

Applications of LiDAR and High-Resolution Earth Imaging for Quaternary Mapping: Opportunities and Challenges

Nigel Atkinson and Steven Pawley

Outline

- Surficial mapping in northern Alberta
 - Traditional approach
 - Problems
- New approaches and benefits
 - LiDAR-based mapping
 - Mapping technology
 - New LiDAR-based maps
- Applications and future work

Surficial Mapping

- Initiated in 2000–2001
- Geological engineering
- Geohazard susceptibility (landslide, thermokarst distribution)
- Industrial mineral exploration
- Environmental assessment
- Depth to bedrock
- Hydrogeological modelling and groundwater protection

Previous Methodologies

 Ground survey/field mapping with topographic map data (>1970s)

Δ

Field Mapping

Locating Stratigraphic Sections

Previous Methodologies

- Ground survey/field mapping with topographic map data (>1970s)
- Stereoscopic airphoto interpretation (>1970s)

Airphoto Interpretation

Resources

Previous Methodologies

- Ground survey/field mapping with topographic map data (>1970s)
- Stereoscopic airphoto interpretation (>1970s)
- DEMs and multi-layer GIS analysis (>2000)

Terrain Challenges

How can a geological map of the upper 1–2 metres be produced with reasonable accuracy in this terrain?

LiDAR Resources

- Highly accurate digital surface/elevation models
- Initially commissioned (ESRD) for forestry and pine beetle management
- Numerous subsequent applications with rapid expansion of coverage into northern regions

LiDAR Resources

12

LiDAR Resources

- Eliminates 'vegetation problem'
- High-resolution imaging of landforms and terrain textures
- Conventional relief-shading and derivatives

Bare-Earth DEM – Relief-Shading

• High-resolution imagery reveals a detailed record of landforms that were previously unrecognizable

However...

 LiDAR reveals a number of mapping errors based on traditional methods

17

Misidentified peatland

• Impacts on field site selection, time, and resources

19

- Aim improve the resolution and accuracy of surficial geology maps while maintaining or reducing the labour effort and production time
- Several potential approaches imagery, technology, automation processes
 - Mobile GIS (2005 now)
 - Predictive and quantitative characterization of remote sensing resources (2010 – now)

Mapping Technology

Targeted site selection and iterative map editing

Mapping Technology

Multi-layer GIS-based geological interpretation

Onscreen digitization

LiDAR vs. Previous Mapping

More Detailed Geological Maps

Future Work and Derivatives

- Thematic mapping
 - Predictive surface material and landform mapping
 - Slope stability
 - Permafrost distribution

26

Object-Based, Predictive Mapping

Slope MRVBF flatness Topographic wetness Topographic openness Terrain texture Ruggedness Haralick Texture

Random Forest Classification

Mean, Std, Skewness, Kurtosis

Classified terrain

27

Peat Mapping

Landsat 7 ETM+ LiDAR Bare-Earth Multiresolution flatness index

Peat Mapping

Landsat 7 ETM+

Wetland Classification

Slope Stability

and classification

Permafrost Distribution

Patterned ground

Permafrost Distribution

Cryoturbated peat

Future Work and Derivatives

- Geological data to constrain former ice sheet configuration and dynamics
 - Glacial Map of Alberta
 - Reconstructing complex ice flow trajectories (Laurentide, Cordilleran and local ice divides)
 - Morphometric analysis of streamlined landforms
 - Glacial landsystems

Glacial Map of Alberta

Glacial Map of Alberta

Glacial Map of Alberta

Ice Flow Trajectories

Ice Flow Trajectories

Ice Flow Trajectories

Subglacial Landsystems

Superimposed Ribbed Moraine

www.ags.gov.ab.ca

Subglacial Landsystems

Subglacial conduits

Surging Glacier Landsystems

48

Supraglacial Landsystems

Ice-walled lake plains

Subaquatic Landsystems

- LiDAR benefits
 - Significant increase in detail and map accuracy
- Scientific insights
 - Detection of new landform/lithological packages
 - Significant underestimation of slope instability using previous methods
- Scope and efficiency
 - Suitable for high-resolution geological mapping
 - Essential for future for detailed/thematic surface geological mapping needs

- Challenges remain
 - Although LiDAR enables the mapping of previously unidentifiable landforms, dense vegetation hinders access to many sites

- Challenges remain
 - Interpreting the origin and significance of enigmatic landforms

- Challenges remain
 - Scope of future work
 - From the interpreted areas of current LiDAR coverage, northern Alberta contains at least:
 - 13 500 streamlined bedforms
 - 900 eskers
 - 2300 moraines

