Shale- and Siltstone-Hosted Hydrocarbon Evaluation (tabular data, tab-delimited format) Rokosh, C.D.; Crocq, C.S.; Pawlowicz, J.G.; Brazzoni, T., 2013.	е (0.05 MB)	
	DIG 2013-0003	Rock Eval and Total Organic Carbon of Sedimentary Rocks in Alberta (tabular data, tab-delimited format) Rokosh, C.D.; Crocq, C.S.; Pawlowicz, J.G.; Brazzoni, T., 2013.	29.68 MB)	
	DIG 2012-0013	Adsorption Isotherm Analyses of Alberta Geological Units for Shale- and Siltstone-Hosted Hydrocarbon Evaluation (tabular data, tab-delimited format z	(7.19 MB)	
	INF 144	Energy Briefing Note: The Ultimate Potential for Unconventional Petroleum from the Montney Formation of British Columbia and Alberta National Energy Board; British Columbia Oil and Gas Commission; Alberta Energy Regulator; British Columbia Ministry of Natural Gas Development, 2013.		
	OFR 2013-13	Quantification of Uncertainty in Shale Gas Resources Lyster, S., 2013.	oF ℤ (14.15 MB)	
	OFR 2013-06	Thin Section Analysis of Core Samples from the Duvernay and Muskwa Formations and the Majeau Lake Member in Alberta Anderson, S.D.A.; Bladek, J.; Rokosh, C.D., 2013.	(86.05 MB)	
	OFR 2012-06	Summary of Alberta's Shale- and Siltstone-Hosted Hydrocarbon Resource Potential Rokosh, C.D.; Lyster, S.; Anderson, S.D.A.; Beaton, A.P.; Berhane, H.; Brazzoni, T.; Chen, D.; Cheng, Y.; Mack, T.; Pana, C.; Pawlowicz, J.G., 2012.	0F (33.07 MB)	
	OFR 2010-07	Organic Petrography of the Montney Formation in Alberta: Shale Gas Data Release Beaton, A.P.; Pawlowicz, J.G.; Anderson, S.D.A.; Berhane, H.; Rokosh,	0F	



Thank you

