

Mineralogy, Permeametry, Mercury Porosimetry, Pycnometry and Scanning Electron Microscope Imaging of the Montney Formation in Alberta: Shale Gas Data Release

Energy Resources Conservation Board

Mineralogy, Permeametry, Mercury Porosimetry, Pycnometry and Scanning Electron Microscope Imaging of the Montney Formation in Alberta: Shale Gas Data Release

S.D.A. Anderson, C.D. Rokosh J.G. Pawlowicz, H. Berhane and A.P. Beaton

Energy Resources Conservation Board Alberta Geological Survey

May 2010

©Her Majesty the Queen in Right of Alberta, 2010 ISBN 978-0-7758-8627-2

Energy Resources Conservation Board/Alberta Geological Survey (ERCB/AGS) and its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any software supplied with this publication is subject to its licence conditions. Any references to proprietary software in the documentation, and/or any use of proprietary data formats in this release, do not constitute endorsement by ERCB/AGS of any manufacturer's product.

If you use information from this publication in other publications or presentations, please give due acknowledgment to ERCB/AGS. We recommend the following reference format:

Anderson, S.D.A., Rokosh, C.D., Pawlowicz, J.G., Berhane, H. and Beaton, A.P. (2010): Mineralogy, permeametry, mercury porosimetry, pycnometry and scanning electron microscope imaging of the Montney Formation in Alberta: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2010-03, 67 p.

Published May 2010 by:

Energy Resources Conservation Board Alberta Geological Survey 4th Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, Alberta T6B 2X3 Canada

 Tel:
 780-422-1927

 Fax:
 780-422-1918

 E-mail:
 AGS-Info@ercb.ca

 Website:
 www.ags.gov.ab.ca

Contents

Acknowledgments	V
Abstract	vi
1 Introduction	1
2 Sample Location and Description	2
3 Analytical Methods and Results	
3.1 Bulk and Clay Mineralogy	
3.2 Scanning Electron Microscope and EDX Analysis	
3.3 Mercury Porosimetry	
3.4 Permeametry	5
3.5 Helium Pycnometry	5
4 References	6
Appendices	
Appendix 1 – Montney Formation Core Sample Location, Depth and Lithology	
Appendix 2 – Montney Formation Core Samples Analyzed	
Appendix 3 – Montney Formation Bulk Sample Mineralogy (XRD)	
Appendix 3a – Bulk X-Ray Diffraction	
Appendix 3b – X-Ray Fluorescence	
Appendix 4 – Montney Formation Clay Mineralogy (Qualitative XRD)	
Appendix 5 – Montney Formation Scanning Electron Microscope (SEM) Images and Des	scriptions.26
Appendix 6 – Montney Formation Mercury Porosimetry Graphs	
Appendix 7 – Montney Formation Permeametry	
Appendix 8 – Montney Formation Helium Pycnometry	

Tables

Table 1. Analyses performed on core samples, and the organization that performed the analyses as part	of
the shale gas resource evaluation project	1
Table 2. Core sample sites in the Montney Formation	3

Figures

Figure 1.	Core sites sampled from the	Montney Formation	2

Acknowledgments

The Alberta Energy Innovation Fund, through the Alberta Department of Energy, has provided partial funding for this project. The authors thank S. Rauschning, K. Henderson and L. Enns from the Alberta Department of Energy for their support of this project. Thanks to Obann Resources Ltd. for their excellent work in helping sample and describe Montney Formation core. Thanks also go to the Energy Resources Conservation Board Core Research Centre personnel for sampling assistance, to D-A. Rollings and G. Braybrook for assistance during scanning electron microscope viewing, and to G. Hippolt-Squair of Alberta Geological Survey for her help in putting this report together.

Abstract

This report constitutes a data release of bulk and clay mineralogy, permeametry and mercury porosimetry analyses, helium pycnometry and scanning electron microscope imaging of selected samples from the Montney Formation generated for the Energy Resources Conservation Board/Alberta Geological Survey project on shale gas resources in Alberta. A few samples were also taken from adjoining formations, such as the Nordegg, Belloy and Doig. This data release complements other manuscripts and data being released from the same project, as listed in Table 1.

1 Introduction

The Energy Resources Conservation Board/Alberta Geological Survey (ERCB/AGS) initiated a project in 2007 to evaluate shale gas resources in Alberta, to determine the quantity and spatial extent of these resources. Alberta Geological Survey (AGS) is releasing a series of reports to disseminate data and knowledge from the project. The first formations chosen for evaluation were the Colorado Group (Beaton et al., 2009a; Pawlowicz et al., 2009b), and the Banff and Exshaw formations (Beaton et al., 2009b; Pawlowicz et al., 2009a). These publications are available for download on the AGS website (http://www.ags.gov.ab.ca).

This report disseminates results from bulk and clay mineralogy, permeametry, mercury porosimetry, helium pycnometry and scanning electron microscope (SEM) images from selected samples of the Triassic Montney Formation. Table 1 lists all the analyses and associated reports. The data generated from the project will be combined with additional data to map and estimate shale gas resources in the province.

Table 1. Analyses performed on core samples, and the organization that performe	d the analyses as part of the shale
gas resource evaluation project.	

Type of Analysis	Company/ Analyst	Notes
Adsorption isotherms	Schlumberger/TerraTek	Beaton et al. (2010c, d)
Mercury porosimetry, envelope and helium pycnometry.	Department of Physics, University of Alberta (D. Schmitt)	Anderson et al. (2010), this report
Permeametry	Department of Earth and Atmospheric Sciences, University of Alberta (M. Gingras)	Anderson et al. (2010), this report
Rock Eval™/TOC	Geological Survey of Canada; Schlumberger/TerraTek	Beaton et al. (2010c, d)
Organic petrography	Geological Survey of Canada (J. Reyes)	Beaton et al. (2010a, b)
Petrographic analysis (thin section)	Alberta Geological Survey	Work in progress
Scanning electron microscope (SEM) with energy-dispersive X-ray (EDX)	Department of Earth and Atmospheric Sciences, University of Alberta (D-A. Rollings, G. Braybrook)	Anderson et al. (2010), this report
X-ray diffraction (bulk and clay mineral)	SGS Mineral Service Ltd. (H. Zhou)	Anderson et al. (2010), this report

2 Sample Location and Description

Figure 1 displays core sample sites associated with the Montney Formation. Table 2 and Appendix 1 list the locations of the sample sites.

Figure 1. Core sites sampled from the Montney Formation. See Table 2 and Appendix 1 for a list of all sites and Appendix 2 for the type of analyses run on the samples.

Site No.	Location - UWI	Location - UWI Well Name		Longitude NAD 83	Year Drilled	No. of Samples
M1	100/11-14-057-23W5/00	TALISMAN WILDR 11-14-57-23	53.928046	-117.314072	1995	6
M2	100/16-23-057-06W6/00	ANDERSON FINDLEY 16-23-57-6	53.945460	-118.771591	1976	25
M3	100/04-06-059-20W5/00	MOBIL ET AL FIR 4-6-59-20	54.068135	-116.995887	1997	8
M4	102/11-34-061-19W5/00	BRLINGTON ETAL 102 FOXCK 11-34-61-19	54.320254	-116.767810	1996	7
M5	100/11-24-062-20W5/00	PENN WEST KAYBOBS 11-24-62-20	54.379782	-116.867662	1970	8
M6	100/07-14-064-25W5/00	DELPHI SIMONN 7-14-64-25	54.535464	-117.664978	1984	8
M7	103/10-34-064-19W5/00	TRILOGY ET AL 03 KAYBOB 10-34-64-19	54.584938	-116.780560	1996	7
M8	100/06-14-066-06W6/00	ANDERSON ET AL BILBO 6-14-66-6	54.710226	-118.798055	1979	6
M9	100/16-31-066-23W5/00	NCE ENER ANTE 16-31-66-23	54.759431	-117.460327	1980	7
M10	100/07-05-067-07W6/00	AMOCO ET AL BIG MOUNTAIN 7-5-67-7	54.768110	-119.025448	1977	7
M11	100/12-07-067-24W5/00	ARC ANTE CREEK 12-7-67-24	54.788150	-117.658255	1996	9
M12	100/14-27-067-08W6/00	DEVON WAPITI 14-27-67-8	54.835461	-119.131850	1998	7
M13	100/13-31-067-18W5/00	PARA ET AL GOOSE RIVER 13-31-67-18	54.847060	-116.741498	1998	5
M14	100/13-33-067-04W6/00	CEQUEL GOLDCK 13-33-67-4	54.847494	-118.556477	1995	4
M15	100/13-05-068-01W6/00	IMP ECONOMY 13-5-68-1	54.863502	-118.124671	1992	9
M16	100/06-23-068-08W6/00	NORTHROCK ET AL WAPITI 6-23-68-8	54.898674	-119.111277	1980	5
M17	100/05-24-068-22W5/00	CHARIOT STURLS 5-24-68-22	54.899835	-117.227282	1958	8
M18	100/02-30-071-20W5/00	BARR STUMP 2-30-71-20	55.174071	-117.059408	1996	6
M19	100/11-28-071-03W6/00	BIRCHCLIFF BEZAN 11-28-71-3	55.178479	-118.397982	1993	15
M20	100/06-36-071-04W6/00	BIRCHCLIFF GRANPR 6-36-71-4	55.191378	-118.475701	1993	14
M21	100/06-33-072-25W5/00	PCP DEBOLT 6-33-72-25	55.278609	-117.787914	1997	6
M22	100/06-34-072-25W5/00	PCP DEBOLT 6-34-72-25	55.279487	-117.763567	1997	6
M23	100/05-32-073-12W6/00	NORTHROCK ET AL SINCLAIR 5-32-73-12	55.363395	-119.815440	1999	7
M24	100/01-14-075-11W6/00	RIGEL ET AL VALHALLA 1-14-75-11	55.493733	-119.583341	1995	7
M25	100/06-03-076-12W6/00	DOME SULPETRO GLACIER 6-3-76-12	55.554749	-119.772543	1981	6
M26	100/15-06-076-03W6/00	PPCL KAKUT 15-6-76-3	55.560441	-118.451191	1992	8
M27	100/14-09-077-11W6/00	NORCEN POUCE COUPES 14-9-77-11	55.661617	-119.647542	1982	4
M28	100/11-27-077-06W6/00	CNRL RYCROFT 11-27-77-6	55.704273	-118.845833	2001	4
M29	100/05-14-078-11W6/00	AECOG (W) PCOUPES 5-14-78-11	55.760386	-119.594242	1993	7
M30	102/11-34-078-02W6/00	TALISMAN 102 ET AL BELLOY 11-34-78-2	55.805873	-118.221355	1997	8
M31	100/06-12-079-12W6/00	AECOG (W) GRDONDLE 6-12-79-12	55.831641	-119.737689	1993	7
M32	102/14-20-079-22W5/00	ANDERSON NORMANDVILLE 14-20-79-22	55.867389	-117.411478	1999	5
M33	100/12-27-080-13W6/00	STAR POUCE COUPE 12-27-80-13	55.966743	-119.952010	1997	4
M34	100/15-08-081-12W6/00	TALISMAN POUCE COUPE 15-8-81-12	56.011155	-119.835654	1994	6
M35	100/14-30-082-07W6/00	STRATAGEM BLUEB 14-30-82-7	56.141571	-119.090112	1998	9
M36	100/11-32-082-25W5/00	ADAMANT BERWYN 11-32-82-25	56.154459	-117.882771	1996	7
M37	102/13-04-083-06W6/00	TRICENT ET AL OAK 13-4-83-6	56.171475	-118.895792	1984	2
M38	100/04-32-084-12W6/00	INVERNESS SCEPTRE BDLKS 4-32-84-12	56.322217	-119.866817	1991	6
M39	102/01-14-091-12W6/00	JAVELIN CLEAR PR 1-14-91-12	56.889041	-119.804180	1999	5
M40	100/10-21-092-03W6/00	EXCEL ET AL CUB 10-21-92-3	56.998193	-118.411471	1972	8

Legend

Total samples 293

Column Label	Label Description
Site No.	AGS site location number
Location - UWI	Well location - unique well identifier
Well Name	Name assigned to well when drilling began
Latitude (NAD 83)	Well location - degrees latitude, North American Datum 1983
Longitude (NAD 83)	Well location - degrees longitude, North American Datum 1983
Year Drilled	Year the well was drilled
No. of Samples	Number of samples taken from the core

3 Analytical Methods and Results

A total of 293 core samples was selected for analysis. The analyses itemized in Table 1 were performed on selected samples, as indicated in Appendix 2.

3.1 Bulk and Clay Mineralogy

X-ray powder diffraction (XRD) will identify the mineralogy of a sample. Appendices 3 and 4 provide estimates of the weight percent (wt. %) of each mineral for bulk mineralogy and clay mineralogy, respectively.

X-ray diffraction analysis and interpretation, and X-ray fluorescence spectroscopy (XRF) on core samples were done by SGS Minerals Services Ltd. (<u>http://www.ca.sgs.com/home.htm</u>) using industry-standard techniques.

SGS Minerals uses a Siemens D5000 diffractometer with cobalt radiation and Siemens Search/Match software for peak identification. Mineral proportions are based on relative peak heights and may be strongly influenced by crystallinity, structural group or preferred orientations (H. Zhou, SGS Minerals Services Ltd., pers. comm., 2008; Pecharsky and Zavalij, 2003). The calculation of mineral abundances from both bulk mineral and clay mineral analyses is based on relative peak intensity using the Rietveld reference intensity ratio and is reconciled with a whole-rock chemical analysis by XRF (results provided in Appendix 3b). The detection limit of minerals is approximately 0.5–2.0 wt. % according to SGS, but can be as high as 3–5 wt. % (http://www.xrd.us). Amorphous compounds are not detected by XRD.

Appendix 3 provides bulk mineralogy and X-ray fluorescence spectroscopy data and Appendix 4 gives clay mineralogy. Clay minerals were separated by crushing the sample to 200 mesh and then using a settling column to separate the clay-sized particles. Finally, the sample was centrifuged to remove the liquids before XRD analysis.

3.2 Scanning Electron Microscope and EDX Analysis

The purpose of the scanning electron microscope (SEM) analysis is to characterize the microfabric of the samples, and the morphology, size and distribution of the pores. The SEM can also provide a mineralogical analysis using energy dispersive X-rays (EDX), as well as backscattering images on selected samples.

The SEM used is a JEOL 6301F (field emission scanning electron microscope) with magnification ranging from $20 \times$ to 250 000×. Semiqualitative elemental analysis (EDX) was available via a PGT X-ray analysis system. The lateral resolution and penetration of EDX mineralogical analysis are both about 1 μ m.

Appendix 5 provides the SEM images. A brief description accompanies each image; the descriptions are strictly observational. Interpretation of the images, either separately or collectively, in terms of the relationship of microfabric and sedimentology to depositional environment or permeability and porosity will be published later, either in ERCB/AGS open file reports or as journal articles.

3.3 Mercury Porosimetry

Mercury porosimetry is a technique to quantify intrusion pore diameter, size range of diameters, pore volume and pore surface area of the samples (Webb and Orr, 1997). Porosimeter work was done at the University of Alberta. All samples were put under vacuum in a cold oven for degassing prior to analysis. Mercury was introduced into the sample and the volume of mercury forced into pore space in the sample used to calculate pore volume for the sample. The graphs in Appendix 6 show incremental intrusion versus pore diameter, which is meant to portray the concentration of pore throat sizes in the sample, and

log differential intrusion versus pore diameter, in which equal peak areas represent equal volume of pore sizes (Webb and Orr, 1997).

The sample size is generally quite small (tens of grams), so the data do not necessarily represent regional pore throat sizes of the formation. A number of other data columns are available for analysis, including cumulative intrusion, incremental intrusion, differential intrusion, log differential intrusion, cumulative pore volume, cumulative pore area and fractal dimensions. The definition and derivation of these values are well explained by Webb and Orr (1997). The lab also calculated a number of other variables using the original measured data, including bulk density, skeletal density, sample porosity, permeability and surface area.

The graphs in Appendix 6 express pore diameter in terms of equivalent spherical diameter (Webb and Orr, 1997). If the pore throat is smaller than the diameter of the pore, then the mercury must first intrude through the smaller pore throat to enter the larger pore; hence, the 'pore diameter' reflected on the graphs is often referred to as the 'pore throat' diameter. All incremental intrusion values that are negative are assigned a value of zero. The graphs include two grain-size scales: the International Union of Pure and Applied Chemistry (IUPAC) pore classification (Rouquerol et al., 1994) used by some authors (e.g., Ross and Bustin, 2008) and the more traditional grain-size scale of Wentworth (1922) with a 3.9 µm clay-silt boundary. The first two sample points at the highest pore diameter generally exhibit a peak that is an artifact of the sample process and is not likely a real pore diameter.

The data in this study were generated using the Washburn equation ($D = -4\gamma \cos\theta/P$), where γ is the surface tension, θ is the assumed contact angle of mercury, P is the applied pressure and D is the equivalent pore diameter. The term 'equivalent' is used because the equation assumes all pores are the equivalent shape of a cylinder; in reality, this is not the case. The surface tension (485 dynes/cm), contact angle (130°) and equilibration time (10 seconds) between successive increases in pressure used in the procedure are all recommended by the manufacturer.

If pores are assumed to be dominated by 'slit-like' openings, as in clay-dominated sediment, then the data may be recalculated using $W = -2\gamma \cos\theta/P$, where W is the width between plates (Webb and Orr 1997). However, the samples in this study are dominantly silt-rich shale/mudstone or shaly siltstone, so we are comfortable using the Washburn equation as a starting point of analysis.

A summary of the procedure can be found in Webb and Orr (1997) and D'Souzae and More (2008).

3.4 Permeametry

Spot permeametry analysis (Gingras et al., 2004) was carried out at the University of Alberta on a portable probe permeameter (CoreLabs Model PP-250), with nitrogen and air as the pore fluids. Note that the diameter of a nitrogen molecule is about 0.15 nm (1.5 angstroms), while the diameter of a methane molecule is about 0.4 nm (4.0 angstroms). Each sample is generally tested three or more times in one spot. Horizontal and vertical permeability were tested in some samples. Appendix 7 provides the data for each sample.

3.5 Helium Pycnometry

Helium pycnometry measures grain density (often called skeletal density, apparent density, true density or absolute density), which is the density of a substance excluding pores large enough for helium to penetrate (Webb and Orr, 1997). Hence, pores that are not connected are not accounted for in this process. Appendix 8 presents the helium pycnometry data.

4 References

- Anderson, S.D.A., Rokosh, C.D., Pawlowicz, J.G., Berhane, H. and Beaton, A.P. (2010): Mineralogy, permeametry, mercury porosimetry, pycnometry and scanning electron microscope imaging of the Duvernay and Muskwa Formations in Alberta: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2010-02, 61 p., URL <<u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2010_02.html</u>> [April 16, 2010].
- Beaton, A.P., Pawlowicz, J.G., Anderson, S.D.A. and Rokosh, C.D. (2009a): Rock Eval[™], total organic carbon, isotherms and organic petrography of the Colorado Group: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2008-11, 88 p., URL <<u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2008_11.html</u>> [April 16, 2010].
- Beaton, A.P., Pawlowicz, J.G., Anderson, S.D.A. and Rokosh, C.D. (2009b): Rock Eval[™], total organic carbon, isotherms and organic petrography of the Banff and Exshaw formations: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2008-12, 65 p., URL <<u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2008_12.html</u>> [April 16, 2010].
- Beaton, A.P., Pawlowicz, J.G., Anderson, S.D.A., Berhane, H. and Rokosh, C.D. (2010a): Organic petrography of the Duvernay and Muskwa formations in Alberta: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2010-06, 20 p., URL <<u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2010_06.html</u>> [April 16, 2010].
- Beaton, A.P., Pawlowicz, J.G., Anderson, S.D.A., Berhane, H. and Rokosh, C.D. (2010b): Organic petrography of the Montney Formation in Alberta: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2010-07, 24 p., URL <<u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2010_07.html</u>> [April 16, 2010].
- Beaton, A.P., Pawlowicz, J.G., Anderson, S.D.A., Berhane, H. and Rokosh, C.D. (2010c): Rock Eval[™], total organic carbon, and adsorption isotherms of the Duvernay and Muskwa Formations in Alberta: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2010-04, 32 p., URL <<u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2010_04.html</u>> [April 2010].
- Beaton, A.P., Pawlowicz, J.G., Anderson, S.D.A., Berhane, H. and Rokosh, C.D. (2010d): Rock EvalTM, total organic carbon and adsorption isotherms of the Montney Formation in Alberta: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2010-05, 30 p., URL <<u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2010_05.html</u>> [April 16, 2010].
- D'Souzae, J.I. and More, H.N. (2008): Pharmaceutical powder material contains void volume of empty space, distributed within the solid mass in the form of pores, cavities, and cracks of various shapes and sizes; Pharminfo.net, URL <<u>http://www.pharmainfo.net/reviews/mercury-intrusion-porosimetry-tool-pharmaceutical-particle-characterization</u>> [January 13, 2010].
- Gingras, M.K., Mendoza, C.A. and Pemberton, S.G. (2004): Fossilized worm burrows influence the resource quality of porous media; AAPG Bulletin, v. 88, no. 7, p. 875–883.
- Pawlowicz, J.G., Anderson, S.D.A., Rokosh, C.D. and Beaton, A.P. (2009a): Mineralogy, permeametry, mercury porosimetry and scanning electron microscope imaging of the Banff and Exshaw formations: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2008-13, 59 p., URL <<u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2008_13.html</u>> [April 16, 2010].
- Pawlowicz, J.G., Anderson, S.D.A., Rokosh, C.D. and Beaton, A.P. (2009b): Mineralogy, permeametry, mercury porosimetry and scanning electron microscope imaging of the Colorado Group: shale gas data release; Energy Resources Conservation Board, ERCB/AGS Open File Report 2008-14, 92 p., URL <<u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2008_14.html</u>> [April 16, 2010].

- Pecharsky, V.K. and Zavalij, P.Y. (2003): Fundamentals of powder diffraction and structural characterization of minerals; Kluwer Academic Publishers, New York, 713 p.
- Ross, D.J.K. and Bustin, R.M. (2008): The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs; Marine and Petroleum Geology, v. 26, p. 916–927.
- Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W. and Unger, K. (1994): Recommendations for the characterization of porous solids, International Union of Pure and Applied Chemistry; Pure and Applied Chemistry, v. 68, p. 1739– 1758.
- Webb, P.A. and Orr, C. (1997): Analytical methods in fine particle technology; Micromeritics Instrument Corporation Publishers, Norcross, Georgia.
- Wentworth, C.K. (1922): A scale of grade and class terms for clastic sediments; Journal of Geology, v. 30, p. 377–392.

Appendices

Appendix 1 – Montney Formation Core Sample Location, Depth and Lithology

Legend	
Column Label	Label Description
Sample No.	AGS sample number
Site No.	AGS site location number
Location - UWI	Well location - unique well identifier
Sample Depth (metres)	Depth of core sample in metres (measured from core)
Lithology	Brief lithological description of sample
Formation/Group	Geological formation or group at depth of sample

Sample No.	Site No.	Location - UWI	Sample Depth	Lithology	Formation/ Group
			(Metres)		
8113	M25	100/06-03-076-12W6/00	2606.4	siltstone	Montney
8114	M25	100/06-03-076-12W6/00	2617.0	siltstone	Montney
8115	M25	100/06-03-076-12W6/00	2618.8	siltstone	Montney
8116	M25	100/06-03-076-12W6/00	2622.5	siltstone	Montney
8117	M25	100/06-03-076-12W6/00	2629.1	siltstone	Montney
8118	M25	100/06-03-076-12W6/00	2639.9	siltstone	Montney
8119	M14	100/13-33-067-04W6/00	2358.2	siltstone	Montney
8120	M14	100/13-33-067-04W6/00	2366.2	siltstone	Montney
8121	M14	100/13-33-067-04W6/00	2372.5	siltstone	Montney
8122	M14	100/13-33-067-04W6/00	2379.4	siltstone	Montney
8123	M33	100/12-27-080-13W6/00	1741.1	sandstone	Montney
8124	M33	100/12-27-080-13W6/00	1743.9	silty shale	Montney
8125	M33	100/12-27-080-13W6/00	1751.0	sandstone	Montney
8126	M33	100/12-27-080-13W6/00	1758.0	sandstone	Montney
8131	M37	102/13-04-083-06W6/00	1080.5	mudstone	Nordegg
8132	M37	102/13-04-083-06W6/00	1088.9	siltstone	Doig
8701	M27	100/14-09-077-11W6/00	2271.6	siltstone	Montney
8702	M27	100/14-09-077-11W6/00	2276.0	siltstone	Montney
8703	M27	100/14-09-077-11W6/00	2279.9	shaley siltstone	Montney
8704	M27	100/14-09-077-11W6/00	2281.5	siltstone	Montney
8705	M28	100/11-27-077-06W6/00	1741.2	siltstone	Montney
8706	M28	100/11-27-077-06W6/00	1746.6	silty sandstone	Montney
8707	M28	100/11-27-077-06W6/00	1750.2	siltstone	Montney
8708	M28	100/11-27-077-06W6/00	1751.1	siltstone	Montney
8709	M29	100/05-14-078-11W6/00	2189.9	siltstone	Montney
8710	M29	100/05-14-078-11W6/00	2193.5	siltstone	Montney
8711	M29	100/05-14-078-11W6/00	2200.9	siltstone	Montney
8712	M29	100/05-14-078-11W6/00	2206.2	siltstone	Montney
8713	M29	100/05-14-078-11W6/00	2214.4	siltstone	Montney
8714	M29	100/05-14-078-11W6/00	2220.9	siltstone	Montney
8715	M29	100/05-14-078-11W6/00	2225.5	siltstone	Montney
8716	M20	100/06-36-071-04W6/00	1889.2	siltstone and sandstone	Montney
8717	M20	100/06-36-071-04W6/00	1894.6	siltstone	Montney
8718	M20	100/06-36-071-04W6/00	1899.4	siltstone	Montney
8719	M20	100/06-36-071-04W6/00	1903.6	sandy siltstone	Montney
8720	M20	100/06-36-071-04W6/00	1907.5	siltstone	Montney
8721	M20	100/06-36-071-04W6/00	1911.1	siltstone	Montney
8722	M20	100/06-36-071-04W6/00	1916.6	sandstone	Montney
8723	M20	100/06-36-071-04W6/00	1919.2	siltstone	Montney
8724	M20	100/06-36-071-04006/00	1922.6	siltstone	Montney
8725	M20	100/06-36-071-04006/00	1931.2	siltstone and sandstone	Montney
8726	M20	100/06-36-071-04006/00	1933.1	siltstone and sandstone	Montney
8/2/	M20	100/06-36-071-04006/00	1938.7	siltstone and sandstone	Montney
0/20	IVIZU MOO	100/06-36-074-04/06/00	1940.1	silisione	Northey
0/29	IVIZU MOD	100/05-30-071-04W6/00	1943.0	silisione	Montrov
0730	IVIZO MOD	100/03-32-073-12000/00	2010.1	siltatono	Montrov
0/31	IVIZ3	100/05-32-073-12000/00	2010.4		Montrov
0/32	IVIZ3	100/05-32-073-12000/00	2017.9	siltatono	Montney
0133	M02	100/03-32-073-12000/00	2013.4		Montrov
01 34	IVIZ3	100/05-32-073-12000/00	2023.3	silisione	Montrov
0700 8700	M02	100/03-32-073-120000	2020.9	Silisione	Montrov
0730 9727		100/00-02-070-12000/00	2032.2 1760 F		Montrov
0131	IVI /	103/10-34-004-19773/00	1700.3	שוושנטוול מווע שמוועשנטוול	wortuney

Sample No.	Site No.	Location - UWI	Sample Depth (Metres)	Lithology	Formation/ Group
8738	M7	103/10-34-064-19W5/00	1770 7	siltstone and sandstone	Montney
8739	M7	103/10-34-064-19W5/00	1776.2	sandstone	Montney
8740	M7	103/10-34-064-19W5/00	1778.5	muddy siltstone	Montney
8741	M7	103/10-34-064-19W5/00	1778.7		Montney
8742	M7	103/10-34-064-19W5/00	1781.2	muddy siltstone and sandstone	Montney
8743	M7	103/10-34-064-19W5/00	1785.9	sandy siltstone	Montney
8744	M4	102/11-34-061-19W5/00	2163.5	sandy siltstone	Montney
8745	M4	102/11-34-061-19W5/00	2166.3	sandy siltstone	Montney
8746	M4	102/11-34-061-19W5/00	2169.7	silty sandstone	Montney
8747	M4	102/11-34-061-19W5/00	2171.4	sandy siltstone	Montney
8748	M4	102/11-34-061-19W5/00	2172.0	coquina	Montney
8749	M4	102/11-34-061-19W5/00	2176.6	siltstone	Montney
8750	M4	102/11-34-061-19W5/00	2180.4	sandstone	Montney
8751	M10	100/07-05-067-07W6/00	3076.3	sandy siltstone	Montney
8752	M10	100/07-05-067-07W6/00	3078.8	sandy siltstone	Montney
8753	M10	100/07-05-067-07W6/00	3080.3	siltstone	Montney
8754	M10	100/07-05-067-07W6/00	3081.4	siltstone	Montney
8755	M10	100/07-05-067-07W6/00	3084.5	siltstone	Montney
8756	M10	100/07-05-067-07W6/00	3088.4	sandy siltstone	Montney
8757	M10	100/07-05-067-07W6/00	3093.7	sandy siltstone	Montney
8758	M19	100/11-28-071-03W6/00	1820.5	siltstone and sandstone	Montney
8759	M19	100/11-28-071-03W6/00	1823.6	siltstone and sandstone	Montney
8760	M19	100/11-28-071-03W6/00	1826.4	siltstone	Montney
8761	M19	100/11-28-071-03W6/00	1829.9	siltstone and sandstone	Montney
8762	M19	100/11-28-071-03W6/00	1836.1	siltstone and sandstone	Montney
8763	M19	100/11-28-071-03W6/00	1839.1	sandy siltstone	Montney
8764	M19	100/11-28-071-03W6/00	1840.7	silty sandstone	Montney
8765	M19	100/11-28-071-03W6/00	1845.8	siltstone	Montney
8766	M19	100/11-28-071-03W6/00	1849.6	sandstone	Montney
8767	M19	100/11-28-071-03W6/00	1852.1	sandy siltstone	Montney
8768	M19	100/11-28-071-03W6/00	1857.6	siltstone and sandstone	Montney
8769	M19	100/11-28-071-03W6/00	1858.3	siltstone	Montney
8770	M19	100/11-28-071-03W6/00	1862.8	siltstone	Montney
8771	M19	100/11-28-071-03W6/00	1864.9	sandstone	Montney
8772	M19	100/11-28-071-03W6/00	1869.8	sandy siltstone	Montney
8773	M40	100/10-21-092-03W6/00	778.5	muddy siltstone	Montney
8774	M40	100/10-21-092-03W6/00	781.1	muddy siltstone	Montney
8775	M40	100/10-21-092-03W6/00	783.3	siltstone	Montney
8776	M40	100/10-21-092-03W6/00	784.6	sandy siltstone	Montney
8777	M40	100/10-21-092-03W6/00	787.3	siltstone	Montney
8778	M40	100/10-21-092-03W6/00	791.6	muddy siltstone with sandstone	Montney
8779	M40	100/10-21-092-03W6/00	795.7	mudstone	Montney
8780	M40	100/10-21-092-03W6/00	798.3	sandstone	Montney
8781	M15	100/13-05-068-01W6/00	2044.4	sitstone	Montney
8782	M15	100/13-05-068-01W6/00	2047.7	coquina	Montney
8/83	M15	100/13-05-068-01W6/00	2048.8	sandstone	Montney
8/84	M15	100/13-05-068-01W6/00	2055.4	sity sandstone	Montney
8/85	M15	100/13-05-068-01W6/00	2057.4	sitstone	Montney
8786	M15	100/13-05-068-01W6/00	2235.3	sandy siltstone	Montney
8/8/	M15	100/13-05-068-01W6/00	2238.5	SIITSTONE	Montney
8/88	M15	100/13-05-068-01W6/00	2240.9	sitstone	Montney
8700	W15	100/13-05-068-01W6/00	2245.8	Igrainstone	Belloy
0704	IVI I 3	100/13-31-00/-18005/00	1020.1		Nordegg
0791	IVI13	100/13-31-067-18W5/00	1658./		wontney
8/92	M13	100/13-31-067-18W5/00	1662.1	sanoy Silisione	Montney
0793	IVI13	100/13-31-067-18W5/00	1665.9		Monthey
0705	IVI I J Maa	100/13-31-00/-18005/00	10/2.9		Montrov
0795	IVI32	102/14-20-079-22005/00	804./	sanuy silisione	wontney
0/90 0707	IVI32	102/14-20-079-22W5/00	800.0	sinsione and sandstone	Montney
0191	IVIJZ Maa	102/14-20-079-22000/00	072.U	silly sallusione	Montrov
0/90 9700	IVIJZ	102/14-20-079-22005/00	٥/٥./ محم م		Montney
0199	IVIJZ	102/14-20-079-22005/00	019.2	รสานy รแรงบาย	wontney

Sample No.	Site No.	Location - UWI	Sample Depth	Lithology	Formation/ Group
			(Metres)		
8800	M5	100/11-24-062-20W5/00	2080.9	shale	Nordegg
8801	M5	100/11-24-062-20W5/00	2087.6	coquina	Montney
8802	M5	100/11-24-062-20W5/00	2090.3	coquina	Montney
8803	M5	100/11-24-062-20W5/00	2094.9	coquina	Montney
8804	M5	100/11-24-062-20W5/00	2097.3	sandy siltstone	Montney
8805	M5	100/11-24-062-20W5/00	2102.2	sandy siltstone	Montney
8806	M5	100/11-24-062-20W5/00	2105.1	sandy siltstone	Montney
8807	M5	100/11-24-062-20W5/00	2107.8	sandy siltstone	Montney
8088	M3	100/04-06-059-20W5/00	2643.9	shale	Nordegg
8809	M3	100/04-06-059-20W5/00	2644.3	shale	Nordegg
8810	M3	100/04-06-059-20W5/00	2645.9	sandstone	Montney
8811	M3	100/04-06-059-20W5/00	2648.2	silty sandstone	Montney
8812	M3	100/04-06-059-20W5/00	2651.1	sandy siltstone	Montney
8813	M3	100/04-06-059-20W5/00	2656.4	sandy siltstone	Montney
8814	M3	100/04-06-059-20W5/00	2658.8	sandy siltstone	Montney
8815	M3	100/04-06-059-20W5/00	2660.9	sandy siltstone	Montney
8816	M1	100/11-14-057-23W5/00	3007.1	siltstone	Montney
8817	M1	100/11-14-057-23W5/00	3008.7	sandy siltstone	Montney
8818	M1	100/11-14-057-23W5/00	3010.8	siltstone	Montney
8819	M1	100/11-14-057-23W5/00	3013.3	siltstone	Montney
8820	M1	100/11-14-057-23W5/00	3013.9	coquina	Montney
8821	M1	100/11-14-057-23W5/00	3019.4	sandstone	Montney
8822	M21	100/06-33-072-25W5/00	1590.1	siltstone	Montney
8823	M21	100/06-33-072-25W5/00	1592.2	siltstone	Montney
8824	M21	100/06-33-072-25W5/00	1595.5	sandy siltstone	Montney
8825	M21	100/06-33-072-25W5/00	1597.5	sandy siltstone	Montney
8826	M21	100/06-33-072-25W5/00	1602.0	siltstone	Montney
8827	M21	100/06-33-072-25W5/00	1607.4	sandy siltstone	Montney
8828	M22	100/06-34-072-25W5/00	1535.4	shale	Nordegg
8829	M22	100/06-34-072-25W5/00	1536.1	shale	Nordegg
8830	M22	100/06-34-072-25W5/00	1538.3	siltstone	Montney
8831	M22	100/06-34-072-25W5/00	1542.5	sandy siltstone	Montney
8832	M22	100/06-34-072-25W5/00	1545.4	siltstone	Montney
8833	M22	100/06-34-072-25W5/00	1550.0	sandy siltstone	Montney
8834	M2	100/16-23-057-06W6/00	2479.9	siity snaie	Doig
8835	M2	100/16-23-057-06W6/00	2480.8	siltstone	Doig
8836	M2	100/16-23-057-06W6/00	2481.1	shaley siltstone	Doig
8837	M2	100/16-23-057-06W6/00	2482.4	lag	Doig
8838	M2	100/16-23-057-06W6/00	2485.3	siltstone	Montney
8839	M2	100/16-23-057-06W6/00	2487.2	siltstone	Montney
8840	M2	100/16-23-057-06W6/00	2489.3	siltstone	Montney
8841	M2	100/16-23-057-06W6/00	2491.1	sittstone	Montney
0042	IVIZ MO	100/16-23-057-06W6/00	2515.2	silisione	Montrey
0043	IVIZ MO	100/10-23-057-060000	2516.4	silisione	Montrey
0044	IVIZ MO	100/16-23-057-06990/00	2519.2		Montney
0040	IVIZ MO	100/10-23-037-00990/00 100/16 22 0F7 06W6/00	2021.0	Silly SalluSiOlie	Montrov
0040	IVIZ	100/10-23-037-00000/00 100/16 22 057 06W/000	2022.0 0646.6		Montrav
8847	IVIZ	100/16-23-057-06006/00	2040.0	siltstone	Montney
0040		100/16-23-03/-00000/00	2049.0		Montrey
0049	IVIZ M2	100/16-23-057-06W0/00	2030.2	siltstone	Montrov
0000	IVIZ M2	100/16-23-057-06000/00	2002.1	silisione	Montney
0001	IVIZ M2	100/16 23 057 06/00/00	2001.4		Montrov
0002	IVIZ MO	100/10-23-037-00990/00	2000.U	siltetono	Montrov
00000	IVIZ MO	100/10-23-037-0000000	2003.0	siltetopo	Montrey
0004 8855	IVI∠ M2	100/10-23-037-00990/00 100/16-23 057 060/00	2031.1	Silisione	Montrov
0000	IVIZ MO	100/10-23-037-00990/00	2034.4	sanuy silisione	Montrov
8857	IVI∠ M2	100/10-23-037-00990/00 100/16-23-057 06M/6/00	2090.0	sanuy silisione	Montrov
8828	IVI∠ M2	100/10-23-037-00000/00	2033.3	sailuy silisiulie siltetono	Montrov
8850	M30	100/10-23-037-00000/00	1770 2	shalev siltetone	Montney
8860	M30	102/11-34-070-02000/00	177/ Q	eiltetono	Montney
8861	M20	102/11-34-070-02000/00	1770 0	sincione sandy siltetone	Montrov
0001	IVIJU	102/11-04-070-02000/00	1770.0	Sandy Sillslund	wontney

Sample No.	Site No.	Location - UWI	Sample Depth	Lithology	Formation/ Group
			(Metres)		
8862	M30	102/11-34-078-02W6/00	1779.9	sandy siltstone	Montney
8863	M30	102/11-34-078-02W6/00	1780.7	silty sandstone	Montney
8864	M30	102/11-34-078-02W6/00	1782.2	sandy siltstone	Montney
8865	M30	102/11-34-078-02W6/00	1785.3	siltstone and sandstone	Montney
8866	M30	102/11-34-078-02W6/00	1787.3	sandy siltstone	Montney
8867	M26	100/15-06-076-03W6/00	1444.9	sandy siltstone	Doig
8868	M26	100/15-06-076-03W6/00	1446.0	siltstone	Doig
8869	M26	100/15-06-076-03W6/00	1449.6	siltstone	Doig
8870	M26	100/15-06-076-03W6/00	1452.0	siltstone	Doig
8871	M26	100/15-06-076-03W6/00	1453.7	siltstone	Doig
8872	M26	100/15-06-076-03W6/00	1457.6	siltstone	Montney
8873	M26	100/15-06-076-03W6/00	1458.6	sandy siltstone	Montney
8874	M26	100/15-06-076-03W6/00	1458.9	siltstone	Montney
8875	M9	100/16-31-066-23W5/00	1708.6	sandy siltstone	Montney
8876	M9	100/16-31-066-23W5/00	1711.5	sandy siltstone	Montney
8877	M9	100/16-31-066-23W5/00	1713.7	silty sandstone	Montney
8878	M9	100/16-31-066-23W5/00	1718.1	siltstone	Montney
8879	M9	100/16-31-066-23W5/00	1720.0	sandy siltstone	Montney
8880	M9	100/16-31-066-23W5/00	1721.9	siltstone	Montney
8881	M9	100/16-31-066-23W5/00	1725.5	siltstone	Montney
8882	M11	100/12-07-067-24W5/00	1904.4	shale or calcilutite	Nordegg
8883	M11	100/12-07-067-24W5/00	1905.9	shale	Nordegg
8884	M11	100/12-07-067-24W5/00	1908.3	shale	Nordegg
8885	M11	100/12-07-067-24W5/00	1908.8	sandy siltstone	Montney
8886	M11	100/12-07-067-24W5/00	1910.1	siltstone	Montney
8887	M11	100/12-07-067-24W5/00	1914.4	sandy siltstone	Montney
8888	M11	100/12-07-067-24W5/00	1917.6	siltstone	Montney
8889	M11	100/12-07-067-24W5/00	1920.5	sandy siltstone	Montney
8890	M11	100/12-07-067-24W5/00	1922.6	siltstone	Montney
8891	M6	100/07-14-064-25W5/00	2289.0	shale or calcilutite.	Nordegg
8892	M6	100/07-14-064-25W5/00	2289.6	shale	Nordegg
8893	M6	100/07-14-064-25W5/00	2291.5	sandy siltstone	Montney
8894	M6	100/07-14-064-25W5/00	2295.2	sandy siltstone	Montney
8895	M6	100/07-14-064-25W5/00	2297.3	siltstone	Montney
8896	IVID	100/07-14-064-25W5/00	2300.2	slitstone	Montney
8897	IVID	100/07-14-064-25W5/00	2304.0	snaley slitstone	Montney
8898	IVI6	100/07-14-064-25W5/00	2306.9	snaley slitstone	Montney
8899	M8	100/06-14-066-06W6/00	3026.4	siltstone	Montney
8900	IVI8	100/06-14-066-06W6/00	3030.6	siltstone	Montney
8901	IVI8	100/06-14-066-06996/00	3034.3	siltstone	Montney
8902	IVI8	100/06-14-066-06996/00	3037.8	siltstone	Montney
8903	IVI8	100/06-14-066-06996/00	3040.6	siltstone	Montney
0904 0007	VIVI M20	100/00-14-000-06000/00	3044.1	sinsione	Montney
0000	MOO	102/01-14-091-12000/00	111U.Ŏ		Montrov
0900 8007	IVI39 M20	102/01-14-091-12000/00	1111.9	silty sandstone	Montpoy
0000	MOO	102/01-14-031-12000/00	1110.4		Montacy
0000	MOO	102/01-14-091-12000/00	1110.9	siily sallusione	Montaci
0909	IVI39	102/01-14-091-12000/00	1110.2	sandy sinsione	Montney
001U 9011	IVIJO M20	100/04-32-004-12000/00	1001.3	SillSiUlid	Montpoy
0011 2010	IVI30	100/04-32-004-12000/00	1002.3	sailuy siilsiulie siltetone	Montrov
0912	M20	100/04-32-084-1200/00	1504.1	silty condetono	Montrov
8017	M38	100/04-32-004-12000/00	1000.0	sandy siltetono	Montpoy
0014 0015	M20	100/04-32-004-12000/00	1001.U 1507 F	sailuy siilsione	Montrov
8016	M32	100/04-32-004-12000/00	1092.0	siltetono	Montpoy
0010 2017	IVISO M3E	100/14-30-002-07 000/00	1201.2	siltetone	Montrov
Q010	MSE	100/14-30-002-07 00/00	1200.9	siltetono	Montney
8010	M32	100/14-30-002-07 00/00	1030 7	sandy siltetone	Montrov
8020	Mae	100/14-30-002-07 000/00	1230.7	sailuy silisiulie siltetono	Montpoy
8021	M25	100/14-30-002-07 000/00	1240.0	silty sandstone	Montney
8022	M25	100/14_30_02_07\\//6/00	1241.0	eiltetono	Montney
8022	M25	100/14-30-002-07 00/00	1243.3	siltetono	Montney
0020	WIJJ	100/17-00-002-01 100/00	1240.1	ontotorio	wontiney

Sample No.	Site No.	Location - UWI	Sample Depth	Lithology	Formation/ Group
			(Metres)		
8924	M35	100/14-30-082-07W6/00	1248.3	sandy siltstone	Montney
8925	M34	100/15-08-081-12W6/00	1824.9	siltstone	Montney
8926	M34	100/15-08-081-12W6/00	1827.7	siltstone	Montney
8927	M34	100/15-08-081-12W6/00	1830.1	siltstone	Montney
8928	M34	100/15-08-081-12W6/00	1833.1	siltstone	Montney
8929	M34	100/15-08-081-12W6/00	1836.0	siltstone	Montney
8930	M34	100/15-08-081-12W6/00	1839.1	siltstone	Montney
8931	M36	100/11-32-082-25W5/00	924.8	shale	Nordegg
8932	M36	100/11-32-082-25W5/00	926.4	shale	Nordegg
8933	M36	100/11-32-082-25W5/00	927.4	sandy siltstone	Montney
8934	M36	100/11-32-082-25W5/00	929.0	sandy siltstone	Montney
8935	M36	100/11-32-082-25W5/00	933.9	siltstone	Montney
8936	M36	100/11-32-082-25W5/00	936.7	siltstone	Montney
8937	M36	100/11-32-082-25W5/00	940.4	sandstone	Montney
8938	M18	100/02-30-071-20W/5/00	1316.1	shale	Nordeag
8939	M18	100/02-30-071-20W5/00	1318.1	shale	Nordegg
8940	M18	100/02-30-071-20W5/00	1310.0	sandstone	Montney
80/1	M18	100/02-30-071-20W5/00	1372.2	sandstone	Montney
80/2	M18	100/02-30-071-20W3/00	1322.2	sandy siltstone	Montney
80/3	M18	100/02-30-071-2000/00	1324.5	siltetono	Montney
8011	M12	100/02-50-071-20005/00	3013.6	siltstolle	Montnov
0944	M12	100/14-27-007-00000/00	2017.0		Montrov
0940	M12	100/14-27-007-000000	3017.1		Montrov
0940	M12	100/14-27-007-08000/00	2019.3		Montrov
0947	IVI I Z	100/14-27-067-06000/00	3021.3	siltstone	Montney
8948	NIIZ M10	100/14-27-067-08006/00	3020.9	SIItstone	Montney
8949	M12	100/14-27-067-08006/00	3029.7	sandy slitstone	Montney
8950	M12	100/14-27-067-08776/00	3032.0	sandy slitstone	Montney
8951	MID	100/06-23-068-08996/00	2972.8	sandstone	Montney
8952	M16	100/06-23-068-08/06/00	2975.0	sandstone	Belloy
8953	M16	100/06-23-068-08/06/00	29/5./	conglomerate	Belloy
8954	M16	100/06-23-068-08W6/00	2980.7	sandstone	Belloy
8955	M16	100/06-23-068-08W6/00	2982.4	sandstone	Belloy
8956	M31	100/06-12-079-12W6/00	2013.6	sandy siltstone	Montney
8957	M31	100/06-12-079-12W6/00	2016.1	sandy siltstone	Montney
8958	M31	100/06-12-079-12W6/00	2020.1	sandy siltstone	Montney
8959	M31	100/06-12-079-12W6/00	2024.0	sandy siltstone	Montney
8960	M31	100/06-12-079-12W6/00	2024.7	sandy siltstone	Montney
8961	M31	100/06-12-079-12W6/00	2028.5	sandy siltstone	Montney
8962	M31	100/06-12-079-12W6/00	2030.9	sandy siltstone	Montney
8963	M24	100/01-14-075-11W6/00	2477.5	sandy siltstone	Montney
8964	M24	100/01-14-075-11W6/00	2480.3	siltstone	Montney
8965	M24	100/01-14-075-11W6/00	2483.0	shaley siltstone	Montney
8966	M24	100/01-14-075-11W6/00	2486.5	sandy siltstone	Montney
8967	M24	100/01-14-075-11W6/00	2489.2	siltstone	Montney
8968	M24	100/01-14-075-11W6/00	2491.8	shaley siltstone	Montney
8969	M24	100/01-14-075-11W6/00	2495.1	silty sandstone	Montney
8970	M17	100/05-24-068-22W5/00	1552.9	shale	Nordegg
8971	M17	100/05-24-068-22W5/00	1553.5	shale	Nordegg
8972	M17	100/05-24-068-22W5/00	1556.3	coquina	Montney
8973	M17	100/05-24-068-22W5/00	1559.2	silty sandstone	Montney
8974	M17	100/05-24-068-22W5/00	1560.2	silty sandstone	Montney
8975	M17	100/05-24-068-22W5/00	1562.5	silty sandstone	Montney
8976	M17	100/05-24-068-22W5/00	1564.7	sandy siltstone	Montney
8977	M17	100/05-24-068-22W5/00	1568.3	sandy siltstone	Montney
9247	M15	100/13-05-068-01W6/00	2240.9	duplicate of sample 8788	Montnev
9248	M13	100/13-31-067-18W5/00	1662.1	duplicate of sample 8792	Montnev
9249	M5	100/11-24-062-20W5/00	2105 1	duplicate of sample 8806	Montney
9250		standard	_100.1	standard Green River shale USGS (SRG-1b)	standard
9251	M18	100/02-30-071-20W5/00	1324.3	duplicate of sample 8942	Montney
9252	M17	100/05-24-068-22W5/00	1568.3	duplicate of sample 8977	Montney
9253	M31	100/06-12-079-12\W6/00	2013 5	duplicate of sample 8956	Montney
9254	M21	100/06-33-072-25W5/00	1590 1 - 1592 2	combined samples 8822 and 8823	Montney

Sample No.	Site No.	Location - UWI	Sample Depth (Metres)	Lithology	Formation/ Group
9255	M23	100/05-32-073-12W6/00	2816.4 - 2823.3	combined samples 8731, 8732, 8733, 8734	Montney
9256	M10	100/07-05-067-07W6/00	3088.4 - 3093.7	combined samples 8756, 8757	Montney
9257	M2	100/16-23-057-06W6/00	2646.6 - 2650.2	combined samples 8847, 8848, 8849	Montney
9258	M6	100/07-14-064-25W5/00	2297.3 - 2306.9	combined samples 8895, 8896, 8897, 8898	Montney
9259	M8	100/06-14-066-06W6/00	3030.6 - 3044.1	combined samples 8900, 8901, 8902, 8903, 8904	Montney
9260	M34	100/15-08-081-12W6/00	1827.7 - 1839.1	combined samples 8926, 8927, 8928, 8929, 8930	Montney

Appendix 2 – Montney Formation Core Samples Analyzed

Legend Y = Sample data presen x = Sample data presen z = Data are being analy Analyse	ated in this report ted in other Alberta Geological Survey reports (see Table 1 for details) /zed and will be distributed in a future report s presented in this report
Column Label	Label Description
Sample No.	AGS sample number
Site No.	Site location number
Rock Eval™ TOC	Rock Eval™ pyrolysis is used to identify the type and maturity of organic matter and to detect petroleum potential in sediments. Total Organic Carbon is a measure
	of the amount of organic carbon in the sediment (in weight per cent).
XRD-Bulk	X-Ray diffraction analysis of whole rock mineralogy
XRD-Clay	X-Ray diffraction analysis of clay mineralogy
Organic Pet.	Petrographic imaging and description of organic macerals
Thin Section	Thin section of sample
Adsorption Isotherm	Gas adsorption analysis to determine gas-holding capacity of sample
SEM	Scanning electron microscope
Mini-perm	Analysis to determine permeability
Porosimetry	Analysis to determine pore-throat size
Pycnometry	Analysis to determine grain density
Texture with Clay	Determination of sand, silt and clay size distribution in weight per cent with clay mineralogy on clay separates.
Mineralogy	

Sample No.	Site No.	RockEval TOC	XRD-Bulk	XRD-Clay	Organic Pet.	Thin Section	Adsorption Isotherm	SEM	Mini- perm	Porosimetry	Pycnometry	Texture with Clay Mineralogy
8113	M25	Х										
8114	M25	Х										
8115	M25	х				Z			Y			
8116	M25	X										
8117	M25	Х			Х							
8118	M25	X							V			_
8119 9120	M14	X							ř			Z
0120	IVI 14	X										
0121 8122	M14	X			v							
8123	M33	X			Χ.							
8124	M33	×			v							7
8125	M33	×			^	7						2
8126	M33	x	Y			2						
8131	M37	x			x							
8132	M37	X										
8701	M27	X										
8702	M27	х			Х					Y	Y	
8703	M27	х										
8704	M27	x										
8705	M28	X			Х			Y				
8706	M28	х										Z
8707	M28	Х				Z			Y			
8708	M28	х										
8709	M29	x			х			Y				
8710	M29	x										
8711	M29	Х										
8712	M29	Х										
8713	M29	х										
8714	M29	Х			Х							
8715	M29	X										
8/16	M20	Х										
8/1/	M20								V			
8/18	M20	X				Z			Ŷ			
8719	M20	X										
0720	M20	X										
8722	M20	X										
8723	M20	X										
8724	M20	×			Y							
8725	M20	x			~							
8726	M20	~										
8727	M20	x										
8728	M20											
8729	M20	х			Х							
8730	M23	х	Y	Y								
8731	M23							Y				
8732	M23	х			Х							
8733	M23											
8734	M23	х										
8735	M23											
8736	M23	x										
8737	M7	Х										
8738	M7											
8739	M7	X			Х			Y				
8740	M7	ļ										ļ
8/41	M/											
8/42												
0743		Х						V				
0744	IVI4							Y				
0140 Q7/16	IVI4 M/	X			X							
0740 97/7	N/4	~										
0141 Q7/Q	N/4	Ă										
87/0	M/											
8750	M4	Y										
8751	M10	× ×			Y							
8752	M10	^			^							
8753	M10	x	Y	Y								
8754	M10	x										
8755	M10	x			х							

Sample No.	Site No.	RockEval TOC	XRD-Bulk	XRD-Clay	Organic Pet.	Thin Section	Adsorption Isotherm	SEM	Mini- perm	Porosimetry	Pycnometry	Texture with Clay Mineralogy
8756	M10	Х										
8757	M10	X			Х							
8/58 9750	M19 M10	X										
8760	M19	x										
8761	M19	X	Y	Y								
8762	M19	х										
8763	M19											
8764	M19	X								Z	Y	
8/65	M19	X			Х							
8767	M19 M10	×										
8768	M19	x										
8769	M19											
8770	M19	х			Х							
8771	M19											
8772	M19	X										
8//3	M40				v							
8775	M40				X							
8776	M40											
8777	M40											
8778	M40											
8779	M40											
8781	WI40	X			ļ							
8782	M15	X										
8783	M15											
8784	M15	X										
8785	M15	Х			X							
8786	M15	Х				Z			Y			Z
8787	M15											
0/00 8789	M15	X Y			X Y							
8790	M13	X			X							
8791	<u>M</u> 13											
8792	M13	Х										
8793	M13	х			Х							
8794	M13	X										
8795	M32	~			v							
8797	M32	X			X							
8798	M32											
8799	M32	x										
8800	M5	х										
8801	M5											
8802	M5											
8804	IVID M5											
8805	M5											
8806	M5	х			Х							
8807	M5											
8808	M3	х										
8809	M3 M2											
8811	M3											
8812	M3											
8813	M3	х			Х							
8814	M3											
8815	M3											
8816	M1				ļ	ļ						
8818	M1											
8819	M1	х	Y	Y	х	ļ						
8820	M1											
8821	M1											
8822	M21	Х										
8823	M21	X			v							
8825	M21	X			X							
8826	M21	X										
8827	M21	X										
8828	M22	Х										
8829	M22											
8830	M22											
8832	₩22 M22	Х			Х							
8833	M22	L			ļ	ļ						
8834	M2	X										
8835	M2						-					
8836	M2											
8837	M2	X										
8838	M2	X										
0039 8840	IVI∠ M2	X Y				7			Y			
8841	M2	X			ļ	-						
8842	M2	X										
8843	M2	Х										
8844	M2	Х										
8845	M2				ļ							
0040	M2 M2	v			V	<u> </u>						
88/18	IVI∠ M2	X			X							
8849	M2	X										

Sample No.	Site No.	RockEval TOC	XRD-Bulk	XRD-Clay	Organic Pet.	Thin Section	Adsorption Isotherm	SEM	Mini- perm	Porosimetry	Pycnometry	Texture with Clay Mineralogy
8850	M2	х										Z
8851	M2	Х										
8852	M2 M2	Y			Y							
8854	M2	X	Y	Y	X							
8855	M2	x										
8856	M2	х							Y			Z
8857	M2	х										
8858	M2	х						Y		Z	Y	
8859	M30	X										
8861	M30											
8862	M30	x			х							
8863	M30											
8864	M30											
8865	M30											
8866	M30	х										
0060	M26	X										
8869	M26	x										
8870	M26	X										
8871	M26											
8872	M26											
8873	M26											
8875	IVI26	X			X							
8876	M9	X			X							
8877	M9	~ ~										
8878	<u>M</u> 9	X				Z		Y	Y	Z	Y	
8879	M9	Х										
8880	M9											
8881	M9	X										
8883	M11	X										
8884	M11	л Х										
8885	M11	, A										
8886	M11	Х										
8887	M11	х										
8888	M11	х			Х							
8889	M11	Х										
8890	M6	¥										
8892	M6	^										
8893	M6	х										
8894	M6	х										
8895	M6	х				Z						
8896	M6											
8897	M6 M6	X	Y		Х							
8890	IVIO M8	X	V	V								
8900	M8	x	1									
8901	M8	x						Y				
8902	M8	х			Х	Z			Y			
8903	M8	х										
8904	M8	X	V							Z	Y	
8905	M39 M30	X	Y									
8907	M39											
8908	M39	х				Z			Y	Z	Y	
8909	M39	х			Х							
8910	M38	Х			х							
8911	M38											
8912	M38	Х										
8914	M38	x										
8915	M38	X										
8916	M35	Х										
8917	M35											
8918	M35	X	V	V					Y			
8020	IVI35 M25	Х	Y	Y								
8920	M35	x										
8922	M35	~ ~										
8923	M35	X			X							
8924	M35	Х				Z						
8925	M34											
8926	M34	Х						Y				
0927 8028	IVI34 M24	v			v							
8929	M34	λ										
8930	M34	x										
8931	M36	X										
8932	M36											
8933	M36	Х										
8934	M36	X			Х							
0932 0932	IVIJO MJE	X										
8937	M36	X										
8938	M18	X										
8939	M18											
8940	M18	Х										
8941	M18											
8942	M18	Х			Х							
8943	M18	I				I						

Sample No.	Site No.	RockEval TOC	XRD-Bulk	XRD-Clay	Organic Pet.	Thin Section	Adsorption Isotherm	SEM	Mini- perm	Porosimetry	Pycnometry	Texture with Clay Mineralogy
8944	M12											
8945	M12	Х										
8946	M12											
8947	M12	х										
8948	M12	х				Z						Z
8949	M12											
8950	M12	х			Х							
8951	M16	х										
8952	M16	х										
8953	M16	х										
8954	M16											
8955	M16	х										
8956	M31	х				Z						
8957	M31	х										
8958	M31	x										
8959	M31	X										
8960	M31											
8961	M31	x			x							
8962	M31	~			~							
8963	M24	x										
8964	M24	x			x							
8965	M24	~			^							
8966	M24	v										
8967	M24	×										
8968	M24	^										
8969	M24	v										
8970	M17	^										
8071	M17	v										
8072	M17	×										
8073	M17	×			v							
0973	M17	~			X							
0974	IVI 17	~										
0970	IVI 17	X										
09/0	IVI 17	v										
0247	IVI 17 M15	X										
9247	IVI 10	X										
9240	IVITS	X										
9249	CIVI	X										
9250	Standard											
9251	IVI 18	X										
9252	M117	X										
9253	M31	Х	V	N/	Х	 						
9254	IVI21		Y	Ŷ	ļ	 						
9255	M23				ļ	ļ	Х					
9256	M10	ļ					X					
9257	M2	ļ					Х					
9258	M6						Х					
9259	M8				L	ļ	Х					
9260	M34						Х					

ERCB/AGS Open File Report 2010-03 (May 2010) - 19

Appendix 3 – Montney Formation Bulk Sample Mineralogy (XRD)

Appendix 3a – Bulk X-Ray Diffraction

Sample	Site No	Quartz		Feldspars		Durito	Hom	Clay Minerals			Ca	rbonates			Sulphate	FlAn	Brkt	Total				
No.	Sile NO.	Quartz	Albite	Micro.	Ortho.	Fyrite	nem.	Musc.	Bio.	Paly.	Kaol.	Illite	Mont.	CICh.	Calcite	Dolo.	Ank.	Rhod.	Gyp.	гіяр.	DIKI.	Total
8126	M23	44.7	9.5	15.1		0.2		3.2			1.7			1.1	1.7	12.9	8.5			0.9	0.5	100.0
8730	M23	38.5	7.6		14.6	1.7		10.3	2.8			1.4			0.7	9.8	10.5	0.4		0.9	0.6	99.8
8753	M10	40.6	9.2		9.2	4.7		16.8	1.8		1.0	0.6		1.3	0.1	13.5				0.4	0.7	99.9
8761	M19	42.5	6.9		7.6	3.0		9.8	1.1			1.7				26.0				1.0	0.5	100.1
8819	M1	38.5	2.6		22.2	2.7		8.5	3.6			3.3				17.4				0.5	0.7	100.0
8854	M2	41.2	7.3		13.9	2.3	0.6	9.1	2.4			0.9		1.4	0.4	19.3				0.5	0.6	99.9
8897	M6	20.7	7.9		13.7	8.9		31.4	4.3	2.0	3.8					4.5				1.6	1.3	100.1
8899	M8	38.2	5.5		8.2	4.4	0.6	20.4	3.2			4.1				13.1			0.1	1.5	0.7	100.0
8905	M39	27.4	3.3		8.4	5.3		20.0	2.1						5.6	9.5	10.4			7.5	0.6	100.1
8919	M35	40.1	10.6		11.8	0.2		9.6				2.0			7.3	8.6	8.6	0.1		0.4	0.7	100.0
9254	M21	23.4	7.6		17.7	8.3		22.5	3.2	0.2	3.0	1.6				9.9				1.5	1	99.9

Legend

Column Label	Description	Column Label	Description
Sample No.	AGS sample number	Hem.	Hematite
Site No.	AGS site location number	Kaol.	Kaolinite
Ank.	Ankerite	Micro.	Microcline
Bio.	Biotite	Mont.	Montmorillonite
Brkt.	Brookite	Musc.	Muscovite
CICh.	Clinochlore	Ortho.	Orthoclase
Dolo.	Dolomite	Paly.	Palygorskite
FIAp.	Fluorapatite	Rhod.	Rhodochrosite
Gyp.	Gypsum		

All values are in weight per cent (wt.%)

Analysis performed by SGS Minerals Ltd.

Software: Bruker AXS Diffrac Plus EVA

The semiquantitative analysis of EVA is performed on the basis of relative peak heights and I/Icor values of those detected crystalline phases with PDF files. Amorphous or crystalline mineral species present in trace amounts may go undetected.

Appendix 3b – X-Ray Fluorescence

Sample No	Site No	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V ₂ O ₅	LOI	Total
Cample NO.		wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %	wt. %
8126	M33	63.40	6.66	1.86	3.94	7.61	1.09	2.87	0.46	0.35	0.20	0.01	<0.01	10.70	99.2
8730	M23	56.30	8.93	3.40	3.81	6.72	0.90	3.80	0.59	0.31	0.22	0.02	<0.01	11.60	96.6
8753	M10	61.40	10.20	3.50	3.60	4.28	1.09	3.84	0.70	0.15	0.07	0.02	0.00	8.51	97.4
8761	M19	57.10	6.41	2.19	5.43	8.46	0.08	2.76	0.46	0.44	0.18	0.03	<0.01	12.60	96.1
8819	M1	55.90	15.70	5.92	1.99	2.35	1.15	5.18	1.44	0.46	0.09	0.03	<0.01	7.92	98.1
8854	M2	59.50	8.56	3.26	4.30	5.86	0.79	3.48	0.58	0.18	0.12	0.02	<0.01	9.06	95.7
8897	M6	52.40	17.10	6.33	2.07	2.13	0.86	5.94	1.04	0.54	0.04	0.02	0.02	9.03	97.5
8899	M8	59.00	11.00	4.09	3.36	4.19	0.72	4.35	0.72	0.21	0.06	0.02	0.02	9.40	97.1
8905	M39	44.20	8.96	6.34	2.43	10.10	0.28	3.87	0.46	3.08	0.03	0.04	0.13	16.90	96.8
8919	M35	59.90	8.42	2.51	2.24	8.85	1.16	3.20	0.65	0.18	0.07	0.02	0.04	9.36	96.6
9254	M21	51.20	15.20	6.82	2.82	3.22	0.63	5.17	0.80	0.58	0.06	0.02	0.02	10.80	97.3
8854DUP	M2	59.60	8.49	3.24	4.29	5.84	0.81	3.48	0.59	0.18	0.11	0.01	< 0.01	8.89	95.5

Legend

Column Label	Description	Column Label	Label Description
Sample No.	AGS sample number	TiO ₂	Titanium oxide
Site No.	AGS site location number	P_2O_5	Phosphorus oxide
SiO ₂	Silicon oxide	MnO	Manganese oxide
AI_2O_3	Aluminum oxide	Cr ₂ O ₃	Chromium oxide
Fe ₂ O ₃	Iron oxide	V_2O_5	Vanadium oxide
MgO	Magnesium oxide	LOI	Loss-on-ignition - amount of material lost due to heating
CaO	Calcium oxide	Total	Total weight per cent
Na ₂ O	Sodium oxide	wt. %	Weight per cent
K ₂ O	Potassium oxide	DUP	Duplicate

Appendix 4 – Montney Formation Clay Mineralogy (Qualitative XRD)

Sample Site No. Sample				Crystalline Mineral Assemblage (Relative Proportions Based on Peak Height)			
No.	Sile NO.	Туре	Major (> 30 wt. %)	Moderate (10-30 wt. %)	Minor(<10 wt. %)	Trace (< 1 wt. %)	
8730	M23	Core	(quartz)	(ankerite)	illite, (*plagioclase), (*potassium-feldspar)	(*pyrite), (*calcite)	
8753	M10	Core	(quartz)	(dolomite)	illite, chlorite, (plagioclase), (potassium- feldspar)	(*pyrite), (*apatite)	
8761	M19	Core	(quartz)	(dolomite)	illite, (*plagioclase), (*potassium-feldspar)	(*pyrite)	
8819	M1	Core	(quartz)	illite	(mica), (dolomite), (plagioclase), (potassium-feldspar), (pyrite)	(*brookite)	
8854	M2	Core	(quartz)	(dolomite)	illite, (plagioclase), (potassium-feldspar)	*chlorite, (*calcite), (*pyrite), (*brookite)	
8899	M8	Core	(quartz)		illite, (plagioclase), (potassium-feldspar), (dolomite)	(*gypsum), (*pyrite), (*brookite)	
8919	M35	Core	(quartz)	(calcite)	illite, (dolomite), (ankerite), (plagioclase), (potassium-feldspar), (pyrite)	(*rhodochrosite)	
9254	M21	Core	(quartz)		illite, (dolomite)	*kaolinite, (*potassium-feldspar), (*apatite), (*pyrite)	

Legend:

Column Label	Label Description
Sample No.	AGS sample number
Site No.	AGS site location number
Sample Type	Core, outcrop or cuttings
wt. %	Weight per cent (relative proportion of clay sized minerals only)

* Tentative identification due to low concentrations, diffraction line overlap or poor crystallinity

() Not a clay mineral, according to SGS Minerals Ltd.

Appendix 5 – Montney Formation Scanning Electron Microscope (SEM) Images and Descriptions

The SEM images in this appendix are thumbnails. Full-size JPGs are in the ZIP file that accompanied this report, available at <u>http://www.ags.gov.ab.ca/publications/abstracts/OFR_2010_03.html</u>.

Montney Formation Scanning Electron Microscope (SEM) Images and Descriptions

The SEM descriptions include an interpretation of energy dispersive X-ray (EDX) analysis. Please note that not all the graphs of the EDX analyses were saved for later interpretation; we have therefore made the comment 'not saved' within the body of this document where appropriate.

Lower Montney Formation, Sample 8705, UWI 100/11-27-077-06W6/00, 1741.2 m Core Depth

The sample is dark grey siltstone interbedded with light grey calcareous siltstone to very fine sandstone. Beds are 0.5-1.0 cm thick. The sample was taken above an ~ 4.0 m thick sandstone.

Image	Magnification
8705_7	25x
8705_2	50x
8705_1	100x
8705_3	250x
8705_4	500x
8705_5	2000x
8705_6	850x
8705_8	250x
8705_9	500x
8705_10	2500x
8705_11	1500x

Image 8705_7 is a low-magnification $(25\times)$ view that was taken in the upper dark silty portion of the sample. Along the northwest edge is a thin shaly layer that is approximately 400 μ m thick. This is the only 'shale' lamina that we found in all of the Montney samples. The remainder of the sample is silty or sandy silt. The bedding trend is northeast in all images.

Image 8705_2 (50× magnification) shows the homogeneity of the dark silty layer. The next image is taken near the white arrow. The red arrow in this image points to the location of image 8705_8 , which is described later in this section.

Image **8705_1** (100× magnification) is a slightly higher magnification of the shaly layer. Notice the abundance of darker minerals, likely dolomite crystals that will be examined in more detail in later images. An EDX overview of the sample shows dominance of quartz, perhaps potassium feldspar and, to a lesser degree, dolomite. There are a few scattered pores in the size range 20-40 μ m, but otherwise little porosity is visible at this level of magnification.

Image **8705_3** (250× magnification) shows a distinct north-south fabric in the shaly layer. An EDX overview of the sample is similar to the first analysis but with somewhat stronger indication of the presence of potassium feldspar and/or illite. Porosity is now discernible, some of which appears as lineations, up to 50 μ m in length, parallel to bedding. A few large grains, up to 50 μ m in diameter, are scattered throughout the sample. The next image is taken to the left of the white arrow.

In image **8705_4** (500× magnification), the fabric trends parallel to bedding, with silt-sized particles up to 20 μ m in diameter. Mineralogical analysis on the sample yielded the following results, beginning at the bottom of the image: potassium feldspar at site 1, dolomite at site 2, mica at site 3, dolomite at site 4, a possible kaolinite and illite mix at site 5, pyrite at site 6 and quartz at site 7. The next image is taken near the pyrite framboid in the upper left corner.

Microporosity, to use the term loosely, is visible within the framboid of image **8705_5** (2000× magnification). Surrounding the pyrite are grains up to 10 μ m in diameter, although most are less than 5 μ m. The linear pores mentioned earlier are visible between clay domains. Core expansion during recovery may enhance or create these features along lines of weakness in the sample, often grain or clay domain contacts. An example of the enhancement or creation of porosity is at the tip of the yellow arrow, where the curvature of the clay domain matches the curvature of the particle. This pore may have been closed at depth. The wavy character of the clay suggests that the clay domains are compacting around the particles, thus reducing porosity. Otherwise, it is difficult in this sample to estimate primary porosity.

Image 8705_6 ($850 \times$ magnification) is a lower magnification view of the previous image. Note the pyrite framboid in the upper left corner for reference. If we assume that the linear pores are open due to core expansion, then there is little porosity in this view. Clay sheets are well compacted around diagenetic or primary grains. In summary, there is more clay minerals in the ~400 µm thick shaly layer than we have seen in any other SEM image of the Montney Formation.

Image **8705_8** ($250 \times$ magnification) is full of subrounded to angular grains that appear to have poor sphericity; some of the grains are more than 50 µm in diameter. Porosity is evident between the crystals, but the pore size is dominantly quite small ($<10-20 \mu$ m) at this level of magnification. Nonetheless, the porosity is quite well distributed. An EDX overview of the sample yielded an elemental content very high in silicon and low in aluminum, perhaps indicating low clay content and high quartz and feldspar content. The yellow, red and white arrows point to the locations of images 8705_9, 8705_10 and 8705_11, respectively.

An EDX analysis on individual grains in image **8705_9** (500× magnification) yielded the following mineralogy: quartz at site 8, feldspar at site 9, possibly chert at site 10, mica at site 11, dolomite at site 12 (EDX_008), and calcium-rich, sodium, magnesium feldspar at site 13 (EDX_009). Intercrystalline porosity is more evident in this view. There are a few pores greater than 10 μ m, the majority being less than 5 μ m.

Image 8705_10 (2500× magnification) is a high-magnification view of mineralogy and porosity between the larger grains. The calcium-rich feldspar from the previous image is in the lower right corner. The arrows point to what is probably illite (no EDX analysis) that abuts the feldspar. However, the calcium-rich sodium feldspar is not likely the source material for the illite, since illite is potassium-rich. Illite appears to form a late-diagenetic pore-filling mineral. Pore sizes in the image vary from less than about 1 μ m to perhaps 5 μ m.

Image **8705_11** (1500× magnification) is a very busy looking image with a variety of crystal morphologies. Intercrystalline porosity is clearly evident, and there is a small amount of intracrystalline porosity (yellow arrow). The fractured grain (red arrow) likely occurred during sample handling and preparation.

EDX results for sample 8705:

Composition	Image	ID on Image
Potassium feldspar, (EDX_8705_003)	8705_4	1
Dolomite (8705_005)	8705_4	2
Mica (EDX not saved)	8705_4	3
Dolomite (EDX not saved)	8705_4	4
Possible kaolinite and illite mix (8705_006)	8705_4	5
Pyrite (EDX_8705_004)	8705_4	6
Quartz (EDX not saved)	8705_4	7
Quartz (EDX not saved)	8705_8	8
Feldspar (EDX not saved)	8705_8	9
Chert (?; EDX not saved)	8705_8	10
Mica (EDX not saved)	8705_8	11
Dolomite (EDX_8705_008)	8705_8	12
Calcium-rich feldspar (EDX_8705_009)	8705_8	13

Note: The depth of the EDX analysis is $\sim 1-2 \ \mu m$, so the chemistry below the surface may dominate the surface mineral.

Montney Formation, Sample 8709, UWI 100/05-14-78-11W6/00, 2189.9 m Core Depth

The sample is dark grey, slightly sandy, noncalcareous siltstone.

Image	Magnification
8709_1	100x
8709_2	200x
8709_3	900x
8709_4	4500x
8709_5	5500x
8709_6	1300x
8709_7 Backscatter	1000x
8709_8	370x
8709_9	750x
8709_10	650x

Image **8709_1** is a low-magnification (100×) image showing fairly good porosity over a range of scales. No bedding trend is evident in this view. An EDX overview suggests the sample is dominated by quartz, feldspar and clay, with a lesser amount of dolomite. There are dark-coloured, sand-sized particles in this view that vary in sphericity and roundness. The white arrow points to the location of the next image.

Image **8709_2** is higher magnification (200×) view of porosity in the sample. A considerable number of pores are greater than 30 μ m, but we cannot judge the effectiveness of the porosity. An EDX analysis of the area within the circle yielded muscovite, which we believe to represent both the light-coloured plates (white arrow) and the projecting grain (yellow arrow). The red arrow points to the location of image 8709_6.

Image **8709_3** (900× magnification) is a close-up view of muscovite and the surrounding material in the previous image. Surrounding the muscovite is a relative abundance of intercrystalline pores less than about $1-2 \mu m$. There is a wide range of particle sizes and shapes, including coated grains, suggesting a complex diagenetic history.

Image 8709_4 (4500× magnification) is an interesting view of a cluster of illite-coated grains of unknown mineralogy. Multiple clay sheets completely surround the grains. The dark areas within the grains suggest the presence of intragranular porosity. Illite is also apparent west and north of the cluster (white arrows), as a coating on other grains. The yellow arrows indicate what is likely mica. A dolomite rhomb is visible at the red arrow. There is a considerable amount of porosity in this view.

Image 8709_5 (5500× magnification) of the pyrite framboid (EDX_8709_003) was taken just north of the previous image. The framboid and surrounding grains are covered in authigenic illite, which is occluding porosity. There is a smaller framboid just beneath the larger pyrite.

Image **8709_6** (1300× magnification) contains a large grain of potassium feldspar at site 1 (EDX_8709_004), a dolomite crystal at site 2 (EDX_8709_005) and a cube of pyrite at site 3 (EDX not saved). The yellow arrows point to what appears to be a late stage of illite growth that occludes porosity. Both grains and overgrowth are well packed in this view.

Image 8709_7 (1000× magnification) is a back scattering image taken at a slightly lower magnification. Pyrite framboids and the earlier mentioned pyrite cube are seen at the white arrows. There may be more heavy minerals in this image than we have indicated.

Image 8709_8 (370× magnification) was taken at a new spot on the sample. Fracturing along grain contacts can be seen at the green arrows. The fractures likely occurred during core retrieval and pressure unloading. A few pores that are ~10 μ m in diameter are visible in the left centre of the image. The white arrow points to what is likely a quartz grain, and the yellow arrow identifies a possible dolomite crystal. The red arrow points to a crenulated mica, the crenulation likely due to the mica being forced out of alignment during adjacent crystal growth. The light blue arrow indicates the location of the next image, and the lower green arrow points to the location of image 8709 10.

An EDX analysis (EDX_8709_006) on the circled grain in image **8709_9** (750× magnification) identified quartz. An additional grain of quartz is indicated by the white arrow. Oddly enough, quartz grains are not easily located in some Montney samples due the large degree of overgrowth or coating on the grains. The yellow arrow points to the position where a dolomite crystal was located and fell off the sample. There appears to be illite located at the pore opening identified by the red arrows, although you may need to zoom in to see it. The green arrow identifies fractures along grain contacts. Although this type of fracture is usually the result of pressure release upon core unloading, the configuration of the fracture and grain contacts suggests that some porosity was likely present at depth.

Image 8709_10 (650× magnification) is an interesting view of a fracture (identified by the red arrow). It appears that the fracture is partially filled; the grains identified by the white arrow protrude into the fracture. The fracture is about 8–10 μ m wide near the red arrow. The width and length of the fracture-fill is difficult to determine, but the thin white dashed line outlines our interpretation of the trend. We have placed the lines just above the fracture trend so you can see the fractures.

EDX results for sample 8709:

Composition	Image	ID on Image
Muscovite (EDX 8709_002)	8709_2	Circle
Pyrite (EDX_8790_003)	8709_5	None
Potassium feldspar (EDX_8709_004)	8709_6	1
Dolomite (EDX_8709_005)	8709_6	2
Pyrite cube (EDX not saved)	8709_6	3
Quartz (EDX_8709_006)	8709_9	Circle

Note: The depth of the EDX analysis is $\sim 1-2 \mu m$, so the chemistry below the surface may dominate the surface mineral.

Lower Montney Formation, Sample 8731, UWI 100/05-32-073-12W6/00, 2816.4 m Core Depth

The sample is black siltstone with occasional light-coloured siltstone laminae. It was taken in a sand-dominated interval.

Image	Magnification	
8731_1	100x	
8731_2	800x	
8731_3	11000x	
8731_4	1500x	
8731_5	8500x	
8731_6	600x	
8731_7	1900x	

Image **8731_1** (100× magnification) appears to be relatively homogeneous. There are a few sand-sized grains (dark coloured) at this level of magnification. It is difficult at this scale to distinguish porosity from the dark-coloured grains. An EDX overview of the sample suggests that mineralogy is dominated by quartz, feldspar and perhaps calcite. The arrow points to the location of the next image.

Image **8731_2** ($800 \times$ magnification) displays closely packed particles with little porosity. Most grains are difficult to view given the amount of cement and perhaps quartz overgrowth that is present. An EDX analysis revealed the presence of muscovite at site 1 (EDX_8731_002), dolomite at site 2 (EDX_8731_003), calcite at site 3 (EDX_8731_004) and pyrite at site 4 (EDX_8731_005). The next image is taken near site 4.

Image **8731_3**, taken at high magnification (11 000×), shows the suturing of the grains around a pyrite framboid. A small amount of porosity (<1 μ m diameter) is evident within the framboid and off its northwest edge. Otherwise, the grains are very well sutured and coated, so individual grains are often difficult to discern.

Image 8731_4 (1500× magnification) was taken near the extreme southeast corner of image 8731_2 . A field of pyrite crystals is apparent within the dashed yellow line. The crystals appear to be coating grains rather than having a framboid appearance. Mica plates are present at the tip of the yellow arrows.

Image **8731_5** ($8500 \times$ magnification) appears to be oil-stained. Grains of unknown mineralogy, approximately 0.5 to 1.0 μ m in diameter, are either coated with the oil or, less frequently, lie atop the coating.

An EDX analysis (EDX not saved) on image 8731_6 (600× magnification) identified mica at site 1, dolomite at site 2 and possibly sodium feldspar and clay at site 3. Dolomite crystals are indicated by the white arrows. There is also a reasonable degree of porosity surrounding the large particles in the centre of the image. The pores are less than 5 µm in diameter.

Image 8731_7 (1900× magnification) is perhaps a silicified organic particle, based on the particle's morphology. An EDX analysis of the particle (not saved) showed the presence of mainly silicon and aluminum. The particle in the middle of the view is likely organic.

EDX results for sample 8731:

Composition	Image	ID on Image
Muscovite (EDX_8731_002)	8731_2	1
Dolomite (EDX_8731_003)	8731_2	2
Calcite (EDX_8731_004)	8731_2	3
Pyrite (EDX_8731_005)	8731_2	4
Mica (EDX not saved)	8731_6	1
Dolomite (EDX not saved)	8731_6	2
Sodium feldspar and clay (EDX not saved)	8731_6	3

Note: The depth of the EDX analysis is $\sim 1-2 \ \mu m$, so the chemistry below the surface may dominate the surface mineral.

Montney Formation, Sample 8739, UWI 103/10-34-064-19W5/00, 1776.2 m Core Depth

The sample was taken in sandstone in the upper portion of the Montney Formation.

Image	Magnification
8739_1	100x
8739_2	400x
8739_3	1800x
8739_4	2500x
8739_5	300x
8739_6	1000x
8739_7	1800x

Image **8739_1** is a low-magnification $(100\times)$ view of sandstone with a substantial number of pores, relatively speaking, greater than about 20 μ m in diameter. An EDX overview suggests the sample is dominated by quartz and feldspar. A substantial amount of dolomite is also visible; a few crystals are identified by the white arrows. The yellow and red arrows indicate the locations of image 8739_2 and 8739_5, respectively.

In the middle of image 8739_2 (400× magnification), a columnar quartz crystal at site 1 has undergone a considerable amount of dissolution. An EDX analysis at site 2 suggests that the mineral is dolomite with low magnesium content. A similar crystal is shown at the tip of the white arrow. The yellow arrows indicate dolomite crystals that are euhedral.

An EDX analysis of the clay seen in image **8739_3** (1800× magnification) suggests that the mineral is illite. Notice that the illite is partially blocking the relatively large pore in the background. As mentioned earlier, at least some of the illite is a late-stage authigenic mineral.

Image 8731_4 (2500× magnification) was taken near the left edge of the previous image. The grain in the middle is anchored at the base of the pore and seems to bisect the pore. Although there are hints of illite morphology in some areas of the image, we could not obtain a reasonable mineralogical analysis of the crystals.

Image **8739_5** (300× magnification) shows dolomite crystals at site 1 (EDX not saved) and smaller rhombic crystals (indicated by the white arrows) that are presumably dolomite. Quartz grains were identified at sites 2 and 3 (EDX not saved). As in many of the images, a large amount of overgrowth at site 4 (presumably quartz) covers the grains and obscures the mineralogy and size of the grains. The largest pores in this image are much greater than 10 μ m, unlike the silt-dominated images where pores of this size are relatively rare.

In image 8739_6 (1000× magnification), the rather large, odd-shaped crystal that spans much of the image (site 1), is dolomite (EDX not saved). Relative to the previous image and the smaller, more pristine dolomite crystal at site 2, we may be seeing 'old' and 'new' dolomite crystals representing separate stages in the dolomitization of the Montney Formation.

Image **8739**_7 (1800× magnification) identifies floating illite crystals exhibiting a cardhouse structure in the centre of the image. As in the other images, illite is often present in the pore throats. The crystal on the right of the image (quartz?; indicated by white arrow,) has undergone dissolution. The yellow arrow points to columnar quartz and the red arrow identifies a rhombic crystal of dolomite.

EDX results for sample 8739:

Composition	Image	ID on Image
Quartz (EDX_8739_002)	8739_2	1
Dolomite (EDX_8739_002)	8739_2	2
Illite (EDX_8739_003)	8739_3	n/a
Dolomite (EDX not saved)	8739_5	1
Quartz (EDX not saved)	8739_5	2
Quartz (EDX not saved)	8739_5	3
Quartz overgrowth (EDX not saved)	8739_5	4
Dolomite (EDX not saved)	8739_6	1
Dolomite (EDX not saved)	8739_6	2
Quartz? (EDX not saved)	8739_7	White arrow
Columnar quartz (EDX not saved)	8739_7	Yellow arrow
Dolomite (EDX not saved)	8739_7	Red arrow

Note: The depth of the EDX analysis is $\sim 1-2 \ \mu m$, so the chemistry below the surface may dominate the surface mineral.

Montney Formation, Sample 8744, UWI 102/11-34-61-19W5/00, 2163.5 m Core Depth

The sample is grey, slightly sandy siltstone with fine-grained, calcareous sandstone laminae.

Image	Magnification	
8744_1	100x	
8744_2	370x	
8744_3	1700x	
8744_4	500x	
8744_5	2000x	
8744_6	750x	
8744_7	6500x	

Image **8744_1** is a low-magnification (100×) view with a larger degree of porosity than many of the images we have seen previously. No bedding trend is evident in this view. An EDX analysis overview suggests the sample is dominated by dolomite and quartz. The white arrow points to the location of the next image.

Image **8744_2** is a higher magnification $(370 \times)$ view of the porosity in the sample. An EDX analysis of particle mineralogy identifies the presence of feldspar at site 1, dolomite at site 2 and quartz at site 3. Grain and crystal sizes vary from ~4 to ~50 µm in the sample, and pore throats are up to 10 µm in diameter. Porosity is not evenly distributed. The white arrow points to the location of the next image.

Image **8744_3** (1700× magnification) is an example of authigenic dolomite crystals (Dol; EDX not saved) that contains a few pores resting next to quartz (Qtz). The quartz surface is quite rough and may be overgrowth or perhaps represents a dissolution surface. We are not certain if the smooth surface identified at the tip of the red arrow is the surface of the quartz grain or represents a separate mineral. The opposite end of the red arrow may be resting on quartz overgrowth. Illite is present at the tip of the yellow arrow.

Image 8744_4 (500× magnification) was taken at a new site on the sample and highlights the large pore in the middle of the image. The area surrounding the pore is well cemented, with a few scattered pores less than \sim 10 µm in diameter.

Image **8744_5** is a high-magnification (2000×) view of euhedral crystals lining the pore. On the left side of the pore are twinned dolomite crystals (Dol). The pristine nature of the crystals could indicate late diagenetic crystallization, given the degree of dissolution we have seen in other images. Dolomite crystals are also found on the right side of the pore, but these have a different morphology. We did not do an EDX analysis of the sediment on the right and left sides of the pore, but the material resembles quartz overgrowth (Qtz).

Image 8744_6 (750× magnification) is a view of a pore cavity. The columnar quartz crystal on the left is projecting into the pore. The large grain on the right is partially covered in clay and quartz overgrowth. The small crystals identified by the yellow arrows are likely carbonate. The white arrows point to clay sheets (illite?), although they are a little difficult to discern at this level of magnification. The red arrow points to the location of the next image.

The large quartz crystal in the centre of image **8744_7** (6500× magnification) is surrounded by sheets of clay (illite?; white arrows). The quartz crystal has an interesting 'star' pattern that may be the site of a plucked quartz crystal.

EDX results for sample 8744:

Composition	Image	ID on Image
Feldspar (EDX not saved)	8744_2	1
Dolomite (EDX not saved)	8744_2	2
Quartz (EDX not saved)	8739_2	3
Dolomite (EDX not saved)	8744_3	Dol
Quartz (EDX not saved)	8744_3	Qtz
Dolomite (EDX not saved)	8744_5	Dol
Quartz overgrowth (EDX not saved)	8744_5	Qtz

Note: The depth of EDX analysis is $\sim 1-2 \ \mu m$, so the chemistry below the surface may dominate the surface mineral.

Montney Formation, Sample 8858, 100/16-23-057-06W6/00, 2703.6 m (8870 ft.) Core Depth

The sample is black to dark grey siltstone with rare sandstone laminae. The bedding trends north and the base of the sample is to the left.

Image	Magnification
8858_1	25x
8858_2	100x
8858_3	250x
8858_4	500x
8858_5	1000x
8858_6	100x
8858_7	250x
8858_8	3500x
8858_9	1000x

Image **8858_1** is a low-magnification $(25\times)$ view that shows a weak north trend in bedding. Three distinct layers of bedding are present in the sample, but they are much less visible in the SEM image than in a hand sample. The next image is taken near the tip of the white arrow within the centre lamina. The red arrow points to the location of image 8858_6.

At 100× magnification in image **8858_2**, dark grains of partly silt-sized material begin to stand out against the lighter coloured background. Porosity is minimal at this scale. There is no apparent bedding trend. An EDX overview suggests the presence of quartz, feldspar and dolomite. The yellow and red arrows indicate the locations of image 8858_2 and 8858_6, respectively.

At 250× magnification, porosity is readily apparent in image **8858_3** and pores are generally less than 10 μ m in diameter. Similar to other Montney images, mineral grains are often not easily visible due to the abundance of diagenetic mineralization (cement, quartz overgrowth, diagenetic minerals). The yellow arrow indicates the location of image 8858_4.

In image **8858_4** (500× magnification), the linear pore on the bottom left (white arrow) may be the site of a plucked mica, a piece of which appears at the bottom of the pore. Porosity seems to be evident at grain contacts, with secondary porosity perhaps more evident than primary porosity. An EDX analysis (EDX not saved) yielded quartz at site 1, potassium feldspar at site 2, a mixture of quartz and feldspar at site 3 and dolomite at site 4. The yellow arrow points to the location of image 8858_5.

The purpose of image **8858_5** (1000× magnification) was to examine porosity development. Intraparticle pores are present (white arrow), as well as pores near grain contacts; however, the effectiveness or connectivity of the porosity is questionable. Again, it is difficult to discern grains due the large amount of cement. It is much easier to view crystals that are perhaps related to diagenesis than to discern actual primary silt-sized mineral grains. The red arrow indicates a small pyrite framboid is seen at.

An EDX overview of image **8858_6** ($100 \times$ magnification) identified more calcite than in the central part of the sample. A comparison of images 8858_2 and 8858_6 indicates that image 8858_6 has a coarser texture than 8858_2. Image 8858_6 is an example of the coarse laminae seen in the core photograph, which are actually coarse siltstone in this case. The white and red arrows indicate the locations of images 8858_7 and 8858_9.

An EDX analysis (not saved) of image **8858**_7 ($250 \times$ magnification) indicates the presence of quartz at site 1, feldspar at site 2, sodium feldspar at site 3, zinc sulphide at site 4 (EDX 8858_004), pyrite within a small cavity of another mineral at site 5 and dolomite at site 6 (EDX_8858_003). Interestingly, calcium shows up on the EDX overview of the previous image but no calcite was found in our analysis of image 8858_7; perhaps the dolomite is low in magnesium.

Image **8858_8** shows the zinc sulphide mineral at 3500× magnification. The mineral 'layers' may actually be cleavage or mineral zones. We do not know the mineralogy of the white grains resting on the sulphide.

An EDX analysis (not saved) of image 8858_9 (1000× magnification) indicates the presence of quartz at site 1, pyrite at site 2, dolomite at site 3 and feldspar at site 4.

EDX results for sample 8858:

Composition	Image	ID on Image
Dolomite (EDX_8858_003)	8858_4	4
Quartz (EDX not saved)	8858_7	1
Feldspar (EDX not saved)	8858_7	2
Sodium feldspar (EDX not saved)	8858_7	3
Zinc sulphide (EDX not saved)	8858_7	4
Pyrite (EDX not saved)	8858_7	5
Dolomite (EDX not saved)	8858_7	6
Zinc Sulphide (EDX 8858 004)	8858_8	n/a
Quartz (EDX not saved)	8858_9	1
Pyrite (EDX not saved)	8858_9	2
Dolomite (EDX not saved)	8858_9	3
Feldspar (EDX not saved)	8858_9	4

Note: The depth of EDX analysis is $\sim 1-2 \ \mu m$, so the chemistry below the surface may dominate the surface mineral.

Montney Formation, Sample 8878, UWI 100/16-31-066-23W5/00, 1718.1 m Core Depth

The sample is massive grey siltstone.

Image	Magnification
8878_1	25x
8878_2	100x
8878_3	500x
8878_4	1500x
8878_5	1800x
8878_6	7500x
8878_7	2700x
8878_8	2000x

Image **8878_1** is a low-magnification (25×) view with little indication of bedding, although the general trend is northeast. The texture appears relatively homogeneous.

At higher magnification in image 8878_2 (100× magnification), dark grey silt- and sand-sized grains are visible. The silt particles are scattered rather than in discrete laminae. Porosity is represented by the black areas and is distributed throughout the sample. An EDX overview suggests the presence of quartz, potassium feldspar, dolomite, and pyrite. Image 8878_3 was taken near the centre of this image.

As with most Montney Formation SEM images, image **8878_3** (500× magnification) looks very busy; it is difficult to get a clear view of silt- or sand-sized grains. An EDX analyses (not saved) of image 8878_3 reveals potassium feldspar at site 1, potassium feldspar with some illite at site 2, pyrite at site 3, mostly illite at site 4, sodium feldspar at site 5 and quartz covered with illite at site 6. There is a reasonable amount of porosity in the sample, with a few of them being large (>10 μ m) but more being less than 5 μ m. The next images will focus on sites 1, 5 and 6 (image 8878_4), sites 2 and 3 (image 8878_5), site 6 again (image 8878_6) and site 5 (image 8878_7); finally, image 8878_8 was taken near the red arrow.

The quartz grain covered with illite from the previous image is in the centre of image **8878_4** (1500× magnification). The thickness of the illite must be less than $1-2 \mu m$ or the EDX would not have detected the quartz grain. Fibrous illite can be seen scattered in other areas of the image (e.g., red arrow). The potassium feldspar grain identified earlier (white arrow) and an unnamed grain (yellow arrow) both contain intraparticle porosity. The green arrows point to what may be dolomite crystals (for a comparison, see image 8739_2).

Image **8878_5** is a higher magnification (1800×) view of the potassium feldspar at site 2 of image 8878_3 and the pyrite at site 3. Many of the edges of the grain (white areas; red arrows) are altering to illite; you may have to zoom in on the image to get a better view. Additionally, the grain identified by the yellow arrow appears to be in the same state of alteration. This lends credence to the view that at least some of the illite is a late-stage diagenetic-alteration product.

Image **8878_6** (7500× magnification) shows fibrous illite from site 6 of image 8878_3. An EDX analysis indicates that the illite is covering a quartz grain. Microporosity is clearly evident in the dark areas near the red arrow.

Image **8878_7** (2700× magnification) is a close-up view of the sodium feldspar grain (EDX_8878_003) seen in image 8878_3. Zooming in on the edges of the grain (red arrows) reveals what appears to be alteration to illite. The fracture in the grain appears to be fresh, suggesting that it was induced during core retrieval.

Image **8878_8** (2000× magnification) was used to identify mineralogy. Potassium feldspar is at site 1, quartz at site 2 and dolomite at site 3. Fibrous illite is identified by the red arrows.

EDX results for sample 8878:

Composition	Image	ID on Image
Potassium feldspar (EDX not saved)	8878_3	1
Potassium feldspar with illite (EDX_8878_002)	8878_3	2
Pyrite	8878_3	3
Illite	8878_3	4
Sodium feldspar	8878_3	5
Quartz and illite	8878_3	6
Illite alteration from feldspar	8878_5	Red and yellow
		arrows
Sodium feldspar (EDX_8878_003)	8878_7	
Potassium feldspar	8878_8	1
Quartz	8878_8	2
Dolomite	8878_8	3
Fibrous illite	8878_8	Red arrows

Note: The depth of EDX analysis is $\sim 1-2 \ \mu m$, so the chemistry below the surface may dominate the surface mineral.

Montney Formation, Sample 8901, UWI 100/06-14-066-06W6/00, 3034.3 m Core Depth

The sample is dark grey, noncalcareous siltstone.

Image	Magnification
8901_1	25x
8901_2	100x
8901_3	250x
8901_4 Backscatter	500x
8901_5	2700x
8901_6 Backscatter	2700x

Image **8901_1** is a low-magnification (25×) view that shows the development of fractures (white arrows) that are open and fresh. An EDX overview of the sample suggests a dominance of quartz, feldspar and dolomite. There is a scattering of dark, lower-sand–sized grains in the image. Image 8901_2 was taken near the centre of 8901_1.

The white arrow in image 8901_2 (100× magnification) identifies an open fracture (white arrow) that is difficult to follow east of the arrow. Note that the fracture changes trend near the left side of the image. There are hints of additional fractures in other parts of the image. Very little non-fracture porosity is visible at this scale of observation. Image 8901_3 was taken to the left of the arrow.

Image **8901_3** is a higher magnification (250×) view showing the trend and nature of the fracture. An EDX analysis of particles (not saved) yielded the following results: quartz at site 1, mica at site 2 and feldspar at sites 3 and 4. The EDX analysis showed the chemistry at site 4 to have strong peaks indicating potassium aluminum silicate, more so than at site 3. This may be related to a coating on the mineral at site 3, or perhaps the beam was slightly misdirected at site 3. The next image was taken near the white arrow.

Image **8901_4** (500× magnification) is a backscattering image that indicates an abundance of heavy minerals in the sample (heavy minerals show up as 'white' particles). This is one of the better quality backscattering images taken during this project. The white arrow points to the location of the feldspar seen at site 3 in the previous image. Pyrite framboids are identified by the small white circles. We cannot be certain of how much pyrite, whether framboidal or other morphologies, is present relative to other heavy minerals. Image 8901_5 was taken near the large circle to investigate the mineralogy of the large white particle.

An EDX analysis (not saved) of image **8901_5** (2700× magnification) clearly shows the particle at site 1 to be pyrite, although this is an odd morphology for pyrite. Note that the depth of EDX analysis is about $1-2 \mu m$, so the chemistry below the surface may dominate the surface mineral. Other minerals identified in this view are potassium feldspar at site 2, quartz at site 3 and dolomite at site 4. The area in the square shows the presence of small crystals of pyrite that will be investigated in image 8901_6, along with the minerals identified by the white arrows.

Image **8901_6** (2700× magnification) is a backscattering view of the previous image that perhaps leads to more questions than answers regarding the presence of heavy minerals in the sample. The large pyrite particle in the centre is properly identified, as is the area within the white circle. The red arrow identifies a 'heavy' mineral on the quartz particle that is not identified. Furthermore, the upper yellow arrow presumably identifies a heavy mineral, except that the particle appears to be very finely laminated (i.e., clay-like). This is not a habit of pyrite with which we are familiar. The abundance of pyrite or other conductive minerals in Alberta shale may be an area of investigation for the future, as this is a critical part of the well-log evaluation of shale.

EDX results for sample 8901:

Composition	Image	ID on Image
Quartz (EDX not saved)	8901_3	1
Mica (EDX not saved)	8901_3	2
Feldspar (EDX not saved)	8901_3	3
Feldspar (EDX_8901_002)	8901_3	4
Pyrite	8901_5	1
Potassium feldspar (EDX not saved)	8901_5	2
Quartz (EDX not saved)	8901_5	3
Dolomite (EDX not saved)	8901_5	4

Note: The depth of EDX analysis is about 1–2 μ m, so the chemistry below the surface may dominate the surface mineral.

Montney Formation, Sample 8926, UWI 100/15-08-081-12W6/00, 1827.7 m Core Depth

The sample is dark grey siltstone with thin (<1mm), light-coloured calcareous laminae and lenses (1– 6 mm thick).

Image	Magnification
8926_1	23x
8926_2	100x
8926_3	250x
8926_4	1000x

Image **8926_1** is a low-magnification (23×) view with no indication of bedding. An EDX overview indicates a dominance of quartz, potassium feldspar, dolomite and pyrite. Titanium also shows up on the chemical spectrum.

At 100× magnification, there is still no indication of bedding in image **8926_2**. There appears to be more matrix (non-dark grains) than dark grains. Some of the dark grains are sand sized or near the sand-silt boundary. Grain roundness and sphericity cover the entire spectrum, although more angular particles with poor sphericity appear to dominate. There are quite a number of sites where it appears that mica has been plucked from the sample. Porosity appears to be fairly well distributed at this level of magnification. Image 8926_3 was taken in the centre of this image.

An EDX analysis of minerals in image **8926_3** (250× magnification) yielded mica, likely muscovite, at site 1, mica at site 2, sodium feldspar at site 3, quartz at site 4 and an indeterminate mixture of non-clay minerals at site 5. Note that site 5 resembles the greyish matrix throughout much of the image; hence, the matrix may be composed of a variety of small grains of non-clay minerals and cements. Most of the mica plates in the image are east- trending, although a few show some curvature (white arrow) or an alternate trend (yellow arrow), so there has been some local disturbance (compaction effects?) of the sample. The red arrow points to the location of image 8926 4.

Image **8926_4** (1000× magnification) was taken to examine porosity. Pore sizes below 10 μ m are most abundant, with one large pore located in the upper centre of the image (red arrow). Porosity is fairly well distributed, although small pores (< 5 μ m) appear better distributed than large ones. Intragranular and intergranular porosity are both present. Note the curvature of the mica in the lower left of the image.

EDX results for sample 8926:

Composition	Image	ID on Image
Mica, likely muscovite (EDX_8926_002)	8826_3	1
Mica (EDX not saved)	8826_3	2
Sodium feldspar (EDX not saved)	8826_3	3
Quartz (EDX not saved)	8826_3	4
Mixture (EDX not saved)	8826_3	5

Note: The depth of EDX analysis is about $1-2 \ \mu m$, so the chemistry below the surface may dominate the surface mineral.

Appendix 6 – Montney Formation Mercury Porosimetry Graphs

Incremental Intrusion - Montney sample 8702

"Provides a convenient means to observe the diameter at which pore volume is concentrated" (Webb and Orr, 1997).

Log Differential Intrusion - Montney sample 8702

"The compression effect resulting from the use of a log scale is compensated for by dividing the specific incremental intrusion volume by the difference in logarithms of the pore diameters. This results in a curve in which equal peak areas represent equal pore volumes. This plot works best when the data points are equally spaced." (Webb and Orr, 1997).

Appendix 7 – Montney Formation Permeametry

Sample No.	Depth (ft.)	Depth (m)	Ka	KI	Comment	Approximate Angle to Bedding	Date	Probe Tip
8115	· · · · · · · · · · · · · · · · · · ·	2618 75	0.03100	0.01030	surface properly horizontal	5° to bedding plane	25-03-09	Small
8115		2618 75	0.02920	0.00948	surface properly horizontal	5° to bedding plane	25-03-09	Small
8115	<u> </u>	2618 75	0.02020	0 00040	surface properly horizontal	5° to bedding plane	25-03-03	Small
8115		2618 75	0.02000	0.00331	surface properly horizontal	5° to bedding plane	25-03-09	Small
8115		2618 75	0.02000	0.00040	surface properly horizontal	5° to bedding plane	25-03-03	Small
8115		2618 75	0 030240	0.0000	surface properly horizontal	5° to bedding plane	25-03-00	Small
8115		2618 75	0.03760	0.01330	surface properly horizontal	5° to bedding plane	25-03-09	Small
8115		2618.75	0.03560	0.01230	surface properly horizontal	5° to bedding plane	25-03-09	Small
8115		2618.75	3 06000	2,39000	surface properly horizontal (natural fracture visible in the rock here)	5° to bedding plane	25-03-09	Small
8115		2618.75	3 07000	2 40000	surface properly horizontal (natural fracture visible in the rock here)	5° to bedding p. (~30° to fracture p.)	25-03-09	Small
8115		2618.75	0.04480	0.01670	surface properly horizontal	5° to bedding plane	25-03-09	Small
8115		2618.75	0.04240	0.01550	surface properly horizontal	5° to bedding plane	25-03-09	Small
8115		2618.75	23 60000	20,60000	sample properly horizontal (natural fracture visible in the rock here)	5° to bedding plane	25-03-09	Small
8115		2618.75	23 60000	20,50000	sample properly horizontal (natural fracture visible in the rock here)	5° to bedding p. (~30° to fracture p.)	25-03-09	Small
8119		2358.2	0.09170	0.04160	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8119		2358.2	0.08910	0.04020	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8119		2358.2	0.03870	0.01370	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8119		2358.2	0.03700	0.01290	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8119		2358.2	0.00700	0.03170	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8119		2358.2	0.07100	0.03010	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8119		2358.2	0.03770	0.01320	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8119		2358.2	0.03640	0.01270	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8707	1750.2		0.92400	0.63900	surface properly horizontal	along bedding plane	25-03-09	Small
8707	1750.2		0.86000	0.58800	surface properly horizontal	along bedding plane	25-03-09	Small
8707	1750.2		0.02620	0.00818	surface properly horizontal	perpendicular to bedding	25-03-09	Small
8707	1750.2		0.02480	0.00757	surface properly horizontal	perpendicular to bedding	25-03-09	Small
8707	1750.2		0.03490	0.01200	surface properly horizontal	perpendicular to bedding	25-03-09	Small
8707	1750.2		0.03300	0.01110	surface properly horizontal	perpendicular to bedding	25-03-09	Small
8718	1899.4		0.03620	0.01260	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8718	1899.4		0.03450	0.01180	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8718	1899.4		0.02390	0.00714	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8718	1899.4		0.02250	0.00661	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8718	1899.4		0.03120	0.01030	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8718	1899.4		0.02980	0.00965	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8718	1899.4		0.01930	0.00535	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8718	1899.4		0.01780	0.00478	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8786	2235.25		1.78000	1.32000	slight misalignment of sample surface (5-10°)	along bedding plane	<u>2</u> 5-03-09	Small
8786	2235.25		1.80000	1.34000	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8786	2235.25		0.03100	0.01020	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8786	2235.25		0.02920	0.00940	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8840		8167	0.06700	0.02810	slight misalignment of sample surface (5-10°)	30° to bedding plane	25-03-09	Small
8840		8167	0.02300	0.00681	repeat measurement, surface properly horizontal	30° to bedding plane	25-03-09	Small
8840		8167	0.33000	0.19700	slight misalignment of sample surface (5-10°)	30° to bedding p. (~parallel to v.)	25-03-09	Small
8840		8167	0.31300	0.18500	slight misalignment of sample surface (5-10°)	30° to bedding p. (~parallel to v.)	25-03-09	Small
8840		8167	0.02630	0.00816	repeat measurement, surface properly horizontal	30° to bedding p. (~parallel to v.)	25-03-09	Small
8840		8167	0.02490	0.00760	repeat measurement, surface properly horizontal	30° to bedding p. (~parallel to v.)	25-03-09	Small
8840		8167	0.04090	0.01480	slight misalignment of sample surface (5-10°)	30° to bedding plane	25-03-09	Small
8840		8167	0.03900	0.01390	slight misalignment of sample surface (5-10°)	30° to bedding plane	25-03-09	Small
8840		8167	0.02840	0.00908	repeat measurement, surface properly horizontal	30° to bedding plane	25-03-09	Small
8840		8167	0.02650	0.00828	repeat measurement, surface properly norizontal	30° to bedding plane	25-03-09	Small
0000		0040	0.19000	0.10000	slight misalignment of sample surface (5-10)	along bedding plane	25-03-09	Small
8856		88/6	0.19100	0.10300	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.13200	0.07600	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.04650	0.01740	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.04400	0.01630	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.03540	0.01220	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.03350	0.01130	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.04370	0.01610	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.04160	0.01510	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.05710	0.02280	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.03310	0.01120	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8856		8846	0.03130	0.01030	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8856		8846	1.56000	1.13000	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	1.30000	0.92700	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.27800	0.16100	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8856		8846	0.04300	0.01580	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8856		8846	0.04110	0.01490	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8878	1718.1		0.06060	0.02460	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8878	1718.1		0.05810	0.02340	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8878	1718.1		0.04830	0.01830	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8878	1718.1		0.04600	0.01720	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8878	1718.1		0.03860	0.01370	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8878	1718.1		0.05590	0.02220	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8878	1/18.1		0.05270	0.02060	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
0070	1/18.1		0.04430	0.01640	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
00/0 0070	1/10.1 1710 4		0.04240	0.01050	repeat measurement, surface property nonzontal	along bedding plane	20-03-09	Small
8878	1710.1		0.00200	0.02000	sight misalignment of sample surface (5-10-)	along bedding plane	25-03-09	Sindli Small
8878	1718.1		0.05070	0.01900	reneat measurement surface properly borizontal	along bedding plane	25-03-09	Small
8878	1718 1		0.04860	0.01900	repeat measurement, surface properly horizontal	along bedding plane	25-03-03	Small
8902	3037.8		0.02/10	0.01000	surface properly horizontal	along bedding plane	25-03-03	Small
8908	1116 85		0.56700	0.36700	surface properly horizontal	along bedding plane	25-03-09	Small
8908	1116 85		0.56800	0.36800	surface properly horizontal	along bedding plane	25-03-09	Small
8908	1116.85		0.56100	0.36300	surface properly horizontal	along bedding plane	25-03-09	Small
8908	1116.85		0.56200	0.36400	surface properly horizontal	along bedding plane	25-03-09	Small
8918	1235.6		0.13100	0.06500	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8918	1235.6		0.12200	0.05660	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8918	1235.6		0.10800	0.05110	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8918	1235.6		0.10600	0.05020	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8918	1235.6		0.12900	0.06360	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8918	1235.6		0.18500	0.09890	slight misalignment of sample surface (5-10°)	along bedding plane	25-03-09	Small
8918	1235.6		0.10400	0.04880	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small
8918	1235.6		0.10100	0.04750	repeat measurement, surface properly horizontal	along bedding plane	25-03-09	Small

Legend:

Column Label	Label Description
Sample No.	AGS sample number
Depth (ft., m)	Sample depth in original units
Ка	Permeability to air in mD
KI	Permeability to liquid (nitrogen) in mD
Comment	Comment on the horizontality of the sample surface during measurement
Approximate Angle to Bedding	Measured angle of the measurement spot to bedding or observable fractures
Date	Date of analysis
Probe Tip	Probe tip size (small or large)

Note: Leak permeability tests (Kg) of probe seals (before sample analysis) yielded values of ~0.0034–0.0043 mD

Appendix 8 – Montney Formation Helium Pycnometry

Sample No.	Site No.	Run No.	Vr (cm³)	Vc (cm³)	P1 (psi)	P2 (psi)	P1/P2	(P1/P2)—1	Vs (cm ³)	Avg. Vs (cm ³)	Wt. (g)	Gdensity (g/cm ³)
8702	M27	1	88.512	147.903	17.296	6.507	2.658	1.658	1.145			
8702	M27	2	88.512	147.903	17.245	6.489	2.658	1.658	1.188			
8702	M27	3	88.512	147.903	17.257	6.493	2.658	1.658	1.169	1.167	3.060	2.622
8764	M19	1	88.512	147.903	17.308	6.524	2.653	1.653	1.595			
8764	M19	2	88.512	147.903	17.320	6.531	2.652	1.652	1.684			
8764	M19	3	88.512	147.903	17.313	6.527	2.653	1.653	1.635	1.638	4.290	2.619
8858	M2	1	88.512	147.903	17.210	6.485	2.654	1.654	1.520			
8858	M2	2	88.512	147.903	17.229	6.493	2.653	1.653	1.551			
8858	M2	3	88.512	147.903	17.360	6.543	2.653	1.653	1.573	1.548	4.000	2.584
8878	M9	1	88.512	147.903	17.319	6.530	2.652	1.652	1.662			
8878	M9	2	88.512	147.903	17.260	6.508	2.652	1.652	1.671			
8878	M9	3	88.512	147.903	17.308	6.526	2.652	1.652	1.667	1.666	4.400	2.640
8904	M8	1	88.512	147.903	17.384	6.533	2.661	1.661	0.889			
8904	M8	2	88.512	147.903	17.254	6.485	2.661	1.661	0.920			
8904	M8	3	88.512	147.903	17.251	6.484	2.661	1.661	0.924	0.911	2.420	2.656
8908	M39	1	88.512	147.903	17.220	6.492	2.652	1.652	1.637			
8908	M39	2	88.512	147.903	17.262	6.508	2.652	1.652	1.643			
8908	M39	3	88.512	147.903	17.297	6.522	2.652	1.652	1.672	1.651	4.300	2.605

Legend

Label Description
AGS sample number
Site location number
Number of times each sample was tested
Reference volume = 88.512 cm ³
Volume of sample cell = 147.903 cm ³
Pressure reading after pressurizing the reference volume
Pressure reading after including Vc
Volume of the solid
Average volume of the solid
Weight of the sample
Grain density