

Geological Evaluation of Garnet-Rich Beaches in East-Central Alberta, with Emphasis on Industrial Mineral and Diamondiferous Kimberlite Potential

Geological Evaluation of Garnet-Rich Beaches in East-Central Alberta, with Emphasis on Industrial Mineral and Diamondiferous Kimberlite Potential

D.R. Eccles

Energy Resources Conservation Board Alberta Geological Survey

September 2008

©Her Majesty the Oueen in Right of Alberta, 2008 ISBN 978-0-7785-6959-6

The Energy Resources Conservation Board/Alberta Geological Survey (ERCB/AGS) and its employees and contractors make no warranty, guarantee or representation, express or implied, or assume any legal liability regarding the correctness, accuracy, completeness or reliability of this publication. Any digital data and software supplied with this publication are subject to the licence conditions. The data are supplied on the understanding that they are for the sole use of the licensee, and will not be redistributed in any form, in whole or in part, to third parties. Any references to proprietary software in the documentation, and/or any use of proprietary data formats in this release, do not constitute endorsement by the ERCB/AGS of any manufacturer's product.

When using information from this publication in other publications or presentations, due acknowledgment should be given to the ERCB/AGS. The following reference format is recommended:

Eccles, D.R. (2008): Geological evaluation of garnet-rich beaches in east-central Alberta, with emphasis on industrial mineral and diamondiferous kimberlite potential; Energy Resources Conservation Board, ERCB/AGS Open File Report 2008-06, 57 p.

Published September 2008 by:

Energy Resources Conservation Board Alberta Geological Survey 4th Floor, Twin Atria Building 4999 – 98th Avenue Edmonton, Alberta T6B 2X3 Canada

Tel: (780) 422-1927 Fax: (780) 422-1918 E-mail: AGS-Info@ercb.ca Website: www.ags.gov.ab.ca

Contents

		wledgments	
		ct	
1	Intr	oduction	1
2	Stu	dy Area and Overview of Sample Sites	1
3	Gen	neral Geology	5
4	Exp	oloration History	7
	4.1	Cold Lake-St. Paul Region	9
	4.2	Calling Lake Region	9
5	Met	thodology	10
6	Res	ults	11
	6.1	Grain-Size Distributions, General Lithology and Magmatic Susceptibility	11
		Garnet Species	
		Kimberlite-Indicator Minerals	
	6.4	Gold Grain Counts, Morphology and Dimensions	22
	6.5	Metamorphic and Magmatic Massive-Sulphide Indicator Minerals	22
7	Disc	cussion and Conclusions	
	7.1	Overview of Industrial Garnet Production and Considerations for East-Central Alberta	
	7.2	Source of Garnet: Geological Reasoning.	27
	7.3	Source of Garnet: Indicator-Mineral Reasoning	28
		7.3.1 Indicators of Kimberlite Paragenesis	
		7.3.2 Indicators of Metamorphic Paragenesis	30
	7.4	Potential for Secondary Diamonds	30
		erences	
_	_	dix 1 – Garnet-Rich Beaches in East-Central Alberta (Information Gathered from Vario	
Pr	ospe	ctors)	37
		dix 2 – Magnetic Susceptibility and General Lithology of Beach Sands in East-Central	
		a	
		dix 3 –Electron Microprobe Analytical Results for Garnet-Rich Beach Sands in East-Cen	
		a: A) Garnet (All Species), B) Non-Garnet Kimberlite-Indicator Minerals (Clinopyroxen	
		ite and Ilmenite), and C) Garnet from a Garnetiferous Pelitic Gneiss Erratic Discovered	
		ea	
ΑĮ	pen	dix 4 – Garnet Distribution in Saskatchewan	57
т.	مملط		
Ιà	bles		
Ta	ble 1	. Location and general lithology of beach sands from selected beaches in east-central Alberta.	
		Results use the average measurements from three 5 g samples. The table summarizes the da	ıta
		and images shown in Appendix 2	4
Ta	ble 2	2. Summary of garnet species in beach sands from selected beaches in east-central Alberta	14
Ta	ble 3	Summary of kimberlite-indicator minerals in beach sands from selected beaches in east-cent	ral
		Alberta	18
Ta	ble 4	. Summary of gold grain counts, morphology and dimensions of beach sands from selected	
		beaches in east-central Alberta	
Ta	ble 5	5. Summary of metamorphic/magmatic massive-sulphide indicator minerals in beach sands fro	m
		selected beaches in east-central Alberta.	25
		5. Electron microprobe analytical results for garnet.	
		'. Electron microprobe analytical results for non-garnet kimberlite-indicator minerals	
Ta	ble 8	3. Electron microprobe analytical results for garnet from the garnetiferous pelitic gneiss erratic	56

Figures

Figure 1. Location of selected garnet-rich beaches sampled in east-central Alberta. Geology base from Hamilton et al. (1999).
Figure 2. Example of distribution of garnet-rich sands at selected beaches in east-central Alberta
Figure 3. Inferred northern Alberta basement domains of Ross et al. (1994). Square denotes approximate
outline of study area, with selected beach-sand sample locations (see Figure 1 for lake names). 6
Figure 4. Bathymetry of the Cold Lake to Lac La Biche region: A) regional overview illustrating the three
glacial lobes that formed during the Cold Lake glaciation (after Andriashek and Fenton, 1989);
B) detailed bathymetry of the Cold Lake region, with the approximate location of a garnet-rich
metamorphic erratic discovered by L. Andriashek (pers. comm., 2007)
Figure 5. Beach-sand sampling methodology. Three samples were taken at each site: a 10 kg pail for
indicator-mineral picking, a 2 kg sample for grain-size analysis and a 'tube' sample to obtain a
cross-section of the site for magnetic-susceptibility measurements and physical observations. 11
Figure 6. Grain-size distributions at selected beaches in east-central Alberta
Figure 7. Geographic distribution of garnet species as estimated from Table 2: A) total estimated grain
counts; B) garnet grain counts normalized to 10 000 total grains. Abbreviations: alm,
almandine; gros, grossular; and, andradite; spes, spessartine; Cr-gros, Cr-grossular; Cr-pyr, Cr-
pyrope; Cr-poor pyr, Cr-poor pyrope; py-alm, pyrope-almandine
Figure 8. Geochemical distribution of garnet species from east-central Alberta beach sands
Figure 9. Distribution and CaO-Cr ₂ O ₃ geochemistry of high-Cr (>2 wt. %) pyrope garnet from garnet-rich
beach sands in east-central Alberta. Abbreviation: GDC, graphite-diamond constraint
Figure 10. Distribution and Al-Cr-Na and Al ₂ O ₃ -Cr ₂ O ₃ geochemistry of clinopyroxene from garnet-rich
beach sands in east-central Alberta.
Figure 11. Distribution and MgO-Cr ₂ O ₃ and Mg#-Cr# geochemistry of chromite from garnet-rich beach
sands in east-central Alberta
Figure 12. Distribution and MgO-TiO ₂ and MgO-Cr ₂ O ₃ geochemistry of ilmenite from garnet-rich beach
sands in east-central Alberta.
Figure 13. Cr ₂ O ₃ -CaO compositions of garnet sampled in various surficial media throughout Alberta, with
garnet from the Cold Lake–St. Paul and Calling Lake areas highlighted for comparison. Data
sources: Haimila (1996, 1998), Dufresne and Copeland (2000, 2001), Dufresne and Noyes
(2001a, b), Eccles et al. (2002), Turnbull (2002), Rich (2003) and Dufresne and Eccles (2005).
Abbreviation: GDC, graphite-diamond constraint
Figure 14. Garnet-rich metamorphic erratic discovered by L. Andriashek (pers. comm., 2007) and its
geochemical comparison with beach sand garnet from this study
Figure 15. Magnetic susceptibility and general lithology of beach sand at Heart Lake (sample RE06-GB-
001)
Figure 16. Magnetic susceptibility and general lithology of beach sand at Winefred Lake (sample RE06-
GB-002)
Figure 17. Magnetic susceptibility and general lithology of beach sand at Christina Lake (sample RE06-
GB-003)
Figure 18. Magnetic susceptibility and general lithology of beach sand at Wolf Lake (sample RE06-GB-
004). Garnet-rich horizons are highlighted by the red arrows
Figure 19. Magnetic susceptibility and general lithology of beach sand at Cold Lake (sample RE06-GB-
005). Garnet-rich horizons are highlighted by the red arrows
Figure 20. Magnetic susceptibility and general lithology of beach sand at Shelter, Bay, Marie Lake
(sample RE06-GB-007). Garnet-rich horizons are highlighted by the red arrows
Figure 21. Magnetic susceptibility and general lithology of beach sand at Stoney Lake (sample RE06-GB-
608)
009)

Figure 23. Magnetic susceptibility and general lithology of beach sand at Calling Lake southeast (samp	ole
RE06-GB-010).	. 48
Figure 24. Magnetic susceptibility and general lithology of beach sand at Calling Lake west (sample	
RE06-GB-011).	. 49
Figure 25. Distribution of garnet species in Saskatchewan: a) pyrope, b) almandine, c) grossular, d)	
spessartine and e) andradite. Compilation from the Web-based database of Saskatchewan	
kimberlite-indicator minerals (Swanson et al., 2007).	. 57

Acknowledgments

The authors thank R. Jalbert and L. Vanhill, prospectors residing in Alberta communities, for taking the time to either show, or provide advice on access to, garnet-rich beaches in east-central Alberta. The authors hope it is the prospectors, those innovative explorers with their eyes to the ground, who make a significant mineral discovery in Alberta.

A. Langerud and W. Lehman, students with the Earth and Atmospheric Sciences Department, University of Alberta at the time of this study, are thanked for their roles in fieldwork and data preparation, respectively.

R. Hunealt and S. Averill of Overburden Drilling Management Limited, Ottawa, Ontario, advanced this project through diligent indicator-mineral picking. Their expertise, advice and patience were critical in the formation and implementation of this project. Thank you.

V. Kravchinky of the Physics Department, University of Alberta is thanked for access to, and help with, the Bartington MS2C core logging sensor for magnetic-susceptibility measurements. D. Resultay and S. Matveev of the Earth and Atmospheric Sciences Department, University of Alberta are thanked for their roles in electron microprobe mount preparation and analytical work, respectively.

Finally, M. Dufresne of APEX Geoscience Ltd. and L. Andriashek of the Alberta Geological Survey significantly improved the manuscript through editorial comments.

Abstract

The unique occurrence of garnet-rich beach sands in east-central Alberta has generated interest for its industrial-mineral potential, for its possible association with an undiscovered cluster(s) of diamondiferous kimberlite, and as a curiosity with regard to the genre and source of the 'purple beaches'.

This comprehensive report provides the first known physical and chemical account of all garnet species present in selected east-central Alberta beaches, along with discussion on indicator minerals for kimberlite, gold, and metamorphic/magmatic massive sulphide mineralization. Garnet reaches lithological proportions of up to 74 vol. % and consists overwhelmingly (up to 99%) of almandine, followed by decreasing abundances of grossular, spessartine, lherzolitic and harzburgitic pyrope, megacrystic Crpyrope, andradite and Cr-andradite. Other indicator minerals of interest recovered include clinopyroxene, ilmenite, gahnite, corundum, low-Cr diopside and apatite.

Deterrents to industrial garnet production in east-central Alberta include scattered garnet distributions, small ($\sim\!250\text{--}500~\mu\text{m}$) and weathered (rounded) garnet morphologies, and the potential for environmental and public conflict. Garnet production as a potential coproduct of sand and gravel, however, should warrant consideration by sand and gravel operators in the region. In addition, a small niche market should not be discounted, especially given the high concentrations of garnet and generally accessible infrastructure.

Observations presented in this study should be of particular interest to diamond explorers. Pyrope garnet was recovered from sample sites throughout east-central Alberta, with distinct clusters in the Marie Lake—Cold Lake—Wolf Lake and Calling Lake areas. Results from this study confirm the presence of subcalcic (G10) garnet in east-central Alberta and a G10:G9 ratio that is generally not present in other parts of Alberta. In addition, several lherzolitic garnets from this study plotted near the G10-G9 boundary line and have high values of Cr and knorringite.

The overriding mechanism for deposition of surficial materials in east-central Alberta is glaciation. Garnet species studied in this report originated from the last phase of ice flow during retreat of the Laurentide ice sheet and, therefore, were derived from areas north-northeast of the study area, along the westernmost margin of the Canadian Shield. Selected garnet species (i.e., pyrope) could be derived from a fairly local, near-surface source because of their unique composition and texture (e.g., orange-peel texture and kelyphitic rims) compared to surficial pyrope reported in other parts of the province. This raises the potential for the discovery of a cluster of kimberlites in east-central Alberta to northwestern Saskatchewan, possibly in the Cold Lake–St. Paul and Calling Lake areas, or directly to the north within, for example, the Cold Lake Air Weapons Range. Lastly, this study raises awareness of the potential for secondary deposits of diamond that might have been relocated and concentrated in the same manner as the garnet.

1 Introduction

During the late 1940s and 1950s, a local prospector reportedly extracted a fortune from the Sand River (NTS map area 73L) using an ultraviolet lamp at night to locate his 'mineral' (Chipeniuk, 1975, p. 262). Knowledge of the mineral in question (only reported as not being gold) died along with the prospector in the late 1950s. Despite this claim, subsequent exploration in east-central Alberta focused predominantly on oil and gas for the next 40-plus years. Mineral exploration in the area was rejuvenated in 1997 with the discovery of a field of diamondiferous kimberlite in north-central Alberta, a discovery that kick-started the Alberta diamond rush. With knowledge of the potential for an economic diamond deposit in Alberta, stories of the prospector exploring river gravels in the Sand River area with a UV lamp generate interest because diamonds are known to fluoresce.

Since then, east-central Alberta has garnered its fair share of attention from diamond explorers. This interest is because of knowledge of garnet-rich beaches throughout the area — a unique occurrence in Alberta — coupled with a geologically favourable environment for the discovery of kimberlite. Reports of garnet with favourable chemistry for the discovery of an unknown field of kimberlite, and garnet chemical compositions that appear to be unique to this area of the province, have provided further incentive to diamond explorers.

Kimberlite indicator-mineral (KIM) results from till, stream sediment and beach sand surveys in the area are publicly available, as is knowledge of these garnet-rich beach sands, yet there is no known comprehensive study on the proportions and compositions of garnet species present in the beach sands. The intent of this project, therefore, was to conduct a reconnaissance-scale sampling study of garnet-rich beach sands throughout east-central Alberta (Figure 1). The main objective is to report on the garnet species present, their proportions and chemical compositions, and to make inferences on their potential sources.

A second objective of the study is to evaluate the area surrounding the Cold Lake Air Weapons Range (CLAWR) for mineral potential. This might be of particular interest to industry because the Alberta Department of Energy, which issues and administers agreements relating to exploration and production of Alberta-owned (Crown) metallic and industrial minerals, has not yet accepted any applications for mineral permits in the CLAWR.

This work satisfies the long-term objectives of diamond- and kimberlite-related studies at the Alberta Geological Survey (AGS) intended to

- provide industry with the information necessary to evaluate the diamond potential of Alberta and expand Alberta's natural resource base;
- contribute updates to the geological map of Alberta and history/assemblage map of Western Canada;
- contribute to custodianship of Alberta's diamond potential, including deliverables, data sets, rock materials and knowledge;
- provide knowledge and advice to decision-makers in federal and provincial governments; and,
- generate public awareness and understanding about the potential for an economic diamond discovery in Alberta.

2 Study Area and Overview of Sample Sites

A synopsis of known garnet-rich beaches in east-central Alberta, as provided by local prospectors (*see* 'Acknowledgments'), is presented in Appendix 1. All beach-sand sites visited during this study contained garnet concentrated in a purple (garnet-rich) or black (oxide-rich) zone of sand in the wash zone that, in some instances, extends landward into the vegetation (Figure 2). Laterally (i.e., along the length of the

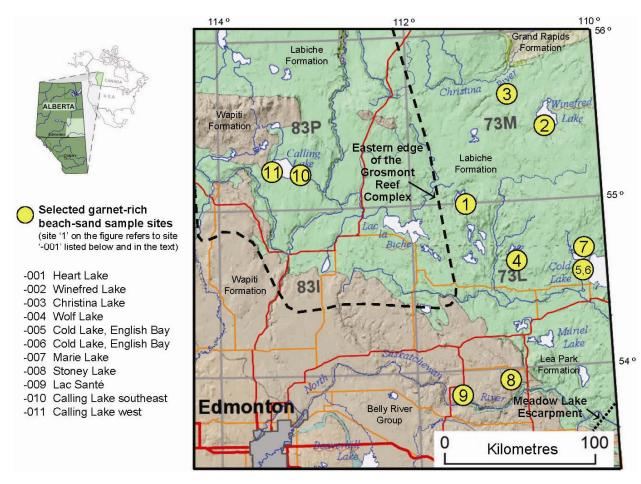


Figure 1. Location of selected garnet-rich beaches sampled in east-central Alberta. Geology base from Hamilton et al. (1999).

beach), the garnet-rich zones are best described as spotty, with visible garnet concentrations extending over distances of metres to hundreds of metres. The beach sands and their garnet species are described in detail in the 'Results' section of this report.

The primary technique for evaluating the garnet-rich beach sands is based on sampling of heavy-mineral indicators. Indicator minerals appear as transported grains in clastic sediments and can provide evidence for particular kinds of bedrock or specific types of mineralization and hydrothermal alteration. Their physical and chemical characteristics facilitate their preservation and identification in various sample media, such as till, glaciofluvial deposits, beach sand, stream sediment and soil. Thus, indicator minerals have become an important exploration method in the past 20 years for detecting a variety of ore deposit types, including diamondiferous kimberlite, gold, Ni-Cu, platinum-group elements (PGE), porphyry Cu, massive sulphide, and W.

During reconnaissance-scale fieldwork, 11 samples were collected from ten separate beaches. The sample sites encompass four 1:250 000 NTS map areas: 73E, 73L, 73M and 83P (Figure 1, Table 1). All sample sites were accessible by vehicle and selected by locating the area of beach sand with the highest visible garnet concentration. The sample nomenclature (e.g., RE06-GB-001) includes the initials of the sampler (RE), year (2006), project identifier (GB or garnet beach study) and site number (-001). For ease of reporting, the sample numbers are hereafter referred to using only the sample site component (e.g., -001). Sample sites -001 through -007 surround the CLAWR, which covers more than 1 million hectares

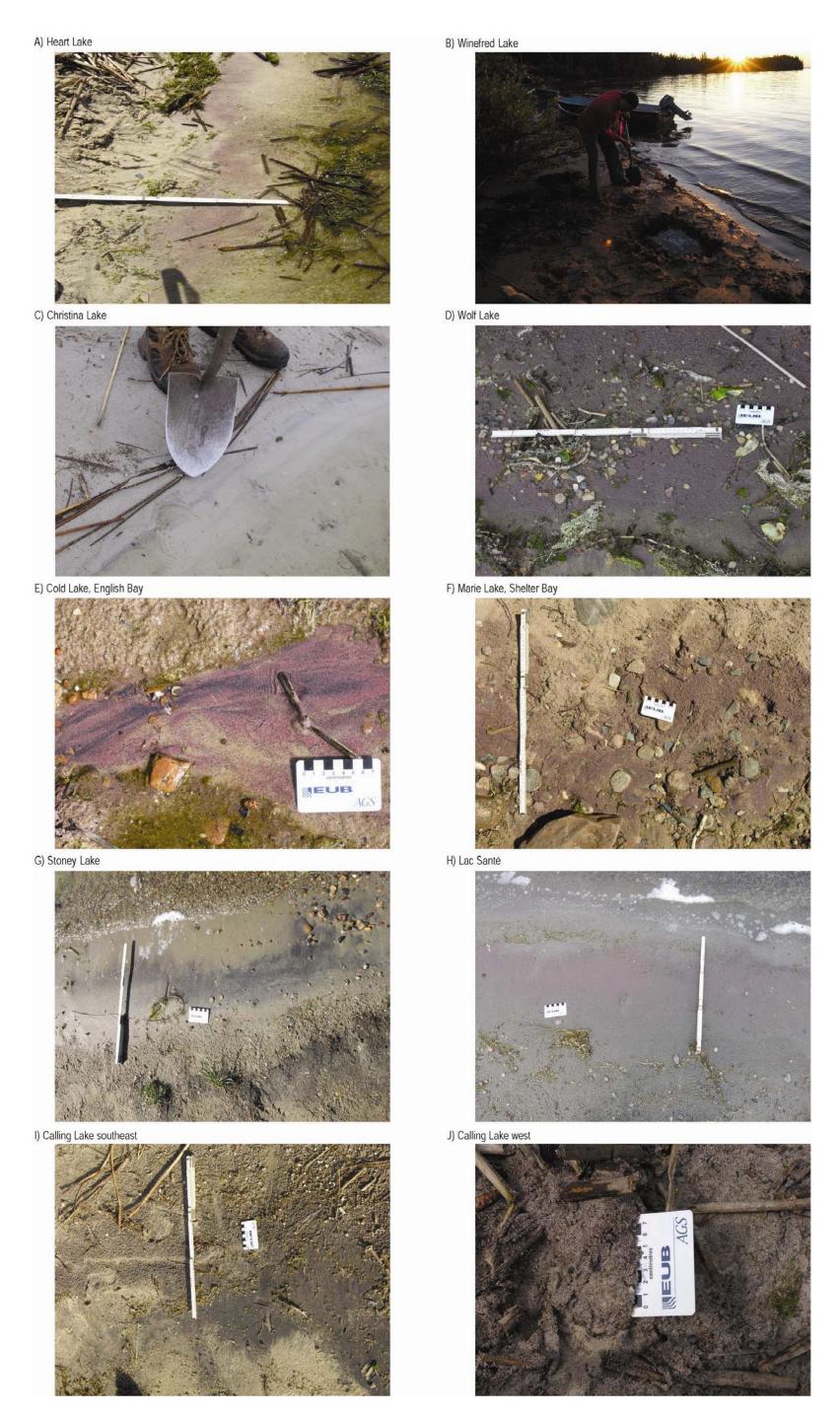


Figure 2. Example of distribution of garnet-rich sands at selected beaches in east-central Alberta.

Table 1. Location and general lithology of beach sands from selected beaches in east-central Alberta. Results use the average measurements from three 5 g samples. The table summarizes the data and images shown in Appendix 2.

Sample	General	NTS	UTM (Zone	e 12, NAD83)			Grain	counts			Grain	percer	ntages
Sample	location	sheet	Easting (m)	Northing (m)	Quartz	Oxide	Garnet	Sulphide	Other	Total	Quartz	Oxide	Garnet
RE06-GB-001	Heart Lake	73L	472269	6097720	550	4	11	/	2	566	97.4	0.7	1.9
RE06-GB-002	Winefred Lake	73M	534837	6141883	533	8	2	/	4	546	97.6	1.4	0.2
RE06-GB-003	Christina Lake	73M	513625	6164078	498	5	7	/	1	510	97.7	1.0	1.3
RE06-GB-004	Wolf Lake	73L	502107	6057862	147	177	200	/	13	532	28.4	33.1	36.8
RE06-GB-005	Cold Lake, English Bay	73L	550706	6047916	77	101	347	/	6	530	14.9	18.9	65.0
RE06-GB-007	Marie Lake, Shelter Bay	73L	547823	6055914	233	60	267	/	4	563	41.1	10.8	47.6
RE06-GB-008	Stoney Lake	73E	494593	5968369	470	41	17	3	7	537	88.0	7.4	2.9
RE06-GB-009	Lac Santé	73E	463048	5965856	343	82	25	/	/	441	77.9	18.3	3.8
RE06-GB-010	Calling Lake southeast	83P	358086	6116998	250	169	130	/	10	553	48.0	28.8	22.5
RE06-GB-011	Calling Lake west	83P	348797	6122215	373	33	102	/	11	519	72.6	6.2	19.2
Note: Sample RI	E06-GB-006 (not listed her	e) is a di	uplicate samp	le of RE06-GB-0	05, taken	at Cold	Lake, En	glish Bay					

(11 600 km²) and is the only tactical bombing range in Canada; about half, or 541 000 hectares, of the CLAWR area is situated within Alberta. Sample -006 is a duplicate sample from site -005 (Cold Lake, English Bay). Southernmost samples -008 and -009 were collected to determine the extent of the garnetrich beach sands in east-central Alberta. Samples -010 and -011 were collected from west of the remaining sample sites to test the Calling Lake beach sands, which have yielded some of the most chemically favourable pyropes in Alberta, and to see how Calling Lake garnet compares with that from sample sites located closer to the Alberta-Saskatchewan border.

General Geology

Seismic refraction and reflection studies indicate that the Archean and Proterozoic crust in east-central Alberta is likely around 35–40 km thick (Bouzidi et al., 2002). In the study area, an approximately 1000– 1800 m thick sequence of Phanerozoic sedimentary rocks (Wright et al., 1994) overlies a complex suite of crystalline basement domains, the disposition of which is broadly based on available regional airborne geophysics and geochronology (Ross et al., 1991, 1994; Villeneuve et al., 1993). Basement rocks in the Cold Lake area border the Archean Hearne Subprovince and the Rimbey magmatic arc (1.98–1.78 Ga; Figure 3). The Rimbey magmatic arc underlies the Winefred Lake area and is characterized by a highly corrugated internal fabric comprising extremely high relief, northeast-trending, sinuous magnetic anomalies (Ross et al., 1994). To the north, the Rimbey magmatic arc is divided from the Taltson magmatic zone by the Snowbird Tectonic Zone (Figure 3).

The basement underlying Calling Lake borders the Buffalo Head Terrane, the Taltson magmatic zone and an unnamed domain (Ross et al., 1994; Figure 3). Basement underlying the northeastern portion of Calling Lake is part of the Taltson magmatic zone, a 1.99–1.93 Ga terrane (Bostock et al., 1991; McNicoll et al., 2000) that represents a magmatic arc related to collisional orogeny during the Proterozoic (Ross et al., 1991; Thériault and Ross, 1991). The northwestern portion of Calling Lake is underlain by basement of the Buffalo Head Terrane, an area of high positive magnetic relief with a northerly to northeasterly fabric (Ross et al., 1994). The bulk of the basement underlying Calling Lake is part of an unnamed domain with gravity and magnetic signatures similar to those of the Buffalo Head Terrane and Wabamun Domain (to the south-southwest), which could therefore be an extension of either one of these domains.

Overlying the basement, Phanerozoic strata have been deposited in two fundamentally different tectonosedimentary environments: a) Late Proterozoic to Middle Jurassic passive continental margin, and b) Middle Jurassic to Oligocene foreland basin. The Paleozoic to Jurassic platform succession, which is dominated by carbonate rocks, can be summarized as two periods of continental-margin sedimentation separated by cratonic inundations from the west, southeast and northwest (Kent, 1994). As a result, much of the Paleozoic succession consists of unconformity-bounded, thin to thick sequences of carbonate rocks interlayered with predominantly fine- to medium-grained clastic marine sedimentary rocks.

The overlying Middle Jurassic to Paleocene foreland basin succession formed in Alberta during activemargin orogenic evolution of the Canadian Cordillera (Dawson et al., 1994). Cretaceous rocks outcrop or subcrop over more than two-thirds of northern Alberta and are composed of alternating units of marine and nonmarine sandstone, shale, siltstone, mudstone and bentonite. The oldest Cretaceous unit in the study area belongs to the middle Cretaceous Labiche Formation that encompasses a large part of the study area (Figure 1). This formation is characterized by dark grey marine shale and silty shale with a fish scale-bearing lower unit. The Labiche is correlative with the Shaftesbury Formation and other mid- to early Late Cretaceous Colorado Group sedimentary rocks. The Late Cretaceous Lea Park Formation occurs directly south of Cold Lake and is composed of calcareous and noncalcareous marine shale with intercalated sandstone. The youngest documented unit in the area belongs to the Late Cretaceous Wapiti Formation and Belly River Group in the northwestern (Pelican Mountain uplands) and southwestern parts

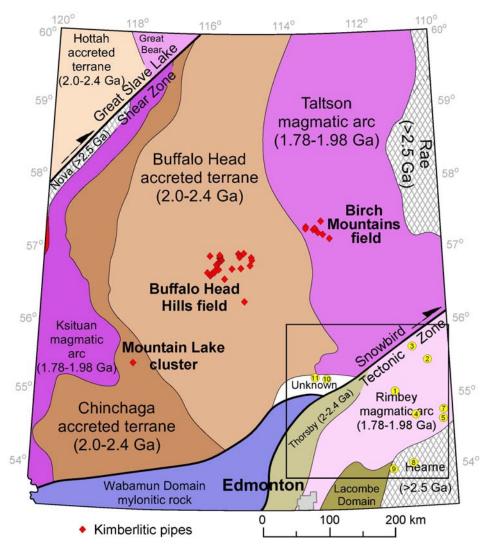


Figure 3. Inferred northern Alberta basement domains of Ross et al. (1994). Square denotes approximate outline of study area, with selected beach-sand sample locations (*see* Figure 1 for lake names).

of the study area, respectively; both units are composed of nonmarine, grey, feldspathic clayey sandstone that is often bentonitic.

Tertiary gravels occur on top of the Pelican Mountain uplands, which are located directly north-northwest of Calling Lake. These gravels are predominantly quartzite and chert gravel and cobbles of preglacial age (Campbell et al., 2001). Quaternary deposits form the local landforms over virtually all of northern Alberta. Ice sheets that originated from the northeast or north advanced across the plains at least five times (Fenton, 1984; Klassen, 1989); however, the surficial deposits in Alberta are primarily Late Wisconsinan in age and were deposited by the Laurentide continental and Cordilleran ice sheets between 23 000 and 11 000 years ago (Dyke et al., 2002). The majority of the surficial sediment in northern Alberta is till (glacial diamicton), with glaciolacustrine and glaciofluvial sediment (Andriashek and Fenton, 1989; Klassen, 1989). The nature of these deposits reflects broad aspects of the bedrock types, and patterns of glacial and glaciofluvial transport.

The surficial deposits in the study area are composed of a complex mixture of thick glacial drift, extensive glacial gravel and evidence of extensive glacial tectonism. Drift thickness is known to range from <25 m to >230 m, with multiple layers of till and glacial outwash (Gold et al., 1983; Campbell et al., 2001). A generally thick (>50 m), complex but well-preserved sequence of Pleistocene surficial deposits in the Sand River map area (NTS 73L) has been the subject of numerous Quaternary stratigraphic studies, predominantly during the late 1970s and 1980s (e.g., Gold, 1978; Andriashek and Fenton, 1979; Gold et al., 1983; Fenton and Andriashek, 1983; Andriashek, 1985; Andriashek and Fenton, 1989). The till and intertill stratigraphic record indicates several glaciations, probably as many as four. During the last period of glaciation, the Cold Lake glaciation, Andriashek and Fenton (1989) showed that the Laurentide Ice Sheet advanced in the form of three lobes: the Primose Lobe that advanced from the northeast, followed by the Seibert Lobe from the north and finally the Lac La Biche Lobe from the northwest (Figure 4).

The area contains major structural lineaments that include the Snowbird Tectonic Zone and the Meadow Lake Escarpment (Figures 3 and 1, respectively). The Snowbird Tectonic Zone is a major northeasttrending crustal lineament prominent on both aeromagnetic and gravity maps, and separates the Churchill Structural Province into two distinct basement domains, the Rae and Hearne subprovinces (Ross et al., 1991, 1994). During the Middle Devonian, a large part of the Siluro-Ordovician stratigraphy was eroded or faulted away to form a prominent Phanerozoic structural feature, the Meadow Lake Escarpment. The eastern edge of the Grosmont Reef Complex (Figure 1) correlates with several northwest-trending faults that extend through the Cold Lake area (Dufresne et al., 1996). Several authors (e.g., Sikabonyi and Rodgers, 1959; Dufresne et al., 1996; Eccles et al., 2001) have suggested that the edges of major reef formations, including the Grosmont, may be related to major structural features associated with tectonic uplift.

Exploration History

Since the discovery of diamondiferous kimberlites in northern Alberta in 1997, it is estimated industry has spent more than \$100 million on exploration for diamonds within the province. Much of this expenditure has been in northern Alberta, where some 50 occurrences of ultrabasic to kimberlitic rocks have been discovered to date. The Buffalo Head Hills kimberlite field in north-central Alberta has produced the best diamond results to date, with 27 of 40 kimberlitic bodies yielding diamond. Mini-bulk and bulk samples of >10 tonnes have been collected from five Buffalo Head Hills bodies; three of these bodies (K14, K91 and K252) have reported diamond grades of between 12 and 55 carats per hundred tonnes (cpht).

To August 2008, no occurrences of ultramafic rocks have been discovered in east-central Alberta. The potential for discovery of diamondiferous kimberlite in this area, however, is considered high based on the following geological features and exploration results:

- Seismic refraction and reflection studies indicate that Archean and Proterozoic crust in east-central Alberta is likely around 35–40 km thick, a trait favourable for the formation and preservation of diamonds in the upper mantle.
- Deep-seated penetrative structures, such as the Meadow Lake Escarpment, Snowbird Tectonic Zone and linear margins of the Devonian Grosmont Reef Complex, could provide pathways for the ascent of kimberlitic magma during periodic tectonic activity associated with movement along major structural features.
- The number, diversity, morphology and chemistry of the KIMs that have been recovered by industry to date all reflect potential for the discovery of a new kimberlite field(s) in Alberta.
- The presence of numerous high- to moderate-quality magnetic anomalies, which could be indicative of kimberlite, has been reported by industry.

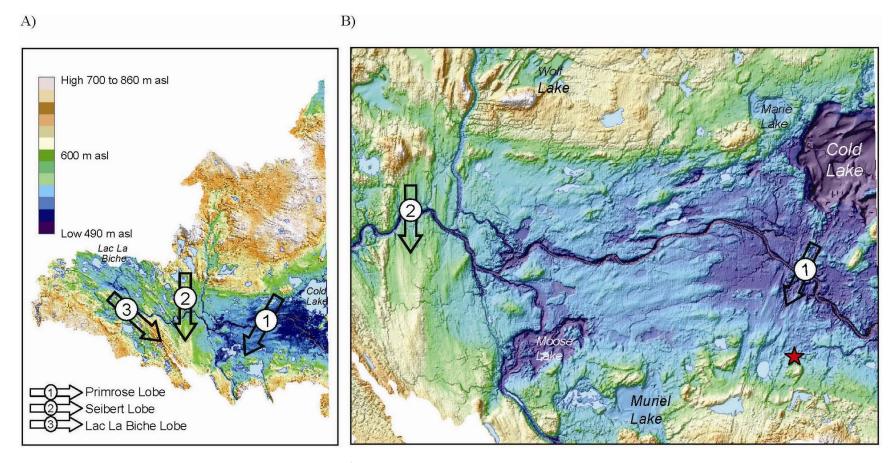


Figure 4. Bathymetry of the Cold Lake to Lac La Biche region: A) regional overview illustrating the three glacial lobes that formed during the Cold Lake glaciation (after Andriashek and Fenton, 1989); B) detailed bathymetry of the Cold Lake region, with the approximate location of a garnet-rich metamorphic erratic discovered by L. Andriashek (pers. comm., 2007).

• There is a close association between KIM concentrations with favourable chemistry, magnetic anomalies and basement structures.

This report uses the terms 'Cold Lake–St. Paul' and 'Calling Lake' to describe the regional geographic areas that have become symbolic of high diamond potential in east-central Alberta. These areas are commonly used in discussions on the diamond potential of east-central Alberta because they are the only regions in Alberta to have yielded multiple G10 subcalcic pyrope garnets. The authors note that KIM sampling density is still low in east-central Alberta, as it is for much of Alberta, and there may be anomalous garnet distributions throughout the area. For now, exploration has been focused in the Cold Lake–St. Paul and Calling Lake areas, and summarized below.

4.1 Cold Lake-St. Paul Region

During 1999, five glaciofluvial and stream-sediment samples were collected for Sunburst Mines Ltd. and Ice River Mining Ltd. along the Martineau River directly north of Cold Lake. Forty-three KIMs were recovered from the five samples. One sample (9TK010) yielded ten pyrope garnets, one Cr-diopside and one picroilmenite, and four of the five samples yielded pyrope garnets, including G1 or G2 pyrope comparable to kimberlite megacryst/macrocryst populations, lherzolitic G9 pyrope and harzburgitic G10 pyrope (Dufresne and Copeland, 1999). Sample 9TK008 yielded two subcalcic harzburgitic G10 pyrope garnets. Some of the garnets from 9TK008 and 9TK010 were up to 1.2 mm in diameter, and displayed orange-peel textures and partially preserved kelyphytic rims. Picroilmenite grains were characterized by elevated MgO (11–13 wt. %) and low total Fe as FeO (<40 wt. %), with some grains having high Cr₂O₃ (3.5 and 4.1 wt. %; Dufresne and Copeland, 1999). The low Fe and high MgO generally indicate a state of low oxygen fugacity within the kimberlite magma, a trait favourable for the preservation of diamond.

In 2000, Brilliant Mining Corp. confirmed recovery of KIMs from multiple sites on their Medley River property located along the north and west sides of Cold Lake, and that the results are encouraging based on the types, abundance and morphology of the minerals recovered. Dufresne and Noyes (2001a) confirmed by electron microprobe analysis (EMPA) that 4 of 25 pyrope garnets are subcalcic G10 pyrope. In addition, they reported pyrope garnets up to 1.0 mm in diameter with orange-peel texture, a trait that could indicate a proximal source.

In 2002, New Claymore Resources Ltd. collected 18 beach samples near the towns of St. Paul and Two Hills, about 85–130 km southwest of Cold Lake. Some 308 potential garnet grains were analyzed by EMPA, returning 12 G10 garnets and 105 G9 garnets (Rich, 2003). In addition, the analysis confirmed 26 Cr-diopsides, 17 low-Cr diopsides and 6 picroilmenites from the beach samples.

During 2005, Diamondex Resources Ltd. staked a large land package, consisting of more than 3 million acres in east-central Alberta and encompassing the Cold Lake–St. Paul area. The property, which is referred to as the Pegasus project, was acquired based on KIMs (including significant concentrations of G10 pyrope garnet, chromite, diopside and ilmenite), as well as interpreted geophysical targets. Diamondex has completed approximately 31 000 line-km of high-resolution airborne magnetic surveys (HRAM) with 100 m line spacing.

4.2 Calling Lake Region

The Calling Lake mineral permits were first staked in 1994 and 1996 by R. Haimila and 656405 Alberta Ltd. (Haimila, 1996). Subsequent beach sampling by Buffalo Diamonds Ltd. on the southwest and south shores of Calling Lake has yielded over 500 KIMs from four separate sites. Based on the recovery of 66 subcalcic G10 pyrope garnets and other indicator minerals, such as G1, G2, G7, G9 and G11 pyrope garnet, high-Cr diopside, high-Cr picroilmenite and high-Ti kimberlitic chromite, there is strong evidence for the presence of local diamondiferous kimberlite (Dufresne and Copeland, 2000; Turnbull, 2002). The

66 G10 garnets represent the highest concentration of such garnets known in Alberta. The potential for discovery of diamondiferous kimberlite is further supported by the discovery of a 0.005 carat, pale yellow rough diamond with grade L colour, along with olivine, in a basal till sample collected from the Calling River east of Calling Lake during 1998 (Dufresne and Copeland, 2000). In 1999–2000, Buffalo Diamonds Ltd. and New Claymore Resources Ltd. initiated a detailed follow-up exploration program that culminated in the drilling of 10 holes totalling 1041 m (Turnbull, 2002). The core, however, was held in confidence until the drill program was paid for. During February 2002, BHP Billiton optioned the property from Buffalo Diamonds and New Claymore and took possession of the drillcore from the 2000 program. It was subsequently reported that none of the holes had intersected ultramafic rocks.

In 2005, the Calling Lake area and Pelican Mountain uplands to the north were staked by Grizzly Diamonds Ltd. During 2006 and 2007, Grizzly Diamonds Ltd. and Stornoway Diamond Corporation completed a 25 000 line-km airborne magnetic survey and ground anomaly checks on the Call of the Wild property in the Pelican Mountain uplands area. Of the 47 airborne magnetic targets selected for follow-up exploration, 19 remain priorities for ground geophysical surveying and sampling.

5 Methodology

An important sampling criterion for this study was to evaluate the proportions of all the ordinary garnet species (pyrope, almandine, grossular, andradite and spessartine) in the beach sands and to collect any information that may suggest source region(s) of the indicator grains recovered. Three samples were taken from each site, for separate analysis as described below and shown in Figure 5.

- 1) A 10 kg sample was taken for indicator-mineral processing and picking. Rather than taking the sample by shovel, a 6.3 cm (inside diameter) tube was used to obtain a true cross-section of the beach sand. Tubes of beach sand were collected until 10 kg were obtained, as measured using a mechanical hanging scale (32 kg capacity with 1 kg resolution). Note that only 10 kg were taken because of the elevated concentration of garnet. The authors recommend that future exploratory sampling maintain standard KIM sampling protocols (e.g., Paulen, 2007; Prior et al., 2007). The 10 kg sample was sent to Overburden Drilling Management Limited, Nepean, Ontario for kimberlite indicator-mineral picking, with special instructions to pick all garnet species present in the heavy-mineral concentrate. Size fractions picked included the 0.25–0.5, 0.5–1 and 1–2 mm fractions. Paramagnetic separation on the 0.25–0.5 mm fraction included the <0.6, 0.6–0.8, 0.8–1 and >1 ampere fractions. Scanning electron microscope (SEM) checks were conducted in conjunction with garnet-species picking.
- 2) A 2 kg sample was taken for grain-size analysis using the same beach-sand collection technique described above. Grain-size analysis was completed by drying the sample and sifting the beach sand through a series of brass sieves ranging in size from >4.0 mm (#5) to <63 μm (#230).
- 3) A 2.9 cm (inside diameter) tube was pressed vertically down into the beach sand and capped on both ends to obtain a cross-section of the sample site. This tube was measured for magnetic susceptibility using a Bartington MS2C core logging sensor at the Physics Department, University of Alberta. The MS2C core logging sensor is designed for volume susceptibility measurements of sediment samples in nonmagnetic cores. The high resolution of the sensor permits cores to be logged at intervals down to approximately 20 mm. The cross-section tube was measured at 20 mm intervals by running the sample tube horizontally through the instrument from top to bottom, making sure to zero the instrument for each new sample tube. The cross-section core tube was also used to make physical observations, such as lithological grain counts.

Quantitative chemical analyses of major elements were obtained on mineral-grain separates using a JEOL8900 electron microprobe at the Department of Earth and Atmospheric Sciences, University of Alberta. The silicate grains were analyzed using an accelerating voltage of 20 kV, beam diameter of 1– $10~\mu m$ and beam current of 20 nA. Peak and background counting times were 30 seconds. Standards, consisting of natural minerals from the Smithsonian microbeam set of standards (Jarosewich, 2002), were regularly analyzed to ensure the calibration remained valid throughout the probe session.

6 Results

This section presents the results of grain-size distribution, general lithology, garnet species, KIMs, gold grains, and metamorphic and magmatic massive-sulphide indicator minerals (MMSIM).

6.1 Grain-Size Distributions, General Lithology and Magmatic Susceptibility

Grain-size distributions were determined by sifting the beach material through a set of sieves that measured eight increments from >4000 μ m to <63 μ m. With the exception of Marie Lake, which has the only fraction of coarse sand to fine gravel (>4000 μ m) of the beaches sampled, the grain sizes dominantly range between -1000 μ m and +125 μ m, with the 250-500 μ m size being the dominant fraction (Figure 6).

Figure 5. Beach-sand sampling methodology. Three samples were taken at each site: a 10 kg pail for indicator-mineral picking, a 2 kg sample for grain-size analysis and a 'tube' sample to obtain a cross-section of the site for magnetic-susceptibility measurements and physical observations.

The general lithology of the beach-sand samples was obtained by counting quartz, oxide, garnet and sulphide grains from three separate 5 g samples taken from garnet-rich, oxide-rich and representative sand sections along the cross-section core tubes that were collected from each sample site; these counts are presented in Appendix 2 and as average values in Table 1. Beach sands from Heart Lake, Winefred Lake and Christina Lake are dominated quartz (>96%). The Wolf Lake beach sands have a fairly even distribution of quartz (14%–43%), oxide (29%–38%) and garnet (25%–53%). Cold Lake (English Bay) beach sands are dominated by garnet (60%–74%), followed by oxide (11%–29%) and quartz (10%–28%). Marie Lake has nearly equal proportions of quartz (28%–50%) and garnet (41%–56%), with minor oxide (8%–16%). Stoney Lake is dominated by quartz (81%–94%), followed by oxides (5%–12%) and minor garnet (<6%). Lac Santé has elevated distributions of quartz (79%–81%) and oxide (15%–21%) grains. Calling Lake southeast has highly variable quartz (23%–92%), oxide (4%–46%) and garnet (2%–35%). Calling Lake west has abundant quartz (63%–84%), followed by garnet (11%–24%).

Appendix 2 shows little correlation between the garnet-rich fractions and high-oxide layers, which are characterized by high magnetic susceptibility likely related to ilmenite accumulation. This is taken as evidence of mechanical sorting caused by wave action, where heavier oxide minerals are susceptible to settling in or near the wash zone, whereas the lighter garnet grains (relative to oxide grains) characteristically travel to the above-wash zone. Based on this observation, it is recommended that prospectors wishing to investigate beach sands not forget the landward-vegetated area as a possible sample site for garnet-rich sand.

6.2 Garnet Species

The heavy-mineral fraction of all samples includes and is often dominated by garnet. The garnet species (only) are presented in Table 2 (also on CD) and are separated by their size and paramagnetic fractions. In all samples collected during this study, the garnet consists overwhelmingly (>99%) of almandine, followed by grossular, spessartine and pyrope (Figure 7a). Most of this almandine is pink to pink-red, but some grains are orange. With the exception of Winefred Lake, all samples contain minor (tens of grains) grossular and/or spessartine, which are typically orange and do not differ sufficiently in paramagnetism from orange almandine (i.e., confirmed by SEM). Heart Lake, Wolf Lake and Cold Lake yielded a few brown and yellow andradite grains, including one or two grains of green Cr-andradite. Garnets that will be of interest to diamond explorers include peridotitic Cr-pyrope and megacrystic Cr-pyrope.

Garnet EMPA data (728 total analyses) are presented in Appendix 3 (also on CD), including core and rim measurements from almandine, pink almandine, grossular, spessartine, pyrope, low-Cr pyrope, Cr grossular and andradite. In Appendix 3 (also on CD), three separate means of classification are provided, including

- 1) physical grain types identified during heavy-mineral-indicator processing, some of which were identified by semiquantitative EDS analysis;
- 2) geochemical grain types identified by entering EMPA data from this study into the mineral identification program MinIdent-Win (Smith and Higgins, 2001); minerals identified include a score, or a 'matching index' calculation of mineral identification probability, where a score of 1000 represents a perfect match; and
- 3) stoichiometric garnet end-member calculations based on EMPA data from this study; values are in per cent and total 100%.

The MinIdent (Smith and Higgins, 2001) mineral classification was preferred for garnet classification, in which case the analyses included, in decreasing number of analyses: almandine (340 spots probed), grossular (146), almandine-spessartine series (99), pyrope (43), spessartine (25), knorringite to knorringite-pyrope series (18), almandine-pyrope series (17), grossular-uvarovite series (9), low-Cr

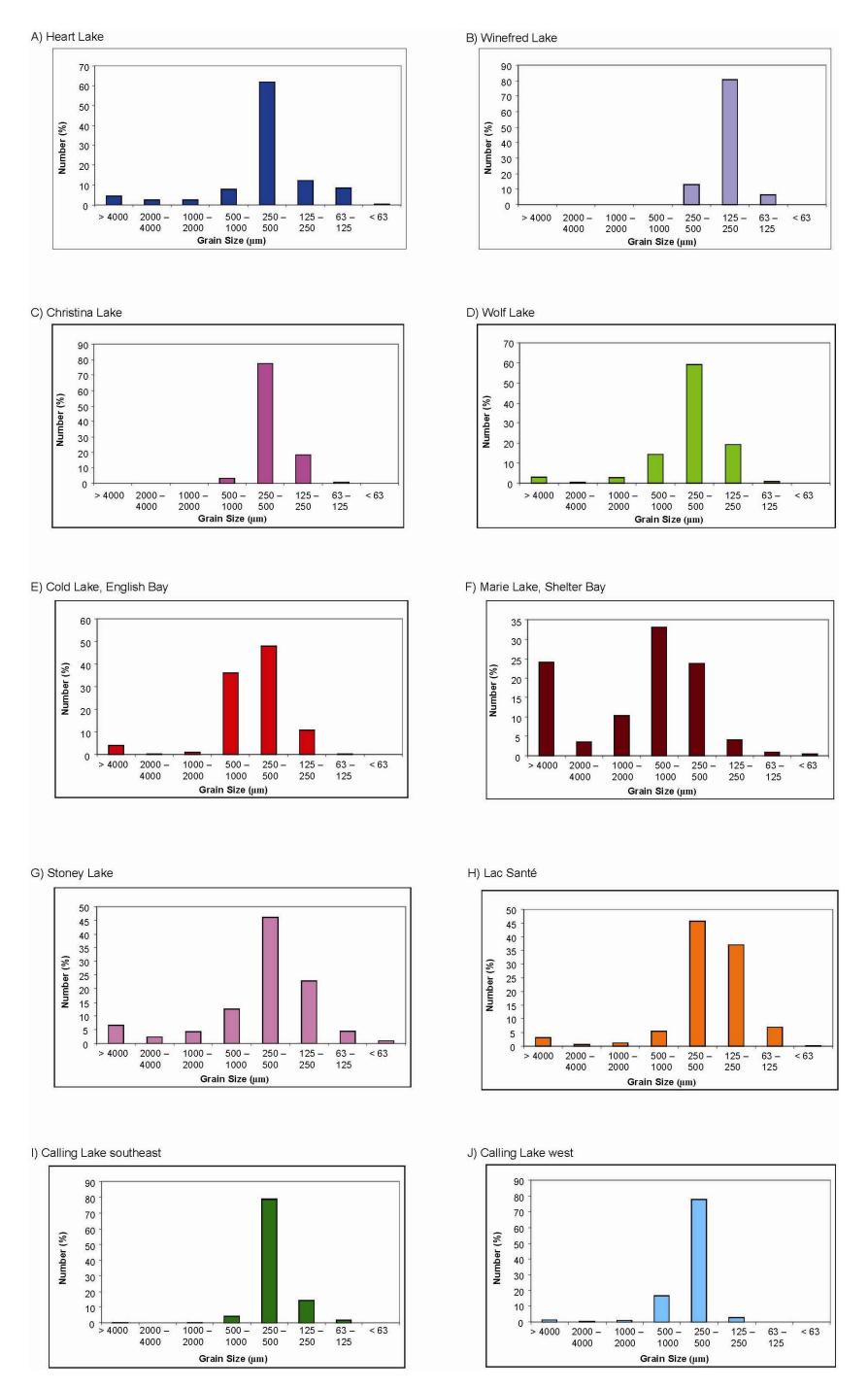


Figure 6. Grain-size distributions at selected beaches in east-central Alberta.

Table 2. Summary of garnet species in beach sands from selected beaches in east-central Alberta.

Sample number	Garnet mineral species	1.0 to 2.0	0.5 to 1.0	<0.6 amp	ze fraction (0.25-(Paramagneti +0.6-0.8 amp lumber of gra	0.5 mm frac ic separation +0.8-1 amp	Remarks		
	All minerals	~80	~2000	~20,000	~53,000 ~45,000	~15,000 ~7500	~10,000	~100,000	
	Almandine	(60%)	(90%)	(90%)	(90%)	(50%)	(Tr) ~20	(70%)	SEM checks from 0.5-1.0 mm fraction: 1 brown andradite candidate
	Grossular	0	0	0	0	0	~20 (Tr)	~20 (Tr)	1 andradite; and 10 orange spessartine versus almandine candidates 1 spessartine, 2 Mn-almandine, and 7 almandine. SEM checks from
RE06-GB-001	Andradite	0	1 (Tr)	0	0	0	0	1 (Tr)	0.25-0.5 mm fraction: 12 pale orange grossular versus almandine candidates = 1 grossular; 10 almandine and 1 Cr-poor pyrope; and 2:
(Heart Lake)	Spessartine (MMSIM)	0	1 (Tr)	~50 (Tr)	0	0	1 (Tr)	~50 (Tr)	orange spessartine versus almandine candidates = 1 spessartine, 1 almandine and 20 almandine Also picked 50 representative pink
	Cr-grossular (MMSIM) Cr-pyrope (KIM)	0	0	0	0	0	0	0	almandine, 20 potential pale orange grossular and 20 potential orang spessartine from 0.25-0.5 mm fraction.
	Cr-poor pyrope (KIM)	0	0	0	0	0	1 (Tr)	1 (Tr)	
	Pyrope-almandine (KIM)	0	0	0	0	0	0	0	
	All minerals Almandine	NS 0	NS 0	NA 0	NA 0	NA 0	NA 0	~800	
RE06-GB-002	Grossular	0	0	0	0	0	0	(40%) 0	SEM checks from 0.25-0.5 mm fraction: 3 pale orange to red-orange almandine versus spessartine candidates = 3 almandine. Also picket
(Winefred	Andradite Spessartine (MMSIM)	0	0	0	0	0	0	0	50 representative pink to pink-red almandine from 0.25-0.5 mm fraction
Lake)	Cr-grossular (MMSIM) Cr-pyrope (KIM)	0	0	0	0	0	0	0	
	Cr-poor pyrope (KIM) Pyrope-almandine (KIM)	0	0	0	0	0	0	0	
	All minerals	2	~300	~15,000	~10,000	~13,000	~12,000	~50,000	SEM checks from 0.5-1.0 mm fraction: 2 grey to pink spessartine
	Almandine	1 (50%)	~270 (90%)	~10,000 (70%)	~7500 (75%)	~6500 (50%)	~100 (0.5%)	~24,000 (50%)	versus almandine candidates = 2 Mn-almandine. SEM checks from 0.25-0.5 mm fraction: 10 pale to very pale orange (>1.0 amp) grossu
	Grossular	0	0	0	~10 (Tr)	~5 (Tr)	~25 (Tr)	~40 (Tr)	versus almandine candidates = 7 grossular, 2 almandine and 1 pyror almandine, 4 orange (<0.6 amp) spessartine candidates = 1
RE06-GB-003	Andradite	0	0	0 ~50	0 ~30	0	0	0 ~80	spessartine and 3 Mn-almandine; 8 orange (0.6-0.8 amp) spessartine versus almandine candidates = 1 spessartine, 2 Mn-almandine, 4
(Christina Lake)	Spessartine (MMSIM)	0	0	(Tr)	(Tr)			(Tr) 3	almandine and 1 grossular; and 8 orange (0.8-1.0 mm) spessartine versus almandine candidates = 8 almandine. Also picked 50
,	Cr-grossular (MMSIM) Cr-pyrope (KIM)	0	0	0	0	0	0	(Tr)	representative pink to pink-red almandine, 50 potential pale orange
	Cr-poor pyrope (KIM)	0	0	0	0	0	2 (Tr)	2 (Tr)	
	Pyrope-almandine (KIM)	0	0	0	0	0	1 (Tr)	1 (Tr)	1
	All minerals	~45	~3500	~370,000	~350,000	~60,000	~50,000	~800,000	SEM checks from 0.5-1.0 mm fraction: 1 black andradite versus
	Almandine	~30 (70%)	~3300 ~3300 (95%)	~350,000	~330,000	~30,000	~250	~700,000	tourmaline candidate = 1 andradite; and 5 orange spessarine versus almandine candidates = 5 almandine. SEM checks from 0.25-0.5 m
	Grossular	0	(95%)	0	0	0	~100 (Tr)	100 (Tr)	fraction: 22 pale orange grossular (>1.0 amp) versus almandine candidates = 16 grossular, 3 almandine, 2 andalusite and 1 titanite;
	Andradite	0	1 (Tr)	1 (Tr)	0	0	0	(1r) 1 (Tr)	yellow andradite candidates = 1 andradite and 1 spessartine; and 20 orange spessartine (<0.6 amp) versus almandine candidates = 3
RE06-GB-004 (Wolf Lake)	Spessartine (MMSIM)	0	(Ir) 0	~50	0	0	0	~50	spessartine, 2 Mn-almandine,14 almandine and 1 staurolite. Also
(vvoii Lake)	Cr-grossular (MMSIM)	0	0	(Tr) 0	0	0	2	(Tr) 2 (Tr)	picked 50 representative pink to pink-red almandine, 50 potential orange spessartine and 50 potential pale orange grossular from 0.25
	Cr-pyrope (KIM)	0	0	0	0	0	(Tr) 6	(Tr) 6	0.5 mm fraction.
	Cr-poor pyrope (KIM)	0	0	0	0	0	(Tr)	(Tr)	1
	Pyrope-almandine (KIM)	0	0	0	0	0	(Tr) 0	(Tr) 0	
	All minerals	16	~13,000	~600,000	~600,000	~50,000	~40,000	~1,300,000	
	Almandine	15 (95%)	~11,000 (85%)	~500,000 (85%)	~550,000 (90%)	~40,000 (80%)	~200 (0.5%)	~1,100,000 (85%)	SEM checks from 0.5-1.0 mm fraction: 5 pale orange grossular vers
	Grossular	0	3 (Tr)	0	0	0	~100 (Tr)	100 (Tr)	almandine candidates = 3 grossular and 2 almandine; 3 dark grey dodecahedral spessartine candidates = 1 spessartine, 1 Mn-almand
RF06-GR-005	Andradite	0	0	0	3 (Tr)	0	0	3 (Tr)	and 1 almandine; and 2 orange spessartine versus almandine candidates = 2 almandine. SEM checks from 0.25-0.5 mm fraction:
(Cold Lake, English Bay)	Spessartine (MMSIM)	0	1 (Tr)	~100 (Tr)	0	0	0	~100 (Tr)	25 pale orange grossular (>1.0 amp) candidates = 23 grossular and almandine; 3 yellow andradite (0.6-0.8 amp) versus siderite candidate
English Bay)	Cr-grossular (MMSIM)	0	0	0	0	0	1 (Tr)	1 (Tr)	= 3 andradite; and 11 orange spessartine (<0.6 amp) candidates = 7
	Cr-pyrope (KIM)	0	0	0	0	1 (Tr)	5 (Tr)	6 (Tr)	almandine, 40 potential orange spessartine and 30 potential pale orange grossular from 0.25-0.5 mm fraction.
	Cr-poor pyrope (KIM)	0	0	0	0	0	1 (Tr)	1 (Tr)	orango grecoular nom orzo oto min nacion.
	Pyrope-almandine (KIM)	0	0	0	0	0	0	0	
	All minerals Almandine	15 14	~13,000	~700,000	~600,000 ~570,000	~65,000 ~50,000	~50,000 ~250	~1,400,000	
	Grossular	(95%) 0	(95%) 0	(95%)	(95%)	(80%)	(0.5%) ~80	(90%) ~80	SEM checks from 0.25-0.5 mm fraction: 12 pale orange grossular
RE06-GB-006	Andradite	0	0	0	0	0	(Tr) 0	(Tr) 0	(>1.0 amp) versus almandine candidates = 9 grossular, 2 pyrope- almandine and 1 zircor; and 25 orange spessartine (<0.6 amp) versu
(Cold Lake,	Spessartine (MMSIM)	0	0	~100 (Tr)	0	0	0	~100 (Tr)	almandine and 1 zircon, and 25 drange spessartine (<0.6 amp) west almandine candidates = 7 spessartine, 3 Mn-almandine and 15 almandine. Also picked 50 pink almandine, 50 potential pale orange
English Bay) *	Cr-grossular (MMSIM)	0	0	0	0	0	0 4	0	grossular and 50 potential orange spessartine from 0.25-0.5 mm fraction.
	Cr-pyrope (KIM)	0	0	0	0	0	(Tr) 2	(Tr) 2	naction.
	Cr-poor pyrope (KIM) Pyrope-almandine (KIM)	0	0	0	0	0	(Tr)	(Tr) 0	
	All minerals	113	~7000	~450,000	~300,000	~80,000	~35,000	~900,000	
	Almandine	30 (95%)	~11,000 (95%)	~440,000 (98%)	~280,000 (95%)	~70,000 (90%)	0	~800,000 (85%)	
	Grossular	0	0	0	0	0	~100 grossular	~100	SEM checks from 0.5-1.0 mm fraction: 2 black spessartine candida
RE06-GB-007	Andradite	0	0	Ö	0	0	(Tr) 0	(Tr) 0	= 2 almandine. SEM checks from 0.25-0.5 mm fraction: and 20 pal orange grossular (>1.0 amp) versus almandine candidates = 12
(Marie Lake,	Spessartine (MMSIM)	0	0	~100 (Tr)	0	0	0	~100 grossular (Tr) spessarti	grossular, 7 almandine and 1 Cr-poor pyrope; and 10 orange spessartine (<0.6 amp) versus almandine candidates = 2 spessartin
Shelter Bay)	Cr-grossular (MMSIM)	0	0	0	0	0	1 (Tr)	1 (Tr)	6 almandine and 2 Mn-almandine. Also picked 50 pink to pink-red almandine, 50 potential pale orange grossular and 50 potential orang
	Cr-pyrope (KIM)	0	0	0	0	0	13 (Tr)	13 (Tr)	spessartine from 0.25-0.5 mm fraction.
	Cr-poor pyrope (KIM)	0	0	0	0	0	3 (Tr)	3 (Tr)	
	Pyrope-almandine (KIM)	0	0	0	0	0	0	0	
	All minerals	113 56	~7000	~300,000	~250,000	~20,000	~20,000	~600,000	SEM checks from 0.5-1.0 mm fraction: 4 pale orange grossular vers
	Almandine	(50%)	(85%)	(80%)	(80%)	(50%)	0 ~150	(75%) ~150	almandine candidates = 2 grossular, 1 almandine and 1 spessartine, orange spessartine versus almandine candidates = 3 spessartine and 1 spessartine versus almandine candidates = 3 spessartine and 1 spessartine versus almandine candidates = 3 spessartine and 1 spessartine versus almandine candidates = 3 spessartine versus v
DE00 0=	Grossular Andradite	0	(Tr)	0	0	0	(0.5%)	(Tr)	almandine. SEM checks from 0.25-0.5 mm fraction: 13 pale orange grossular (>1.0 amp) candidates = 13 grossular; 3 other pale orange
RE06-GB-008 Stoney Lake)	Spessartine (MMSIM) Cr-grossular (MMSIM)	0	0	0	0	0	0	0	grossular (0.8-1.0 amp) candidates = 3 almandine; 6 pale yellow andradite (0.6-0.8 amp) candidates = 1 spessartine and 5 siderite; 5
	Cr-pyrope (KIM)	0	0	0	0	0	1 (Tr)	1 (Tr)	orange spessartine (<0.6 amp) candidates = 5 spessartine; and 2 ot orange spessartine (0.8-1.0 amp) candidates = 2 almandine. Also
	Cr-poor pyrope (KIM)	0	4 (Tr)	~80 (Tr)	1 (Tr)	0	0	~80 (Tr)	picked 50 potential pink to pink-red almandine, 60 potential pale oral grossular and 30 potential orange spessartine from 0.25-0.5 mm
	Pyrope-almandine (KIM)	0	0	0	0	0	0	0	fraction.
	All minerals	~100	~3500	~200,000	~200,000	~25,000	~14,000	~440,000	
	Almandine	(85%)	(90%)	(90%)	(95%)	(80%)	(Tr) ~100	(90%) ~100	SEM checks from 0.5-1.0 mm fraction: 3 spessartine versus
	Grossular Andradite	0	0	0	0	0	(Tr)	(Tr)	almandine candidates = 1 spessartine, 1 Mn-almandine and 1 almandine. SEM checks from 0.25-0.5 mm fraction: 10 pale orange
RE06-GB-009 (Lac Santé)	Spessartine (MMSIM) Cr-grossular (MMSIM)	0	0	0	0	0	0	0	grossular versus almandine candidates = 9 grossular and 1 zircon au 15 orange spessartine versus almandine candidates = 3 spessartine Management of the production of the prod
	Cr-pyrope (KIM)	0	0	0	0	0	3 (Tr)	3 (Tr)	Mn-almandine and 10 almandine. Also picked 50 pink to pink-red almandine, 50 potential pale orange grossular and 50 potential orange processing from 50 potential orange.
	Cr-poor pyrope (KIM)	0	~10 (Tr)	~200 (Tr)	0	0	0	0	spessartine from 0.25-0.5 mm fraction.
	Pyrope-almandine (KIM)	0	0	0	0	0	0	0	1
	All minerals	11	~600	~90,000	~140,000	~50,000	~45,000	~325,000	
	Almandine	(85%)	(80%)	(50%)	(50%)	(40%)	0 ~150	(40%) ~150	
RE06-GB-010	Grossular Andradite	0	0	0	0	0	(Tr)	(Tr)	Also picked 50 pink to pink-red almandine, 60 potential pale orange
Calling Lake southeast)	Spessartine (MMSIM)	0	0	~25 (Tr)	0	0	0	~25 (Tr)	grossular and 25 potential orange spessartine from 0.25-0.5 mm fraction.
ञ्चवास्थ्यज्ञ)	Cr-grossular (MMSIM)	0	0	0	0	0	0	0	
	Cr-pyrope (KIM)	0	0	0	0	0	1 (Tr)	(Tr)	
	Cr-poor pyrope (KIM) Pyrope-almandine (KIM)	0	0	0	0	0	0	0	†
	All minerals Almandine	22 21	~3500 ~3250	~600,000 ~500,000	~250,000	~45,000 ~20,000	~65,000 0	~950,000 ~700,000	
	Almandine Grossular	(99%)	(95%) 1	(85%)	(75%)	(45%) ~20	~150	(75%) ~170	SEM checks from 0.5-1.0 mm fraction: 1 pale orange grossular candidate = 1 grossular; 1 red-orange spessartine versus almandine
RE06-GB-011	Andradite	0	(Tr) 0	0	0	(Tr)	(Tr) 0	(Tr)	candidate = 1 almandine; and 10 orange spessartine candidates = 2 spessartine and 8 almandine. SEM checks from 0.25-0.5 mm fracti
Calling Lake west)	Spessartine (MMSIM)	0	2 (Tr)	~50 (Tr)	0	0	0	~50 (Tr)	10 pale orange grossular (>1.0 amp) versus almandine candidates = grossular; and 20 orange spessartine (<0.6 amp) versus almandine
	l	0	0	0	1	0	0	1	candidates = 2 spessartine, 3 Mn-almandine and 15 almandine. Als picked 50 pink to pink-red almandine, 55 potential pale orange
	Cr-grossular (MMSIM)				(Tr)			(Tr)	
	Cr-grossular (MMSIM) Cr-pyrope (KIM)	0	0	0	0 (1r)	0	6 (Tr)	(1r) 6 (Tr)	grossular and 25 potential orange spessartine from 0.25-0.5 mm fraction.

^{*} Duplicate sample of RE06-GB-005

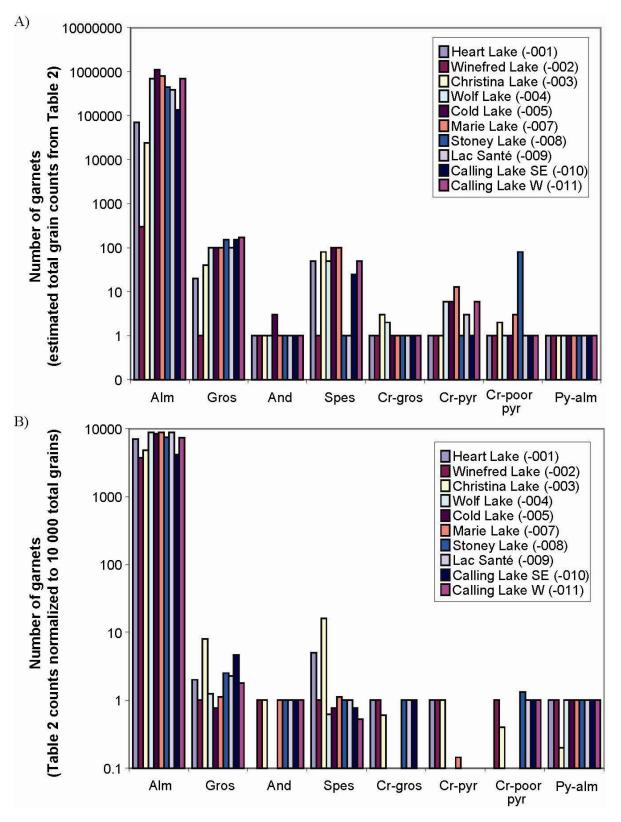


Figure 7. Geographic distribution of garnet species as estimated from Table 2: A) total estimated grain counts; B) garnet grain counts normalized to 10 000 total grains. Abbreviations: alm, almandine; gros, grossular; and, andradite; spes, spessartine; Cr-gross, Cr-grossular; Cr-pyr, Cr-pyrope; Cr-poor pyr, Cr-poor pyrope; py-alm, pyrope-almandine.

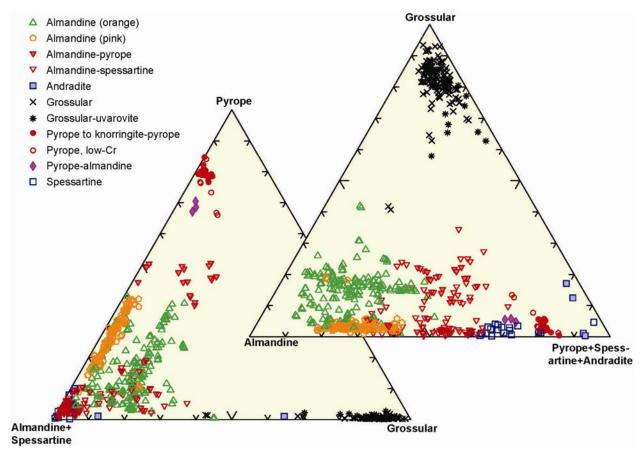


Figure 8. Geochemical distribution of garnet species from east-central Alberta beach sands.

pyrope (8), andradite (5), pyrope-almandine series (3) and uvarovite (1). These species are shown in Figure 8 on the ternary plots of almandine+spessartine vs. pyrope vs. grossular, and almandine vs. grossular vs. pyrope+spessartine+andradite. The geochemical distribution shows the predominance of almandine, followed by grossular and spessartine. Orange and pink almandine are chemically distinct from each other, with orange almandine having a higher grossular component (i.e., CaO). Isomorphous mixed series are evident, particularly between pyrope and between almandine and almandine and spessartine. This series is often called the 'pyralspite series' and, in this dataset, dominates in comparison to the other common isomorphous series uvarovite-grossular-andradite, or the 'ugrandite series'. Smaller species groups, such as pyrope and andradite, stand out as small isolated clusters relative to almandine-series garnet. Grains originally identified as garnet but identified as other minerals by MinIdent include staurolite, amphibole-group minerals (e.g., pargasite, hornblende, tschermakite) and piedmontite.

With respect to geographic distribution, the various garnet species appear to be distributed fairly evenly from site to site, with the exception of a few anomalous trends (Figure 7a). Importantly to diamond explorers, Cr-pyrope is more abundant at the Wolf Lake, Cold Lake, Marie Lake and Calling Lake west sample sites relative to other sites analyzed in this study. Caution is advised when making these kinds of observations, as the abundance of pyrope in these areas correlates with high total garnet grain counts. When the garnet species counts are normalized to 10 000, their patterns of distribution change. The normalized diagrams (Figure 7b) show that Cr-pyrope is elevated in the Heart Lake, Winefred Lake and Christina Lake areas. Caution is also advised for the normalized trend, because the geographic distribution of pyrope could be further complicated by a local kimberlite source. A second significant observation of the normalized garnet distribution is that spessartine and grossular grain counts are

elevated in the northern sample sites (Christina and Heart lakes), which may have implications for garnet paragenesis.

6.3 Kimberlite-Indicator Minerals

A summary of the KIM grains is presented in Table 3. In addition to the aforementioned pyrope and knorringite EMPA data, Appendix 3 (also on CD) also includes analytical results from clinopyroxene (18 grains analyzed), ilmenite (11) and chromite (9).

With the exception of Winefred Lake, all beach sands sampled yielded KIMs dominated by garnet peridotite and clinopyroxene, followed by ilmenite, eclogitic garnet and chromite. No forsteritic olivine was recovered. The highest total KIM grain counts were from Marie Lake (16 grains), Calling Lake west (15) and Cold Lake (14). Christina Lake and Stoney Lake both had 7 KIMs recovered, followed by Calling Lake southeast (6 grains), Lac Santé (4) and Heart Lake (2). Most KIMs fall in the 0.25–0.5 mm size fraction, with 0.5–1 mm ilmenite grains (Table 3).

Figure 9 shows that, based on samples from this study, pyrope garnet was recovered throughout east-central Alberta, with two distinct clusters in the general area of Marie Lake (12 grains)—Wolf Lake (6)—Cold Lake (5), and at Calling Lake west (6). Pyrope garnet is dominantly lherzolite, with two grains, one each from Wolf Lake and Cold Lake, plotting in the harzburgitic G10 field (Figure 9). Several pyropes from Marie Lake plot near the G9–G10 boundary line and have high Cr₂O₃ (13 wt. %), knorringite (Mg₃Cr₂Si₃O₁₂) values of between 22 and 23, Mg# (100Mg/(Mg+Fe²⁺)) of 84 and Cr# (100Cr/(Cr+Al)) between 37 and 38. In addition, high-Cr₂O₃ pyrope (i.e., >6 wt. %), which in some cases straddles the G9–G10 boundary line, is common in beach sands from Marie Lake, Lac Santé and Calling Lake (southeast and west).

Figure 10 shows that clinopyroxene grains were recovered from Winefred Lake (1 grain), Wolf Lake (2), Cold Lake (2), Stoney Lake (1), Lac Santé (1), Calling Lake southeast (5) and Calling Lake west (6). Based on the Al₂O₃ vs. Cr₂O₃ plot of Ramsay (1992), the majority of the clinopyroxene is derived from garnet peridotite followed by spinel lherzolite and pyroxenite, and eclogite or cognate paragenesis. Garnet lherzolitic–type clinopyroxene, which plots along a compositional line between the jadeite and kosmochlor (Morris et al., 2002), was recovered from Calling Lake southeast and west (4 grains total), and from Winefred Lake and Wolf Lake (1 grain each). One clinopyroxene grain from Calling Lake southeast yielded 5.8 wt. % Al₂O₃ and 1.7 wt. % Na₂O, and may be derived from eclogite. Finally, one clinopyroxene grain from Wolf Lake has a calculated temperature within the diamond stability field (approximately 1090°–1120°C), based on the single-grain thermometry of Finnerty and Boyd (1987) and Nimis and Taylor (2000).

Only a few oxide grains were analyzed. Chrome spinels were recovered from beach sands at Heart Lake, Christina Lake, Wolf Lake, Cold Lake, Stoney Lake and Calling Lake west (Figure 11). None of the grains plotted within the $MgO-Cr_2O_3$ diamond-inclusion field or near the xenocryst trend prevalent in diamondiferous kimberlite of the Buffalo Head Hills field (Hood and McCandless, 2004). A chromite from Heart Lake has high Cr# (87) but low MgO (3.5 wt. %; Mg#=16) and high FeO (33.1 wt. %). One chromite from Stoney Lake has high Mg# (63) and NiO (0.28 wt. %) but low Cr# (17).

Four ilmenite grains were picked from the Cold Lake and Stoney Lake beach sands, with one ilmenite grain each from Christina Lake, Wolf Lake and Calling Lake west (Figure 12). Two ilmenite grains from Cold Lake and Stoney Lake are classified as nonkimberlitic grains due to their low MgO (<1.2 wt. %) and Cr_2O_3 (<0.06 wt. %). The single low-MgO grain from Stoney Lake falls on the 0 wt. % Fe_2O_3 reference line and therefore could belong to a high-TiO₂ mineral other than ilmenite. The rest of the ilmenite grains fall on the kimberlitic side of the Wyatt et al. (2004) kimberlitic ilmenite boundary reference line, although caution should be exercised because some of these grains have Cr_2O_3 values of <0.5 wt. %.

Table 3. Summary of kimberlite-indicator minerals in beach sands from selected beaches in east-central Alberta.

						Wei	ght (g)												N	umb	er o	of gr	ains						
					<2	2.0 mm Tab	le con	concentrate									Ki	mbe	erlite	indi	icat	or m	iner	als					
					0	.25-2.0 mm	nm Heavy liquid separation S.G 3.20 Nonferromagnetic HMC						1.0 to 2.0 mm				0.5 to 1.0 mm						0.25 to 0.5 mm				ı	. ,	
																												.	
									Process	ed split																		.	
									Tot	al																			. !
Sample Number	General location	Total	-0.25 mm	Heavy Liquid Lights	Mag HMC	Total	%	Weight	<0.25 mm (wash)	0.25 to 0.5 mm	0.5 to 1.0 mm	1.0 to 2.0 mm ⁽¹⁾	GP G	ю і	DC II	M CR	FO	GP	GO	DC	IM	CR	FO	GP G	60 D	с ім	CR	FO	Total
RE06-GB-001	Heart Lake	888.4	730.4	145.1	0.03	12.90	100	12.90	1.3	9.60	1.8	0.20	0 (0	0 (0 0	0	0	0	0	0	0	0	0	1 0	0	1	0	2
RE06-GB-002	Winefred Lake	940.5	938.9	1.6	0.00	0.03	100	0.03	0.0	0.03	0.0	0.00		No	san	nple			N	o sa	mpl	е		0	0 0	0	0	0	0
RE06-GB-003	Christina Lake	1,246.6	1,068.2	158.6	0.03	19.80	100	19.80	5.9	13.80	0.1	0.01	0 (0	0 (o o	0	0	0	0	o	0	0	1	2 1	1	2	0	7
RE06-GB-004	Wolf Lake	2,780.9	2,058.2	301.2	13.90	407.60	25	101.90	14.1	84.10	3.5	0.20	0 (0	0 (0 0	0	0	0	0	1	0	0	6	1 2	0	1	0	11
RE06-GB-005	Cold Lake	4,743.0	1,212.1	493.9	43.00	2,994.00	5	149.80	4.1	132.10	13.6	0.05	0 (0	0 (0 0	0	0	0	0	1	0	0	6	1 2	3	1	0	14
RE06-GB-006	Cold Lake (2)	4,878.9	1,264.9	468.4	41.60	3,104.00	5	155.20	3.7	138.50	12.9	0.06	0 (0	0 (0 0	0	0	0	0	0	0	0	4	2 0	1	0	0	7
RE06-GB-007	Marie Lake	2,389.8	937.0	403.2	3.60	1,046.00	10	104.60	4.8	88.20	11.5	0.10	0 (0	0 (0 0	0	0	0	0	0	0	0	13	3 0	0	0	0	16
RE06-GB-008	Stoney Lake	1,028.3	903.1	48.6	1.80	74.80	100	74.80	6.7	60.70	6.9	0.50	0 (0	0 (0 0	0	0	0	0	1	0	0	1	0 1	3	1	0	7
RE06-GB-009	Lac Santé	1,492.1	1,411.0	16.4	0.80	63.90	100	63.90	13.9	46.30	3.2	0.50	0 (0	0 (0 0	0	0	0	0	0	0	0	3	0 1	0	0	0	4
RE06-GB-010	Calling Lake SW	1,076.0	899.8	128.5	0.20	47.50	100	47.50	13.2	33.70	0.6	0.04	0 (0	0 (0 0	0	0	0	0	0	0	0	1	0 5	0	0	0	6
RE07-GB-011	Calling Lake west	2,271.8	695.0	1,054.2	3.1	519.5	20	103.9	8.4	92.1	3.3	0.07	0 (0	0 (0 0	0	0	0	0	0	0	0	6	0 6	1	2	0	15

⁽¹⁾ Values greater than 0.1 g were weighed only to one decimal place; the zero was added in the second decimal position to facilitate column alignment.

⁽²⁾ Duplicate sample

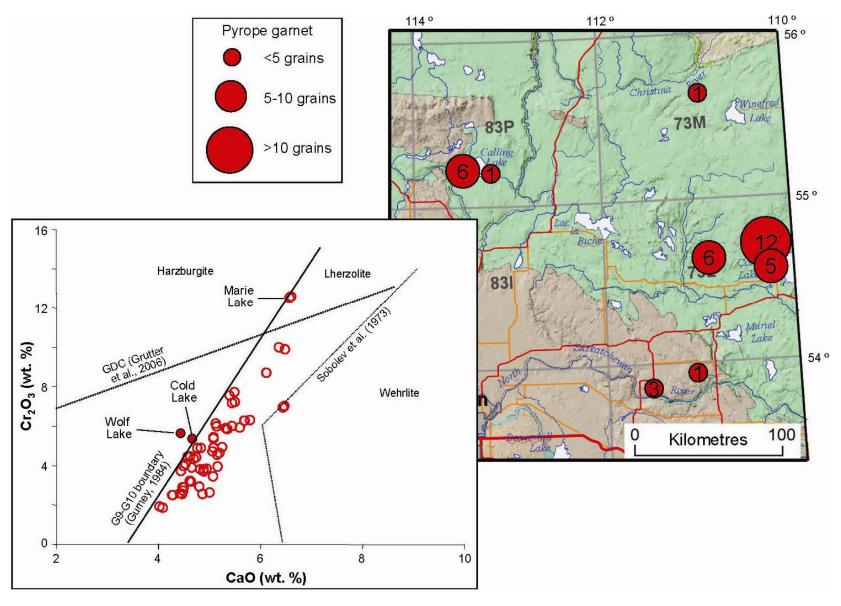


Figure 9. Distribution and CaO- Cr_2O_3 geochemistry of high-Cr (>2 wt. %) pyrope garnet from garnet-rich beach sands in east-central Alberta. Abbreviation: GDC, graphite-diamond constraint.

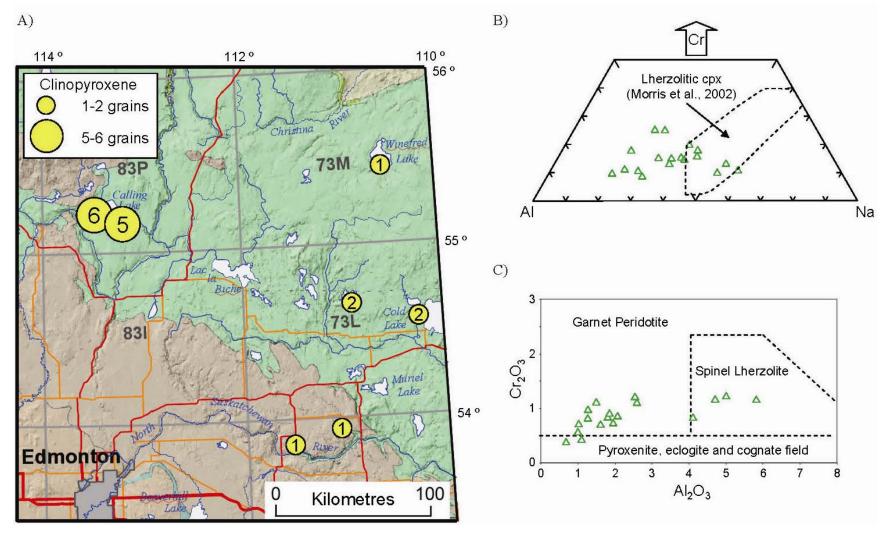


Figure 10. Distribution and Al-Cr-Na and Al₂O₃-Cr₂O₃ geochemistry of clinopyroxene from garnet-rich beach sands in east-central Alberta.

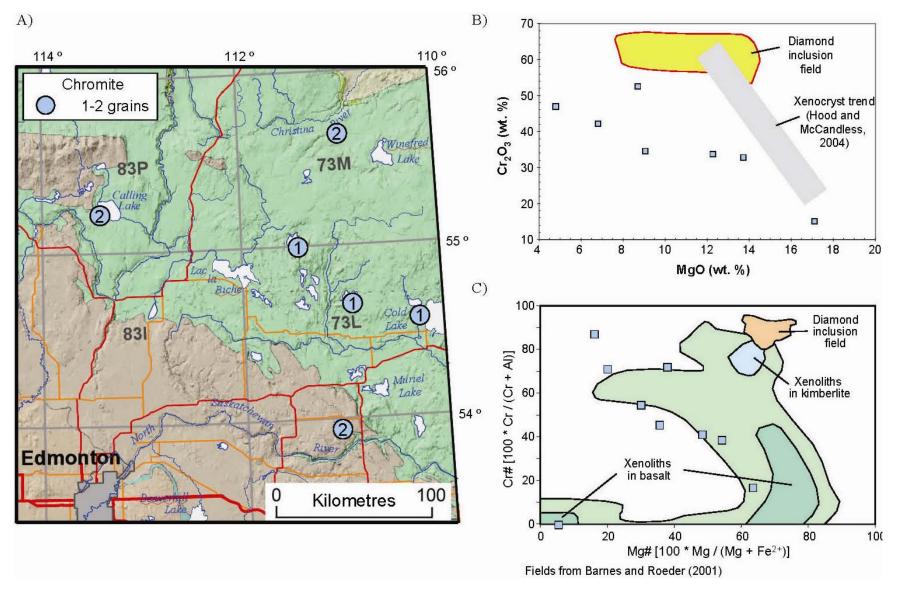


Figure 11. Distribution and MgO-Cr₂O₃ and Mg#-Cr# geochemistry of chromite from garnet-rich beach sands in east-central Alberta.

Kimberlitic ilmenite grains with >1 wt. % Cr_2O_3 occur at Christina Lake, Clear Lake, Stoney Lake and Calling Lake west, with one ilmenite grain from Calling Lake west having 3.4 wt. % Cr_2O_3 . Most of the potentially kimberlitic ilmenite grains have high MgO (>10.3 wt. %) and fall within or near the high MgO (field characteristic of ilmenite from diamondiferous bodies in the Buffalo Head Hills kimberlite field (Hood and McCandless, 2004).

6.4 Gold Grain Counts, Morphology and Dimensions

A summary of the gold grain counts, morphology and dimensions is presented in Table 4. Based on nonmagnetic heavy-mineral concentrates of between 32 and 41 g, minor grains of visible gold were recovered from Cold Lake (2 grains), Stoney Lake (5), Lac Santé (4), Calling Lake southeast (2) and Calling Lake west (6). All of the grains were reshaped, suggestive of transportation over a significant distance. The largest gold grain, from Cold Lake, was 125 μm by 200 μm. Calculated visible gold assays, which are based on the weight of the gold and that of the respective heavy-mineral concentrate, include 56 ppb (Lac Santé), 83 ppb (Calling Lake southeast), 122 ppb (Stoney Lake), 177 ppb (Calling Lake west) and 265 ppb (Cold Lake) — well below that of placer gold deposits such as the historic Klondike district in the Yukon. No gold grains were recovered from Heart Lake, Winefred Lake, Christina Lake, Wolf Lake or Marie Lake.

6.5 Metamorphic and Magmatic Massive-Sulphide Indicator Minerals

Metamorphic and magmatic massive-sulphide indicator minerals (MMSIM), including sulphide/arsenide, Mg/Mn/Al/Cr and phosphate minerals, are sought after because they are more resistant than sulphides and are diagnostic of specific types of sulphide deposits, such as volcanosedimentary massive sulphides in medium- to high-grade regional metamorphic terrains, skarn and greisen deposits, and magmatic Ni-Cu sulphides (Russell et al., 1999; Averill, 2001; Somarin, 2004; Helmy, 2005). A number of MMSIMs were recovered in beach sands from this study and are summarized in Table 5 (also on CD) and below. None of the MMSIM grains has been analyzed for chemistry, but their presence and proportions suggest a mineral assemblage of almandine/epidote to almandine-hornblende/epidote (±diopside±rutile±staurolite±kyanite± apatite).

Most samples contain minor (tens of grains) grossular, spessartine and gahnite. Both grossular and spessartine are orange and do not differ sufficiently in paramagnetism from orange almandine, in which case it was necessary to confirm these grains by SEM or EMPA. Gahnite (ZnAl₂O₄) and red (chrome?) rutile are widely distributed. Based on the results of this study, anomalous distributions of blue-green gahnite include Lac Santé (12 grains), Wolf Lake (11) and Cold Lake (10), with between 1 and 7 grains occurring at the other sample sites. Red rutile was also prevalent at Cold Lake, from which about 200 grains were observed, followed by Wolf Lake with about 50 grains. Multicoloured spinels (e.g., blue-grey, grey, pale blue-green, pale purple, pale pink, blue-green) were recovered from all sites and are particularly abundant at Cold Lake (~400 grains), Calling Lake west (~300) and Wolf Lake (~200).

Ruby corundum and sapphire corundum were recovered from all sites (1–2 grains), with Stoney Lake having 6 sapphire corundum grains. Low-Cr diopside was also recovered from all sites, with the highest grain counts at Cold Lake (15 grains), Calling Lake southeast (13), Christina Lake (12) and Calling Lake west (11). Some samples yielded a few brown and yellow andradite grains (Heart Lake, Wolf Lake and Cold Lake). One or two grains of green Cr-grossular were recovered from Wolf Lake, Cold Lake, Marie Lake, Lac Santé and Calling Lake west.

The sulphide minerals chalcopyrite and molybdenite occur in trace amounts. A single grain of chalcopyrite was recovered from each of Heart Lake, Wolf Lake, Stoney Lake, Lac Santé and Calling Lake southeast. A single molybdenite grain was recovered from Calling Lake southeast. Pyrite is more abundant, with between 10 and approximately 1000 pyrite grains recovered from beach sands sampled in

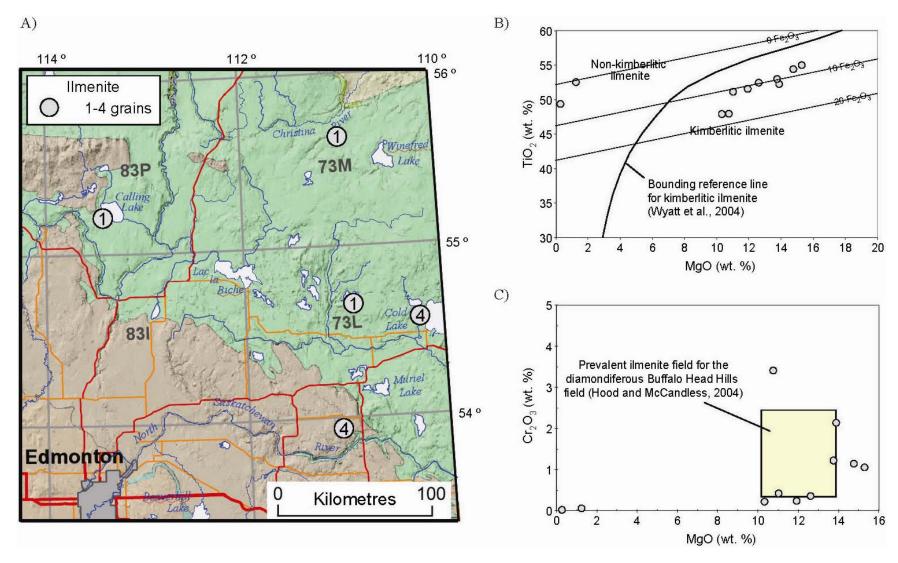


Figure 12. Distribution and MgO-TiO₂ and MgO-Cr₂O₃ geochemistry of ilmenite from garnet-rich beach sands in east-central Alberta.

Table 4. Summary of gold grain counts, morphology and dimensions of beach sands from selected beaches in eastcentral Alberta.

Sample number	General location	Nun	nber of visik	ole gold gr	ains	Nonmag HMC weight	Calcul	ated visible	gold assa	y (ppb)	Dimens	ions (m	icrons)
		Total	Reshaped	Modified	Pristine	(g)	Total	Reshaped	Modified	Pristine	Thickness	Width	Length
RE06-GB-001	Heart Lake	0	0	0	0	40.0	0	0	0	0	No	visible g	old
RE06-GB-002	Winefred Lake	0	0	0	0	35.6	0	0	0	0	No	visible g	old
RE06-GB-003	Christina Lake	0	0	0	0	36.4	0	0	0	0	No	visible g	old
RE06-GB-004	Wolf Lake	0	0	0	0	38.0	0	0	0	0	No	visible g	old
RE06-GB-005	Cold Lake	2	2	0	0	38.0	265	265	0	0	27 31	100 125	175 200
RE06-GB-006	Cold Lake (1)	0	0	0	0	37.6	0	0	0	0	No	visible g	old
RE06-GB-007	Marie Lake	0	0	0	0	31.6	0	0	0	0	No	visible g	old
RE06-GB-008	Stoney Lake	5	5	0	0	34.4	122	122	0	0	8 10 13 15 25	25 50 50 50 100	50 50 75 100 150
RE06-GB-009	Lac Santé	4	4	0	0	34.4	56	56	0	0	8 10 15 18	25 50 50 50	50 50 100 125
RE06-GB-010	Calling Lake SE	2	2	0	0	39.2	83	83	0	0	13 25	50 125	75 125
RE07-GB-011	Calling Lake west	6	6	0	0	41.2	177	177	0	0	3 3 5 13 15 31	15 15 25 50 50 150	15 15 25 75 100 175

this study. The areas with pyrite grain counts are, in order from highest to lowest, Stoney Lake, Christina Lake, Lac Santé, Wolf Lake, Cold Lake and Calling Lake west. Phosphate minerals are not abundant. Apatite ranged from 0 to 20 grains, the latter recovered at Calling Lake southeast. Monazite was recovered from Cold Lake (3 grains) and Stoney Lake (1). Other MMSIMs that occur in trace amounts (<10 grains) and are distributed throughout the study area include kyanite, sillimanite, tourmaline and staurolite. Twenty grains of staurolite were recovered from Lac Santé.

Discussion and Conclusions

7.1 Overview of Industrial Garnet Production and Considerations for East-Central Alberta

World production of industrial garnet in 2005 was estimated at 450 000 tonnes, with the most significant producers including Australia, United States, China, India, Czech Republic, Pakistan, Russia, Turkey and Ukraine. Canada joined the list of suppliers in 2005. Currently, the United States is the largest consumer and accounts for nearly 16% of the world consumption of industrial garnet (Evans and Moyle, 2006).

Table 5. Summary of metamorphic/magmatic massive-sulphide indicator minerals in beach sands from selected beaches in east-central Alberta.

,		erals (0.25-0.	de and relat 5 mm fracti	ion)		Mg/Mn/Al/Cr minerals (0.25-0.5 mm fraction) Phosphat										phates					
Sample number (General location)	%	>1 amp Misc. Prime	%	<1.0 amp %	# Grains + Colour	>1.0 amp	% Red	%	%	0.8-1 amp		<(%	0.8 am %	р %	%	>1.0	amp %				
RE06-GB-001 (Heart Lake)	Cpy Tr (1 gr)	MMSIMs 0	Py O	Gth 0	Spinel 2 blue-green, blue gahnite; -60 (0.5%) blue-grey, grey, pale blue-green, pale purple, pale pink, blue-green spinel	Tr ruby corundum (2 gr) Tr low-Cr diopside (2 gr)	Rutile 0	Ky Tr	Sil			Sps_	Fay		Tr (1 gr; see KIM data)	76 Ap	Mz Tr		Picked Grains 0.5-1.0 mm fraction: 1 pale purple spinel 1 spessartine (see garnet data) 0.25-0.5 mm fraction: 1 chalcopyrite 2 gahnite 23 representative spinel 2 ruby corundum 2 low-Cr diopside 1 spessartine (see garnet data)		
RE06-GB-002 (Winefred Lake)	0	0	0	0	0	0	0	Tr	8	1	0	0	0	Tr	0	0	0	Undersized concentrate; therefore not electromagnetically separated and mineral assemblage not listed. Main minerals are almandine, hornblende, augite, epidote and	1 chromite (picked as KIM)		
RE06-GB-003 (Christina Lake)	0	0	1 (~100 gr)	0	2 blue-green gahnite; -60 (0.5%) blue- grey, grey, pale blue-green, pale purple, pink, blue- green spinel	Tr ruby corundum (2 gr) Tr sapphire corundum (1 gr) Tr low-Cr diopside (12 gr)	Tr (4 gr)	15	Tr	4	3	Tr	0	Tr	Tr (2 gr; see KIM data)	5	Tr	Almandine-hornblende/epidote-diopside- kyanite assemblage. SEM checks from 0.25-0.5 mm fraction: 5 blue-green gahnite versus spinel candidates = 2 gahnite and 3 spinel.	0.25-0.5 mm fraction: 2 gahnite 33 representative spinel 2 ruby corundum 1 sapphire corundum 12 low-Cr diopside 4 red rutile 4 representative spessartine (see garnet data) 2 chromite (picked as KIMs)		
RE06-GB-004 (Wolf Lake)	Tr (1 gr)	0	Tr (~15 gr)	0	11 blue-green, blue gahnite; -200 (0.5%) pale purple, pale blue, pale blue-grey, pale blue-green, pale pink, blue- green spinel	Tr ruby corundum (3 gr) Tr sapphire corundum (1 gr) Tr Cr-grossular (2 gr) Tr low-Cr diopside (10 gr)	Tr (~50 gr)	4	Tr	5	2	Tr	0	Tr	Tr (1 gr; see KIM data)	0	0	Almandine/epidote-diopside assemblage. SEM checks from 0.25-0.5 mm fraction: 15 bluegreen gahnite versus spinel candidates = 10 gahnite and 5 spinel; 1 blue gahnite versus spinel candidate = 1 gahnite; and 2 green Crgarnet candidates = 2 Cr-grossular.	0.5-1.0 mm fraction: 1 spessartine (see garnet data) 0.25-0.5 mm fraction: 1 chalcopyrite 11 gahnite 35 representative spinel 3 ruby corundum 1 sapphire corundum 2 Cr-grossular 10 low-Cr diopside 15 representative red rutile 4 representative spessartine (see garnet data) 1 chromite (picked as KIM)		
RE06-GB-005 (Cold Lake)	0	0	Tr (~15 gr)	0	10 blue-green gahnite; ~400 (1%) pale purple, pale blue, grey, pale blue- green, pale pink, blue-green spinel	Tr ruby corundum (1 gr) Tr sapphire corundum (1 gr) Tr Cr-grossular (1 gr) Tr low-Cr diopside (15 gr)	0.5 (~200 gr)	2	3	15	2	Tr	0	Tr	Tr (1 gr; see KIM data)	4	3	Almandine/epidote-staurolite-diposide assemblage. SEM checks from 0.25-0.5 mm fraction: 20 blue-green gahnite versus spinel candidates = 10 gahnite and 10 spinel; 1 Crgarnet candidate = 1 Cr-grossular; and 4 yellow brown fayallite versus siderite candidates = 4 siderite.	0.5-1.0 mm fraction: 1 pale purple spinel 1 spessartine (see garnet data) 0.25-0.5 mm fraction: 10 gahnite 35 representative spinel 1 ruby corundum 1 sapphire corundum 1 Cr-grossular 15 low-Cr diopside 20 representative red rutile 7 representative spessartine (see garnet data) 4 siderite resembling fayalite		
RE06-GB-006 (Cold Lake) ⁽¹⁾	0	0	0	0	7 blue-green gahnite; -200 (0.5%) pale blue, pale blue-green, pale purple, grey, blue- green spinel	Tr Cr-grossular (3 gr) Tr low-Cr diopside (7 gr)	Tr (~50 gr)	2	Tr	5	5	Tr	0	0	0	4	1	Almandine/diopside-epidote assemblage. SEM checks from 0.25-0.5 mm fraction: 14 bluegreen gahnite versus spinel candidates = 7 gahnite and 7 spinel; and 3 Cr-garnet candidates = 3 Cr-grossular.	1 chromite (picked as KIM) 0.5-1.0 mm fraction: 3 pale blue, pale purple spinel 0.25-0.5 mm fraction: 7 gahnite 37 representative spinel 3 Cr-grossular 7 low-Cr diopside 25 representative red rutile 7 representative spessartine (see garnet data)		
RE06-GB-007 (Marie Lake)	0	0	0	0	7 blue-green gahnite; ~100 pale blue- grey, pale blue- green, grey, pale purple, blue-green spinel	Tr Cr-grossular (1 gr) Tr low-Cr diopside (8 gr)	Tr (~30 gr)	1	3	3	8	Tr	0	0	0	2	0	Almandine/epidote assemblage. SEM check from 0.5-1.0 mm fraction: 1 blue-green gahnite versus spinel candidate = 1 spinel. SEM checks from 0.25-0.5 mm fraction: 12 blue-green gahnite versus spinel candidates = 7 gahnite and 5 spinel.	0.5-1.0 mm fraction: 1 spinel 0.25-0.5 mm fraction: 7 gahnite 35 representative spinel 1 Cr-grossular 8 low-Cr diopside 10 representative red rutile 2 representative spessartine (see garnet data)		
RE06-GB-008 Stoney Lake)	Tr (1 gr)	0	5 (~1000 gr)	0	6 blue-green gahnite; 1 black Cr-spinel; 1 black hercynite; -100 (0.5%) pale purple, pale blue- pale blue-green, grey, blue-green, colourless spinel	Tr sapphire corundum (6 gr) Tr low-Cr diopside (2 gr)	Tr (17 gr)	4	Tr	4	7	Tr	0	Tr	Tr (1 gr; see KIM data)	10	1	Almandine/epidote-black rutile assemblage. SEM checks from 0.25-0.5 mm fraction: 1 colourless octahedral diamond versus spinel candidate = 1 spinel; and 7 blue-green gahnite versus spinel candidates = 6 gahnite and 1 spinel.	0.5-1.0 mm fraction: 1 pale blue spinel 4 spessartine (see garnet data) 0.25-0.5 mm fraction: 1 chalcopyrite 6 gahnite 1 Cr-spinel (see KIM notes) 1 hercyrite (see KIM notes) 42 representataive spinel 6 sapphire corundum 2 low-Cr diopside 17 red rutile 6 representative spessartine (see garnet data) 1 chromite (picked as KIM)		
RE06-GB-009 (Lac Santé)	Tr (1 gr)	0	0.3 (~50 gr)	0	12 blue-green gahnite; ~150 (1%) pale purple, pale blue, pale blue-green, blue-green spinel	Tr sapphire corundum (1 gr) Tr Cr-grossular (1 gr) Tr low-Cr diopside (1 gr)	0	5	Tr	2	20	Tr	0	0	0	5	0	Almandine/epidote-staurolite assemblage. SEM checks from 0.25-0.5 mm fraction: 15 bluegreen gahnite versus spinel candidates = 12 gahnite and 3 spinel; 1 blue sapphire corundum versus kyanite candidate = 1 sapphire corundum; and 1 Cr-garnet candidate = 1 Cr-grossular.	0.5-1.0 mm fraction: 1 pale purple spinel		
RE06-GB-010 (Calling Lake southeast)	Tr (1 gr)	Tr molybdenite (1 gr)	0	0	1 blue-green gahnite; -100 pale purple, pale blue, pale blue-green, grey, blue-green spinel	Tr ruby corundum (1 gr) Tr sapphire corundum (1 gr) Tr low-Cr diopside (13 gr)	Tr (1 gr)	20	Tr	3	10	Tr	0	0.5	0	20	Tr	Almandine-hornblende/epidote-kyanite- apatite assemblage. SEM check from 0.5-1.0 mm fraction: 1 blue-green gahnite versus spinel candidate = 1 spinel. SEM checks from 0.25-0.5 mm fraction: 6 blue-green gahnite versus spinel candidates = 1 gahnite and 5 spinel.	0.5-1.0 mm fraction: 1 spinel 0.25-0.5 mm fraction: 1 chalcopyrite 1 molybdenite 1 gahnite 45 representative spinel 1 ruby corundum 1 sapphire corundum 1 low-Cr diopside 1 red rutile		
RE07-GB-011 (Calling Lake west)	0	0	Tr (8 gr)	0	1 blue-green gahnite; -300 (0.5%) pale blue, pale purple, pale blue- green, grey, blue- green spinel	Tr ruby corundum (2 gr) Tr uvarovite (1 gr) Tr low-Cr diopside (11 gr)	Tr (11 gr)	20	5	3	5	Tr	0	Tr	Tr (2 gr; see KIM data)	8	Tr	Almandine-hornblende/epidote-kyanite assemblage. SEM checks from 0.25-0.5 mm fraction: 18 blue-green gahnite versus spinel candidates = 1 gahnite and 17 spinel; and 1 emerald green Cr-garnet candidate = 1 uvarovite (counted as Cr-grossular on garnet species log).	1-teu tutile 0.5-1.0 mm fraction: 2 spessartine (see garnet data) 0.25-0.5 mm fraction: 1 gahnite 47 representative spinel 2 ruby corundum 1 uvarovite 11 low-Cr diopside 11 red rutile 2 chromite (picked as KIMs) 2 representative spessartine (see garnet data)		

The majority of industrial garnet is used as a loose-grain abrasive because of its hardness (6.0–7.5 on the Mohs scale of mineral hardness). High-quality garnet has been used for optical-lens grinding and plate-glass grinding for over a century and, in more recent years, as an abrasive for scratch-free lapping of semiconductor materials and other metals. Lower quality industrial garnet is used as a filtration medium in water-purification systems because it is relatively inert and resists chemical degradation. Other industrial applications include the manufacture of coated abrasives, hydrocutting and the finishing of wood, leather, hard rubber, felt and plastics. Finally, garnet has been gradually replacing silica sand in the blast-cleaning market because of health risks associated with the inhalation of airborne crystalline silica dust (Harris, 2000).

Most industrial-grade garnet is obtained from gneiss, amphibolite, schist, skarn and igneous rocks, and from alluvium derived from erosion of these rocks. Canada has garnet deposits in British Columbia, Labrador, Manitoba, New Brunswick, Newfoundland, Nova Scotia, Ontario and Quebec (Harben and Kuzvart, 1996). Garnet deposits in Eastern Canada consist largely of almandine in high-grade regionally metamorphosed rocks, with garnet grades ranging from 15 to 100 vol. %. Garnet deposits in Western Canada are mostly in skarns and consist of andradite and grossular. Total Canadian garnet reserves are not known, but one of these deposits, the Crystal Peak skarn deposit on Mount Riordan, British Columbia, has at least 40 million tonnes (Mt) of reserves containing 80 vol. % garnet (andradite and grossular; Grond et al., 1991; Mathieu et al., 1991).

Alluvial industrial garnet production occurs in the United States in deposits downstream from mica-garnet schist rocks (e.g., Hampton Creek Canyon, Nevada; Emerald, Carpenter and Meadow creeks, Idaho) or metamorphosed rocks eroded from local mountain ranges (e.g., Ruby River, Montana). The main alluvial industrial garnet producer in the United States is Idaho, where almandine garnet–bearing gravels, about 1–1.2 m thick, contain 8% to 15% garnet; these alluvium deposits also produce gem garnet and rare 'star garnet' (Austin, 1995).

Several companies in Alberta, including Brilliant Mining Corporation and Ice River Mining Ltd., have considered garnet as an industrial mineral worth investigation, and preliminary evaluations were conducted in the Cold Lake area. Unfortunately, the results of these evaluations are not publicly available. A comparison between the garnet concentrations observed in this study and those of producing alluvial deposits in Idaho, however, indicate that the potential for industrial garnet production in east-central Alberta, particularly the Cold Lake area, warrants consideration. In addition to industrial garnet, some of the garnets observed in this study have good colour and are free of inclusions and flaws. Thus, there is also potential for gem-quality garnet production.

The following excerpt from Evans and Moyle (2006) provides a useful set of factors that must be considered by companies interested in industrial garnet production in east-central Alberta:

Evaluation of garnet deposits to determine their suitability for industrial production includes the following factors: size and grade of reserves, mining conditions, garnet quality, location of the deposit relative to markets, and milling costs. Reserves should contain a minimum of 2 million tonnes of ore with a cutoff grade of about 20 vol. % garnet. Various environmental, social, and physical factors can preclude mining, such as proximity to houses, historical sites, national monuments, archeologic or paleontologic sites, wildlife refuges, and municipal watersheds, and may include local zoning regulations, environmental regulations, and configuration and structure of the deposit. After initial crushing, almandite or almandite-pyrope should be present as fine- to coarse-grained discrete crystals that are free of such inclusions as quartz, mica, hornblende, feldspar, and alteration products. As discussed below, andradite and grossularite also have their uses but are inferior to almandite in specific gravity and hardness. The specific gravity and hardness of the garnet should be uniform, and the crystals should not be highly weathered or friable.

Based on consideration of these factors, major deterrents to industrial garnet production in east-central Alberta include

- the scattered distributions and general discontinuity of garnet-rich beach sands that would influence tonnage and grade calculations;
- the abundance of small (\sim 250–500 μ m) and highly weathered (rounded) grain morphologies that could reduce abrasiveness; and,
- the fact that some of these beach sands represent recreational beaches, which could create environmental and public conflict.

Nevertheless, the conclusion is that garnet could be an economically feasible resource in east-central Alberta, particularly when coupled as a coproduct of sand and gravel production, which continues to be an important resource commodity in Alberta. A jig system could easily be added at the end of the gravel sorting process to concentrate garnet. In addition, a small niche market should not be discounted. As is the case with many of the industrial minerals, successful production is dependent on the operator providing a product of interest to a local market. A small-scale garnet operation could market, for example, decorative sand. Environmentally friendly products, such as blast-cleaning sand, water-purification filter material and even play-box sand, may be successful locally if the product can be produced at costs lower than out-of-province garnet operations.

7.2 Source of Garnet: Geological Reasoning

Andriashek and Fenton (1989) considered several possibilities for the origin of surficial deposits in the Sand River map area:

- glaciofluvial material derived from the Canadian Shield as defined by the presence of granitic clasts (e.g., Empress Formation)
- till characterized by the scarcity of carbonate material and abundance of quartz; this material is derived from a distal source, and possibly related to the quartz sandstone of the Athabasca Basin, located in northeastern Alberta and northwestern Saskatchewan (e.g., Bonnyville Formation)
- till with a considerable amount of carbonate clasts (e.g., Marie Creek Formation); pebble orientations from this unit indicate a north-northwest to south-southeast flow direction that roughly parallels the trend of Devonian carbonate outcrops in northeastern Alberta
- glaciolacustrine sediments deposited by proglacial lakes that formed during glacial advances (e.g., Ethel Lake Formation)
- glaciofluvial and glaciolacustrine reworked material from glacially thrust landforms that are overridden and remoulded by glacial advances (e.g., Grand Centre Formation, Reita Lake Member)

While their interpretations demonstrate the complexity of predicting the source of materials contributing to beach sands in east-central Alberta, it is clear that 1) the overriding mechanism for deposition of surficial materials in this area is glaciation, and 2) a broad conclusion pertaining to the current study is that the garnet species studied in this report must have originated from an up-ice source north of the study area. Furthermore, the high concentration of metamorphic garnet (almandine, grossular and spessartine) in the beach sands suggests that the most logical source scenario is glaciofluvial material derived from the westernmost margin of the Canadian Shield. This theory is supported by Andriashek and Fenton (1989), who reported that the highest concentrations of igneous materials occur in the uppermost till units of the Sand River area. In other words, the uppermost till unit in this area correlates with the last-removed Canadian Shield rocks (i.e., the current Phanerozoic-Shield margin) as erosion the Shield rocks propagated westward.

Appendix 4 shows the garnet distributions from surficial-sampling KIM surveys in Saskatchewan (Swanson et al., 2005); the images show that a pronounced cluster of pyrope, almandine and grossular garnet occurs at approximately the same latitude as that of the present study but on the Saskatchewan side of the border. It is possible, therefore, that the Saskatchewan and Cold Lake–St. Paul garnets described in

this report are derived from a similar source. Unfortunately, the exact extent of the Saskatchewan garnet cluster near the Cold Lake area is not known. Like Alberta, there has been no sampling directly north of the cluster of anomalous garnets because access to the CLAWR is restricted, and there is only sparse surficial KIM sampling north of latitude 58°. At present, the Saskatchewan garnet cluster appears to be far enough away from, and therefore not related to, the Fort à la Corne kimberlite field (Appendix 4). It is therefore possible to conclude that garnets on both sides of the border were derived from the westernmost margin of the Canadian Shield.

Another geological consideration that could contribute to the origin of garnet is the timing of garnet deposition in east-central Alberta. If the garnet is part of complex surficial deposits representative of multiple glacial events and processes, then one might anticipate reduced garnet concentrations due to mixing. In this case, garnet accumulation would be associated with the last glacial event, the Primrose Lobe, which flowed in a south-southwesterly direction parallel to the westernmost margin of the Canadian Shield. Alternatively, it is possible that glaciotectonism provided the mechanism for exhumation and concentration of garnet-rich layers from the underlying surficial deposits. Andriashek and Fenton (1989) provided an excellent summary of glaciotectonic features in the Sand River map area. Garnet-rich beaches, such as those on Marie Lake and Wolf Lake, occur in areas associated with glacial thrusting and/or hill-hole pairs, where glaciers have gouged a depression (i.e., lake) that is coupled with a down-ice hill. Additional fieldwork (including coring) on the garnet distribution in the vertical dimension is required to further investigate this idea.

7.3 Source of Garnet: Indicator-Mineral Reasoning

With respect to paragenetic and/or depositional evidence based on the morphology of the garnets collected in this study, Dill (2007) showed that isometric minerals such as garnet are better suited for provenance studies than environment analysis because their inherited morphological differences are not modified by sedimentary processes in proximal placer deposits. Regarding paragenesis, garnet species from this report are indicative of at least two separate sources. Almandine-grossular-spessartine garnet species, which dominate the beach sands, could be indicative of a number of environments, including schist, gneiss, quartzite and other metamorphic rocks, pegmatite, and skarn deposits. Of greater importance to diamond explorers, the presence of high-Cr and G10 pyrope garnet is suggestive of a kimberlitic source. Additional discussion on these two potential sources follows.

7.3.1 Indicators of Kimberlite Paragenesis

Averill (2001, 2007) summarized the benefit of using MMSIMs to help evaluate an area for metallic mineral potential. Grossular and spessartine have been associated with metamorphosed volcanogenic massive sulphide (VMS), sedimentary exhalative (SEDEX) and Broken Hill–type (BHT) deposits. Gahnite (ZnAl₂O₄) and red (chrome?) rutile may be of importance because they are considered excellent indicators for potential metamorphosed magmatic massive-sulphide mineralization. Green Cr-garnet (e.g., Cr-grossular) and ruby (Cr-bearing) corundum can be indicators of Ni-Cu-PGE mineralization; they form as hybrid Fe-Al, Mg-Al and Cr-Al refractory minerals when dynamic sulphide saturation was induced by assimilation of Si- and Al-rich rocks into the Fe- and Mg-rich melt.

Although the suite of MMSIM grains recovered in this study may be indicative of metamorphosed volcanogenic massive sulphide and Ni-Cu-PGE parageneses, they are probably more representative in northern Alberta of ultramafic rocks. Multicoloured spinel grain types have been associated with kimberlite fields in Canada. For example, Friske et al. (2003) identified hercynite as a common indicator mineral near the Buffalo Head Hills kimberlite field. Green Cr-garnet and corundum could also be sourced from ultramafic sources related to kimberlite. For example, green Cr-garnet has been reported in the Mud Lake kimberlite at Drybones Bay, NWT, with compositions of 15–20 wt. % CaO and 12 wt. %

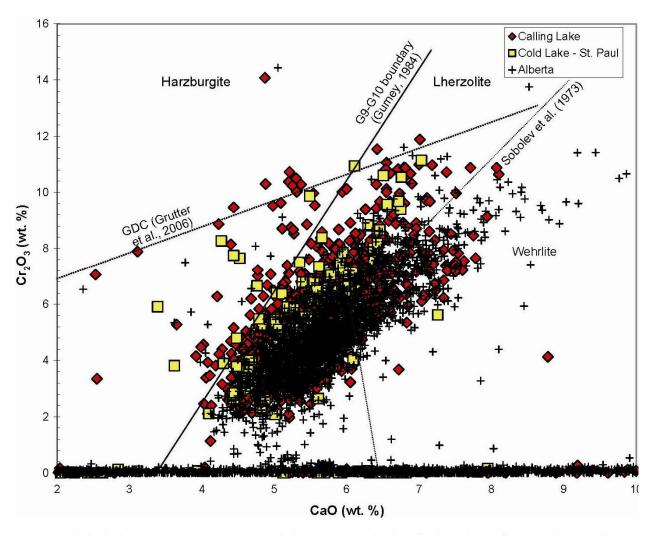


Figure 13. Cr₂O₃-CaO compositions of garnet sampled in various surficial media throughout Alberta, with garnet from the Cold Lake–St. Paul and Calling Lake areas highlighted for comparison. Data sources: Haimila (1996, 1998), Dufresne and Copeland (2000, 2001), Dufresne and Noyes (2001a, b), Eccles et al. (2002), Turnbull (2002), Rich (2003) and Dufresne and Eccles (2005). Abbreviation: GDC, graphite-diamond constraint.

Cr₂O₃ (Snowfield Development Corp., 2003). In addition, Cr-corundum is present in the northern part of the Buffalo Head Hills, where it has been linked to the presence of Mg-Al spinel in these kimberlites (Hood and McCandless, 2004).

The contention that MMSIMs recovered in this study are representative of ultramafic rocks is supported by the presence and composition of the pyropes recovered. In contrast to known garnet EMPA data from various surficial media sampled throughout Alberta and garnet xenocrysts from kimberlitic bodies, both of which are dominated by G9 calcic lherzolitic garnet (Eccles et al., 2002; Eccles and Weiss, 2003; Hood and McCandless, 2004; Dufresne and Eccles, 2005; Eccles and Simonetti, 2008), G10 subcalcic pyrope garnets are prominent in east-central Alberta (Figure 13). In fact, the Cold Lake–St. Paul and Calling Lake areas are the only areas in Alberta to have yielded multiple G10 subcalcic pyrope garnets from surficial samples.

The unique distribution of G10 garnet in this area must be considered an indication that an undiscovered kimberlite cluster, or clusters, with high diamond potential exist(s) in, or up-ice of, east-central Alberta. In the case of pyrope garnet, their morphologies are important, particularly because Dufresne and Copeland

(1999) and Dufresne and Noyes (2001a) reported large diameter (up to 1.2 mm) pyropes with orange peel texture and kelyphitic rims that are often suggestive of a proximal source. The present work did not recover significant pyrope or G10 garnet from Winefred Lake or Christina Lake, which are located in the northern part of the study area. This raises the possibly that kimberlite could occur in Cold Lake–St. Paul and Calling Lake areas, or within the CLAWR. Alternatively, as was pointed out earlier, pyrope grain counts may correlate with total garnet grain counts, so more detailed KIM surveys may be required to determine whether the pyrope garnet is sourced locally in the Cold Lake–St. Paul and Calling Lake areas, within the CLAWR or farther north.

7.3.2 Indicators of Metamorphic Paragenesis

To consider possible sources for the almandine-grossular-spessartine garnet, some detective work was completed using AGS archival samples. During surficial mapping investigations in the 1980s, L. Andriashek (pers. comm., 2007) discovered garnet-rich metamorphic erratics in a farmer's boulder field southwest of Cold Lake (Figure 4b). The garnet erratics, which were located at 552000E, 6008000N (Zone 12, NAD 83) were discovered while following a set of north-northeast-trending flutes that propagate from/towards Cold Lake, likely as part of the southwestward propagating Primose Lobe (Figure 4; Andriashek and Fenton, 1989).

In situ EMPA analyses of garnet from the Andriashek erratic are geochemically identical to the pink almandine recovered from the beach sands (Figure 14). It is therefore possible to say with certainty that at least some of the garnet species in the study were derived from areas dominated by metamorphic rocks, most likely located to the north-northeast.

Garnetiferous gneiss similar to the Andriashek erratic is extremely common in western Laurentia and could be sourced within either the Churchill Province or the Slave Province. If a more local source is envisioned, the Lloyd and Mudjatik domains, located northeast of the study area and south of the Athabasca Basin, represent possible sources. Finally, other garnet-rich rocks of different compositions (e.g., amphibolite, silicate-facies iron formation, garnetiferous psammite and psammopelite) in, for example, the Lloyd and Mudjatik domains could have contributed the different garnet species evident in the beach sands of east-central Alberta.

7.4 Potential for Secondary Diamonds

Since the discovery of economic deposits of diamond in Canada didn't occur until the early 1990s, diamond exploration in Canada is only in its infancy. As such, the search for placer deposits of diamond has received little attention in this country. Secondary diamonds have been reported, however, from garnet-rich beach sands in the Arctic. For example, Shear Minerals Ltd. reported an octahedral diamond in pyrope-rich beach sand adjacent to kimberlites on the Churchill Diamond project, Nunavut (Strand, 2006).

The concentration of garnet-rich beach sands in east-central Alberta, coupled with knowledge of the existence of pyrope garnet species with favourable diamondiferous kimberlite composition, should raise awareness of the potential for secondary deposits of diamond in this area. If an undiscovered cluster of diamondiferous kimberlite occurs in, or north of, the Cold Lake–Calling Lake area, then diamonds may have been relocated and concentrated in much the same way that the garnet has. Test sample(s) of garnet-rich beach sands, analyzed by traditional diamond-recovery techniques (e.g., caustic fusion), is recommended.

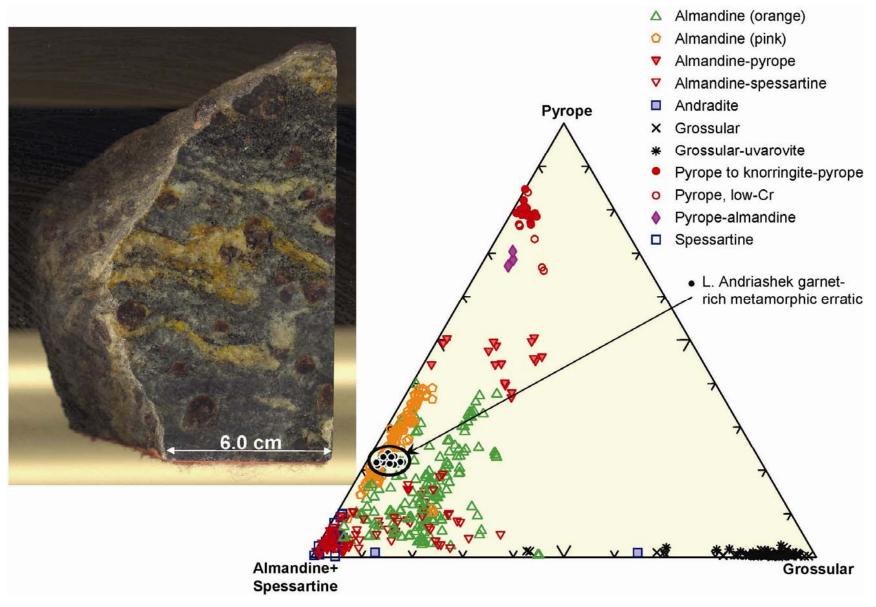


Figure 14. Garnet-rich metamorphic erratic discovered by L. Andriashek (pers. comm., 2007) and its geochemical comparison with beach sand garnet from this study.

8 References

- Andriashek, L.D. (1985): Quaternary stratigraphy of the Sand River area (NTS 73L); Alberta Research Council, Alberta Geological Survey, Open File Report 1985-16, 1 map.
- Andriashek, L.D. and Fenton, M.M. (1979): Auger test holes, Sand River map area 73L: lithology and results of sample analyses; Alberta Research Council, Alberta Geological Survey, Open File Report 1979-06, 243 p.
- Andriashek, L.D. and Fenton, M.M. (1989): Quaternary stratigraphy and surficial geology of the Sand River area 73L; Alberta Research Council, Alberta Geological Survey, Bulletin 57, 136 p.
- Austin, G.T. (1995): An overview of production of specific U.S. gemstones; United States Bureau of Mines, Special Publication 14-95.
- Averill, S.A. (2001): The application of heavy indicator mineralogy in mineral exploration with emphasis on base metal indicators in glaciated metamorphic and plutonic terrains; *in* Drift Exploration in Glaciated Terrain, M.B. McClenaghan, P. Brorowsky, P., G.E.M. Hall and S.J. Cook (ed.), Geological Society of London, Special Publication 185, p. 69–81.
- Averill, S.A. (2007): Useful Ni-Cu-PGE versus kimberlite indicator minerals in surficial sediments: similarities and differences; *in* Application of Till and Stream Sediment Heavy Mineral and Geochemical Methods to Mineral Exploration in Western and Northern Canada, R.C. Paulen and I. McMartin (ed.), Geological Association of Canada, Short Course Notes, v. 18, p. 105–118.
- Barnes, S.J. and Roeder, P.L. (2001): The range of spinel compositions in terrestrial mafic and ultramafic rocks; Journal of Petrology, v. 42, p. 2279–2302.
- Bostock, H.H., van Breeman, O. and Loveridge, W.D. (1991): Further geochronology of plutonic rocks in northern TMZ, District of Mackenzie, NWT; *in* Radiogenic Age and Isotopic Studies: Report 4, Geological Survey of Canada, Paper 90-2, p. 67–78.
- Bouzidi, Y., Schmitt, D.R., Burwash, R.A. and Kanasewich, E.R. (2002): Depth migration of deep seismic reflection profiles: crustal thickness variation in Alberta; Canadian Journal of Earth Sciences, v. 39, p. 331–350.
- Campbell, J.E., Fenton, M.M. and Pawlowicz, J.G. (2001): Surficial geology of the Pelican area, Alberta (NTS 83P); Alberta Energy and Utilities Board, EUB/AGS Map 251, scale 1:250 000.
- Chipeniuk, R.C. (1975): Lakes of the Lac La Biche District; D.W. Friesen and Sons Ltd., Calgary, Alberta, 318 p.
- Dawson, F.M., Evans, C.G., Marsh, R. and Richardson, R. (1994): Uppermost Cretaceous and Tertiary strata of the Western Canada Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin. G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, Special Report 4, p. 387–406.
- Dill, H.G. (2007): Grain morphology of heavy minerals from marine and continental placer deposits, with special reference to Fe-Ti oxides; Sedimentary Geology, v. 198, p. 1–27.
- Dufresne, M.B. and Copeland, D.A. (1999): Evaluation of the diamond potential of Ice River Mining Ltd.'s Martineau River property, east-central Alberta; Alberta Energy and Utilities Board, EUB/AGS Assessment File Report MIN 19990029, 31 p.
- Dufresne, M.B. and Copeland, D.A. (2000): Diamond potential of Buffalo Diamonds Ltd.'s Calling Lake properties, Alberta; Alberta Energy and Utilities Board, EUB/AGS Assessment File Report MIN 20000016, 54 p.

- Dufresne, M.B. and Copeland, D.A. (2001): Evaluation of the diamond potential of Ice River Mining Martineau River Property; Alberta Energy and Utilities Board, EUB/AGS Assessment File Report MIN20000001, 26 p.
- Dufresne, M.B. and Eccles, D.R. (2005): A guide to kimberlite-indicator mineral trends in Alberta including observations from recently compiled indicator mineral data; Alberta Energy and Utilities Board, EUB/AGS Special Report 20, 50 p.
- Dufresne, M.B. and Noves, A.K. (2001a): The diamond potential of Brilliant Mining Corporation's Medley River property, east-central Alberta; Alberta Energy and Utilities Board, EUB/AGS Assessment File Report MIN 20010005, 36 p.
- Dufresne, M.B. and Noves, A.K. (2001b): Diamond exploration on the Pelican Mountains properties; Alberta Energy and Utilities Board, EUB/AGS Assessment File Report MIN 20010009, 19 p.
- Dufresne, M.B., Eccles, D.R., McKinstry, B., Schmitt, D.R., Fenton, M.M., Pawlowicz, J.G. and Edwards, W.A.D. (1996): The diamond potential of Alberta; Alberta Energy and Utilities Board, EUB/AGS Bulletin 63, 158 p.
- Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J. and Veillette, J.J. (2002): The Laurentide and Innutian ice sheets during the last glacial maximum; Ouaternary Science Reviews, v. 21, p. 9–31.
- Eccles, D.R. and Simonetti, A. (2008): A study of peridotitic garnet xenocryst compositions from selected ultramafic bodies in the northern Alberta kimberlite province: implications for mantle stratigraphy and garnet classification; Energy Resources Conservation Board, ERCB/AGS Earth Sciences Report 2008-01, 26 p.
- Eccles, D.R. and Weiss, J. (2003): Alberta indicator minerals: compilation and observations; Calgary Mineral Forum, Short Course.
- Eccles, D.R., Dufresne, M.B., Copeland, D., Csanyi, W. and Creighton, S. (2002): Alberta kimberliteindicator mineral geochemical compilation; Alberta Energy and Utilities Board, EUB/AGS Earth Sciences Report 2001-20, CD.
- Eccles, D.R., Grunsky, E.C., Grobe, M. and Weiss, J. (2001): Structural emplacement model for kimberlitic diatremes in northern Alberta; Alberta Energy and Utilities Board, EUB/AGS Earth Sciences Report 2000-01, 116 p.
- Evans, J.G. and Moyle, P.R. (2006): U.S. industrial garnet; in Contributions to Industrial-Minerals Research, J.D. Bliss, P.R. Moyle and K.R. Long (ed.), United States Geological Survey, Bulletin 2209-L, 60 p.
- Fenton, M.M. (1984): Quaternary stratigraphy of the Canadian Prairies; in Quaternary Stratigraphy of Canada — A Canadian Contribution to IGCP Project 24, R.J. Fulton (ed.), Geological Survey of Canada, Paper 84-10, p. 57-68.
- Fenton, M.M. and Andriashek, L.D. (1983): Surficial geology of the Sand River area, Alberta, NTS 73L; Alberta Research Council, Alberta Geological Survey, Map 178, scale 1:250 000.
- Finnerty, A.A. and Boyd, J.J. (1987): Thermobarometry for garnet peridotites: basis for the determination of thermal and compositional structure of the upper mantle; in Mantle Xenoliths, P.H. Nixon (ed.), John Wiley, New York, p. 381–402.
- Friske, P.W.B., Prior, G.J., McNeil, R.J., McCurdy, M.W. and Day, S.J.A. (2003): Stream sediment and water survey in the Buffalo Head Hills area, northern Alberta (parts of NTS 84B, 84C, 84F and 84G) including analytical, mineralogical and kimberlite indicator mineral data from silts, heavy mineral

- concentrates and waters; Alberta Energy and Utilities Board, EUB/AGS Special Report 66 and Geological Survey of Canada, Open File 1790, CD.
- Gold, C.M. (1978): Quantitative methods in the evaluation of the Quaternary geology of the Sand River (73L) map sheet, Alberta, Canada; Ph.D. thesis, University of Alberta, 94 p.
- Gold, C.M., Andriashek, L.D. and Fenton, M.M. (1983): Bedrock topography of the Sand River map area, Alberta, NTS 73L; Alberta Research Council, Alberta Geological Survey, Map 153, scale 1:250 000.
- Grond, H.C., Wolfe, R., Montgomery, J.H. and Giroux, G.H. (1991): A massive skarn-hosted andradite deposit near Penticton, British Columbia; *in* Industrial Minerals of Alberta and British Columbia, Canada, Z.D. Hora, W.N. Hamilton, B. Grant and P.D. Kelly (ed.), Proceedings of the 27th Forum on the Geology of Industrial Minerals, Banff, Alberta, Alberta Research Council, Information Series Report 115, p. 131–133.
- Grütter, H., Latti, D. and Menzies, A. (2006): Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry; Journal of Petrology, v. 47, no. 4, p. 801–820.
- Gurney, J.J. (1984): A correlation between garnets and diamonds in kimberlite; *in* Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration, J.E. Glover and P.G. Harris (ed.), University of Western Australia, Publication 8, p. 143–166.
- Haimila, R. (1996): 1996 assessment report, prepared for Raymond Haimila; Alberta Energy and Utilities Board, EUB/AGS Assessment File Report MIN 19960018, 44 p.
- Haimila, R. (1998): 1998 Assessment Report, prepared for 656405 Alberta Ltd.; Alberta Energy and Utilities Board, EUB/AGS Assessment File Report MIN 19980005, 30 p.
- Hamilton, W.N., Langenberg, W.C., Price, M.C. and Chao, D.K. (1999): Geological map of Alberta; Alberta Energy and Utilities Board, EUB/AGS Map 236, scale 1: 1 000 000.
- Harben, P.W. and Kuzvart, M. (1996): Garnet; *in* Industrial minerals a global geology: Industrial Minerals Information Ltd., London, United Kingdom, p. 186–192.
- Harris, P. (2000): At the cutting edge abrasives & their markets; Industrial Minerals, no. 388, p. 19–27.
- Helmy, H.H. (2005): Melonite group minerals and other tellurides from three Cu-Ni-PGE prospects, Eastern Desert, Egypt; Ore Geology Reviews, v. 26, p. 305–324.
- Hood, C.T.S. and McCandless, T.E. (2004): Systematic variations in xenocryst mineral composition at the province scale, Buffalo Hills kimberlites, Alberta, Canada; Lithos, v. 77, p. 733–747.
- Jarosewich, E. (2002): Smithsonian microbeam standards; Journal of Research of the National Institute of Standards and Technology, v. 107, p. 681–685.
- Kent, D.M. (1994): Paleogeographic evolution of the cratonic platform Cambrian to Triassic; *in* Geological Atlas of the Western Canadian Sedimentary Basin, G.D. Mossop and I. Shetson (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, Special Report 4, p. 69–86.
- Klassen, R.W. (1989): Quaternary geology of the southern Canadian Interior Plains; *in* Quaternary Geology of Canada and Greenland, R.J. Fulton (ed.), Geological Survey of Canada, Geology of Canada, no. 1 (*also* Geological Society of America, The Geology of North America, v. K-1), p. 138–174.
- Kopylova, M.G., Price, S.E. and Russell, J.K. (2000): Primitive magma from the Jericho pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry; Journal of Petrology, v. 41, p. 789–808.

- Mathieu, G.I., Boisclair, M.R. and Wolfe, R. (1991): Geology, mineralogy and processing of Mount Riordan garnet ores; *in* Industrial Minerals of Alberta and British Columbia, Canada, Z.D. Hora, W.N. Hamilton, B. Grant and P.D. Kelly (ed.), Proceedings of the 27th Forum on the Geology of Industrial Minerals, Banff, Alberta, Alberta Research Council, Information Series Report 115, p. 135–145.
- McNicoll, V.J., Theriault, R.J. and McDonough, M.R. (2000): Taltson basement gneisses: U-Pb and Nd isotopic constraints of the basement to the Paleoproterozoic TMZ, northeastern Alberta; Canadian Journal of Earth Sciences, v. 37, p. 1575–1596.
- Morris, T.F., Sage, R.P., Ayer, J.A. and Crabtree, D.C. (2002): A study in clinopyroxene composition: implications for kimberlite exploration; Geochemistry: Exploration, Environment and Analysis, v. 2, p. 321–331.
- Nimis, P. and Taylor, W.R. (2000): Single clinopyroxene thermobarometry for garnets peridotites, Part I. calibration and testing of a Cr-in-cpx barometer and an enstatite-in-cpx thermometer; Contributions to Mineralogy and Petrology, v. 139, p. 541–554.
- Paulen, R.C. (2007): Sampling techniques in the Western Canada Sedimentary Basin and the Cordillera; *in* Application of Till and Stream Sediment Heavy Mineral Geochemical Methods to Mineral Exploration in Western and Northern Canada, R.C. Paulen and I. McMartin (ed.), Geological Association of Canada, Short Course Notes, v. 18, p. 41–59.
- Prior, G., McCurdy, M. and Fiske, P. (2007): Stream sediment sampling for kimberlite-indicator minerals in Western Canada Sedimentary Basin: the Buffalo Head Hills survey, north-central Alberta; *in* Application of Till and Stream Sediment Heavy Mineral Geochemical Methods to Mineral Exploration in Western and Northern Canada, R.C. Paulen and I. McMartin (ed.), Geological Association of Canada, Short Course Notes, v. 18, p. 91–103.
- Ramsay, R.R. (1992): Geochemistry of diamond indicator minerals; Ph.D. thesis, University of Western Australia, 131 p.
- Rich, A. (2003): Geochemical survey of the beach sediments in the St. Paul area; Alberta Energy and Utilities Board, EUB/AGS Assessment File Report MIN 20030008, 17 p.
- Ross, G.M., Parrish, R.R., Villeneuve, M.E. and Bowring, S.A. (1991): Geophysics and geochronology of the crystalline basement of the Alberta Basin, Western Canada; Canadian Journal of Earth Sciences, v. 28, p. 512–522.
- Ross, G.M., Broome, J. and Miles, W. (1994): Potential fields and basement structure Western Canada Sedimentary Basin; *in* Geological Atlas of the Western Canadian Sedimentary Basin, G.D. Mossop and I. Shetson (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, Special Report 4, p. 41–48.
- Russell, J.K., Dipple, G.M., Lang, J.R. and Lueck, B. (1999): Major-element discrimination of titanian andradite from magmatic and hydrothermal environments: an example from the Canadian Cordillera; European Journal of Mineralogy, v. 11, p. 919–935.
- Sikabonyi, L.A. and Rodgers, W.J. (1959): Paleozoic tectonics and sedimentation in the northern half of the west Canadian Basin; Journal of the Alberta Society of Petroleum Geologists, v. 7, p. 193–216.
- Smith, D.G.W. and Higgins, M.D. (2001): MinIdent-Win 4; Micronex Mineral Services Ltd., Edmonton, Alberta.
- Snowfield Development Corp. (2003): Mud Lake kimberlite samples diamond stability field; News Release NR03-16, June 5, 2003, URL < http://www.snowfield.com/main/news/nr030605.html> [June 26, 2008].

- Sobolev, N.V., Lavrent'ev, Y.G., Pokhilenko, N.P. and Usova, L.V. (1973): Chrome-rich garnets from the kimberlites of Yakutia and their paragenesis; Contributions to Mineralogy and Petrology, v. 40. p. 39–52.
- Somarin, A.K. (2004): Garnet composition as an indicator of Cu mineralization: evidence from skarn deposits of NW Iran; Journal of Geochemical Exploration, v. 81, p. 47–57.
- Strand, P. (2006): An update on the Churchill diamond project, Nunavut, Canada; 15th Calgary Mining Forum, Abstract Volume, p. 22–23.
- Swanson, F. Gent, M. and Kelley, L. (2005): Kimberlite indicator minerals on-line searchable database; Government of Saskatchewan, URL http://www.publications.gov.sk.ca/details.cfm?p=10614 [March 17, 2008].
- Thériault, R.J. and Ross, G.M. (1991): Nd isotopic evidence for crustal recycling in the ca. 2.0 Ga subsurface of Western Canada; Canadian Journal of Earth Sciences, v. 28, p. 1140–1147.
- Turnbull, D. (2002): Calling Lake project, Alberta: 1999–2000 exploration and drilling program summary; Alberta Energy and Utilities Board, EUB/AGS Assessment File Report MIN 20020004, 17 p.
- Villeneuve, M.E., Ross, G.M., Theriault, R.J., Miles, W., Parrish, R.R. and Broome, J. (1993): Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta Basin, Western Canada; Geological Survey of Canada, Bulletin 447, 93 p.
- Wright, G.N., McMechan, M.E. and Potter, D.E.G. (1994): Structure and architecture of the Western Canadian Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin. G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, Special Report 4, p. 25–40.
- Wyatt, B.A., Baumgartner, M., Anckar, E. and Grütter, H. (2004): Compositional classification of 'kimberlitic' and 'non-kimberlitic' ilmenite; Lithos, v. 77, p. 819–840.

Appendices

Appendix 1 – Garnet-Rich Beaches in East-Central Alberta (Information Gathered from Various Prospectors)

In most cases because of the prevailing winds, the beaches on the northwest and southeast ends of the lakes are most productive for garnet. The shape of the lake also has to be considered, with long-shore currents accumulating garnet in areas with considerable wave action.

Cold Lake Area

- Cold Lake (English Bay) has a garnet-rich beach right at the English Bay campground.
- Marie Lake has garnet-rich beaches in various locales around the lake, including the north side campground.

Winefred Lake Area

- No garnet was observed at Winefred Lake north, but many of the garnet beaches on the southwest, south and east sides carry garnet.
- Kirby Lake (west of Winefred Lake) has spotty occurrences, but garnet was observed at the north end near the airstrip and near the north-side boat launch.

Bonnyville Area

- Moose Lake has garnet along the north side and black sands on the south side.
- Muriel Lake has garnet on the southeast, south and southwest beaches.

Frog Lake Area

- Whitney Lake (near Frog Lake) has garnet and abundant black sand.
- Frog Lake has garnet beaches on the east side directly down the lake from Sputinow.

Lac La Biche Area

- Square Lake (near Lac La Biche) has garnet near the boat launch on the southeast end and some spotty garnet beaches around the lake.
- Wolf Lake has excellent garnet beaches, including the one at the south side campsite.
- Heart Lake has garnet beaches on the east side that are accessible by boat only.
- Lac La Biche has several garnet beaches around the lake.

Calling Lake Area

Garnetiferous beach extends from the south shore at the boat launch and spottily along the southwestern and western shores.

Slave Lake Area

Slave Lake has garnets on the beaches in a number of places along the north side.

St. Paul Area

Lac Santé has numerous garnets at the boat launch on the east side.

- Lower Therien has garnet at the north end by the private beach.
- Upper Therien has garnet all along the south shore, directly south of the townsite.
- Garner Lake, directly north of Spedden, has garnet along the southeast side by the boat launch.
- Vincent Lake has spotty occurrences of garnet along the northeast side.
- Chicken Lake has garnet at the beach on the north end by the boat launch.
- Stoney Lake has great garnets at the south end by the campsite.

Appendix 2 – Magnetic Susceptibility and General Lithology of Beach Sands in East-Central Alberta

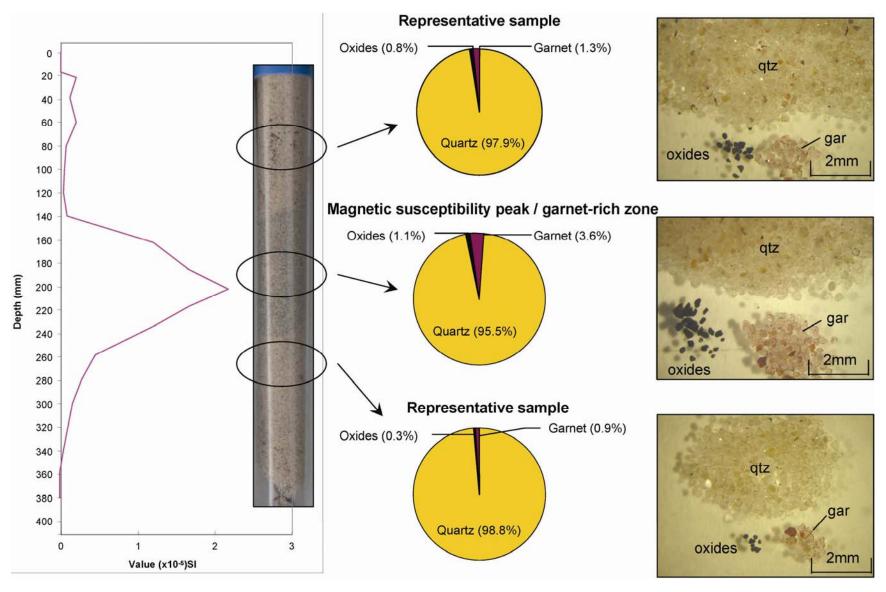


Figure 15. Magnetic susceptibility and general lithology of beach sand at Heart Lake (sample RE06-GB-001).

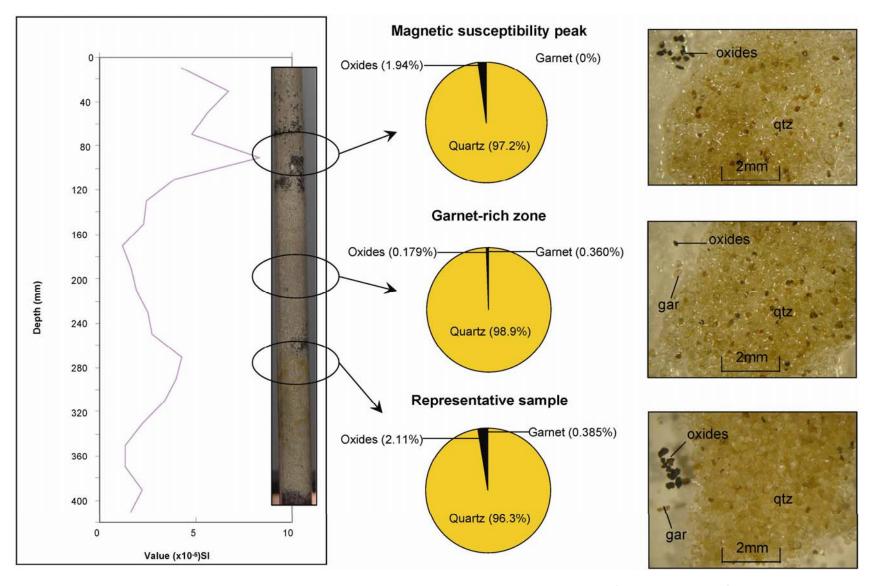


Figure 16. Magnetic susceptibility and general lithology of beach sand at Winefred Lake (sample RE06-GB-002).

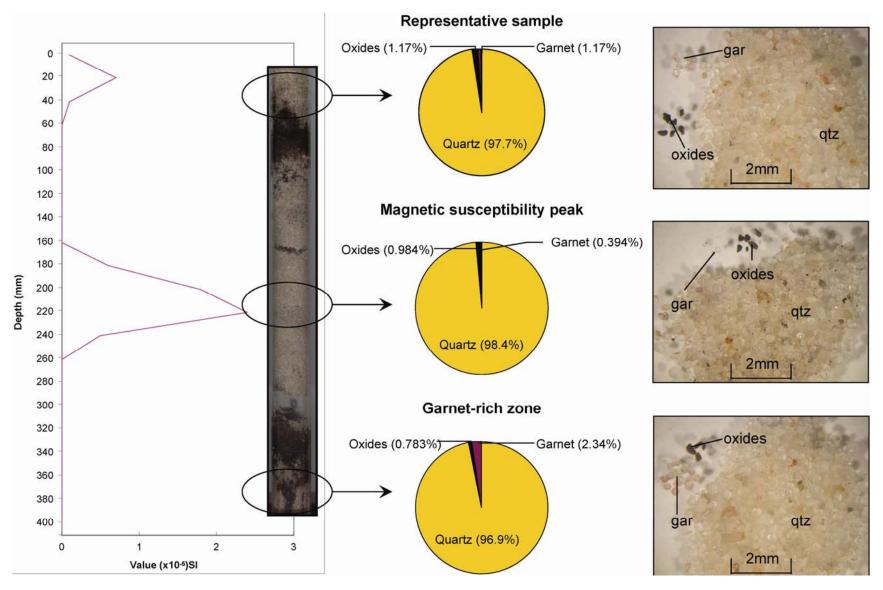


Figure 17. Magnetic susceptibility and general lithology of beach sand at Christina Lake (sample RE06-GB-003).

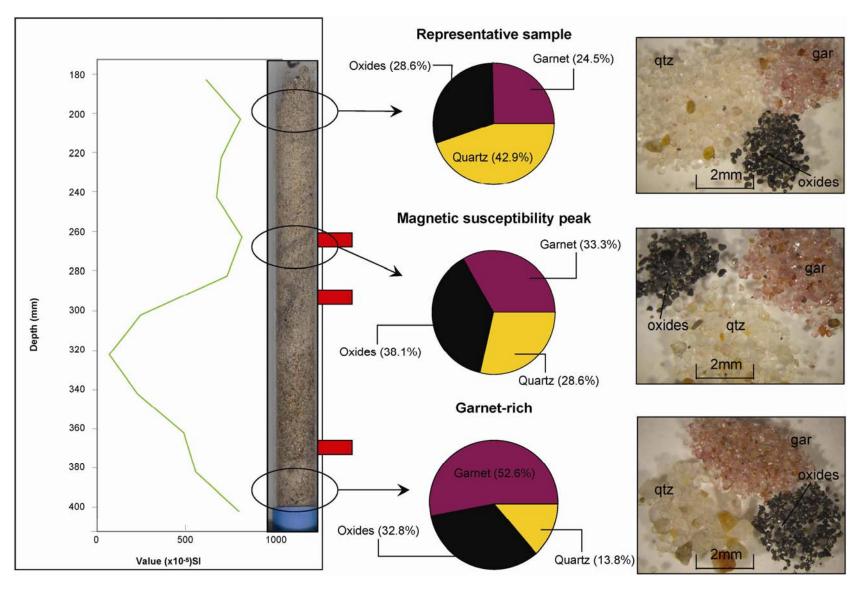


Figure 18. Magnetic susceptibility and general lithology of beach sand at Wolf Lake (sample RE06-GB-004). Garnet-rich horizons are highlighted by the red arrows.

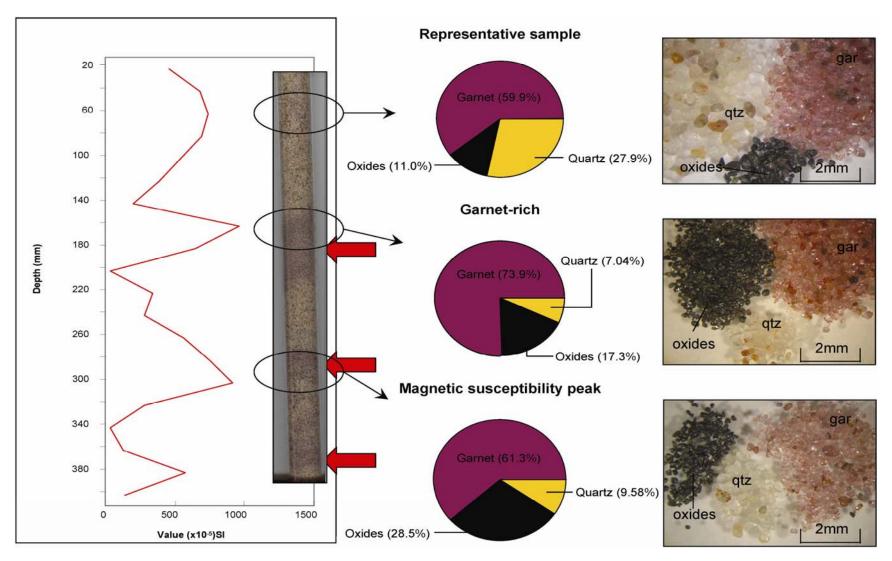


Figure 19. Magnetic susceptibility and general lithology of beach sand at Cold Lake (sample RE06-GB-005). Garnet-rich horizons are highlighted by the red arrows.

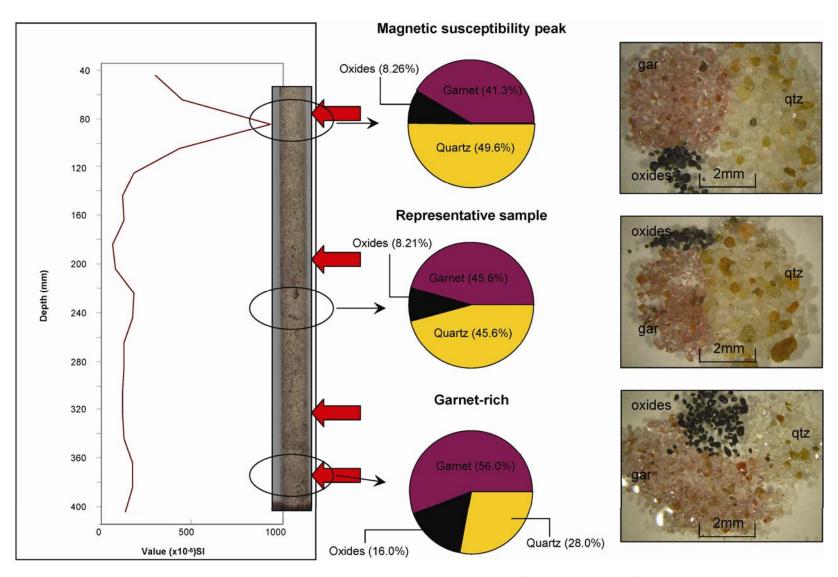


Figure 20. Magnetic susceptibility and general lithology of beach sand at Shelter, Bay, Marie Lake (sample RE06-GB-007). Garnet-rich horizons are highlighted by the red arrows.

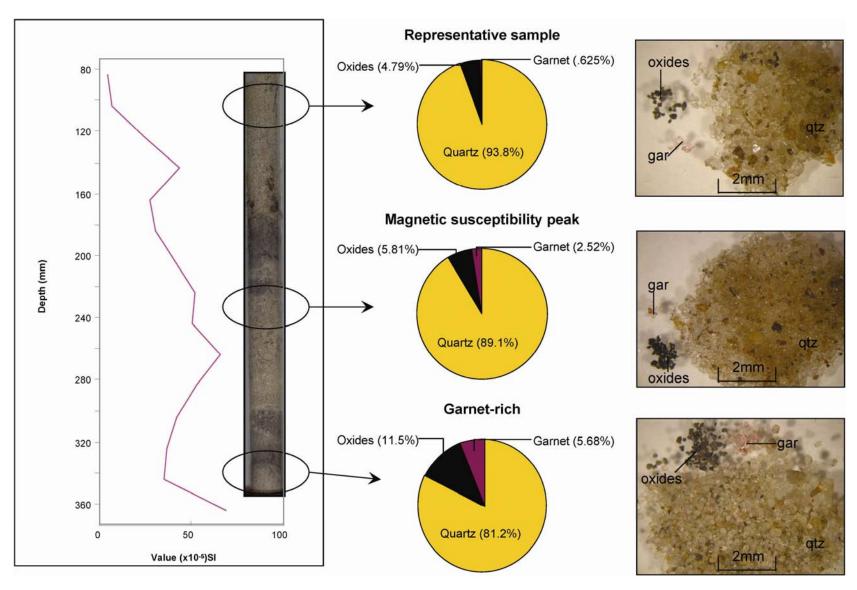


Figure 21. Magnetic susceptibility and general lithology of beach sand at Stoney Lake (sample RE06-GB-008).

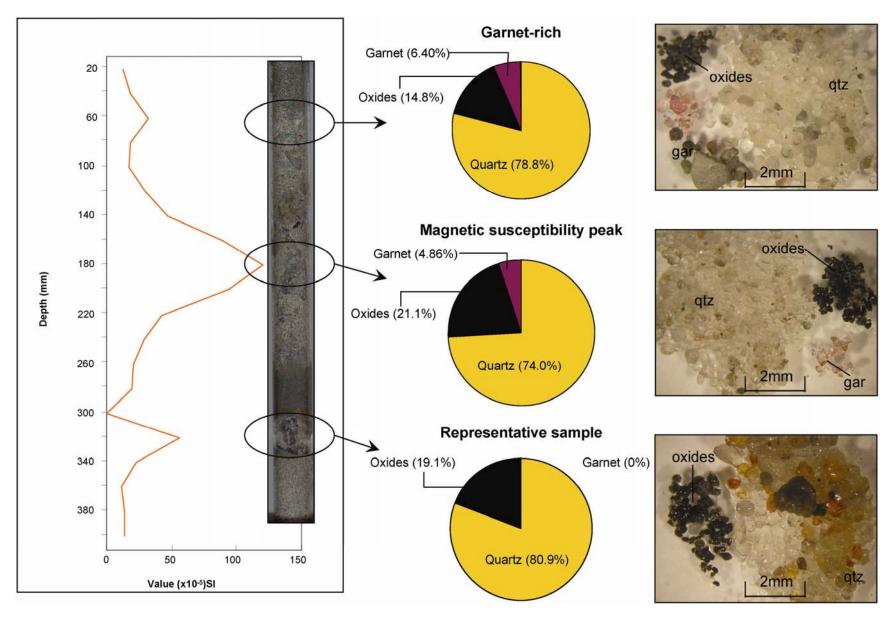


Figure 22. Magnetic susceptibility and general lithology of beach sand at Lac Santé (sample RE06-GB-009).

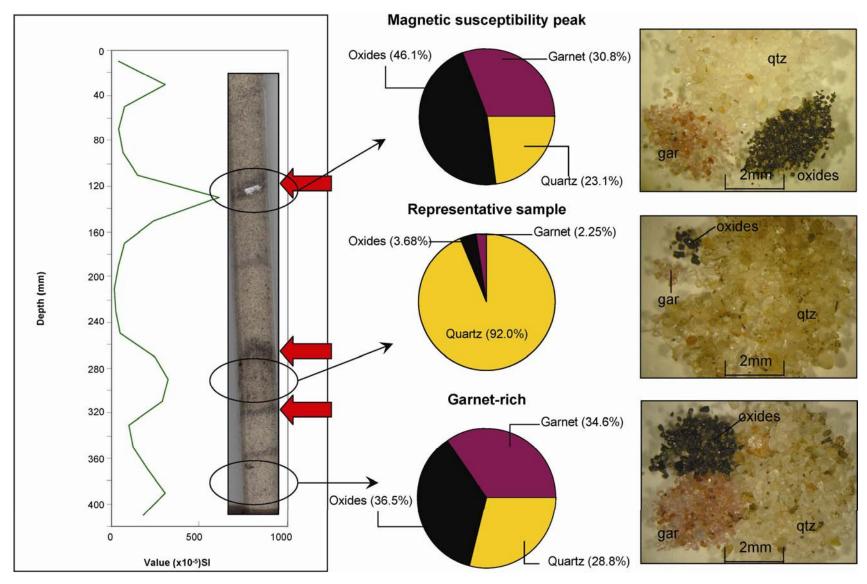


Figure 23. Magnetic susceptibility and general lithology of beach sand at Calling Lake southeast (sample RE06-GB-010).

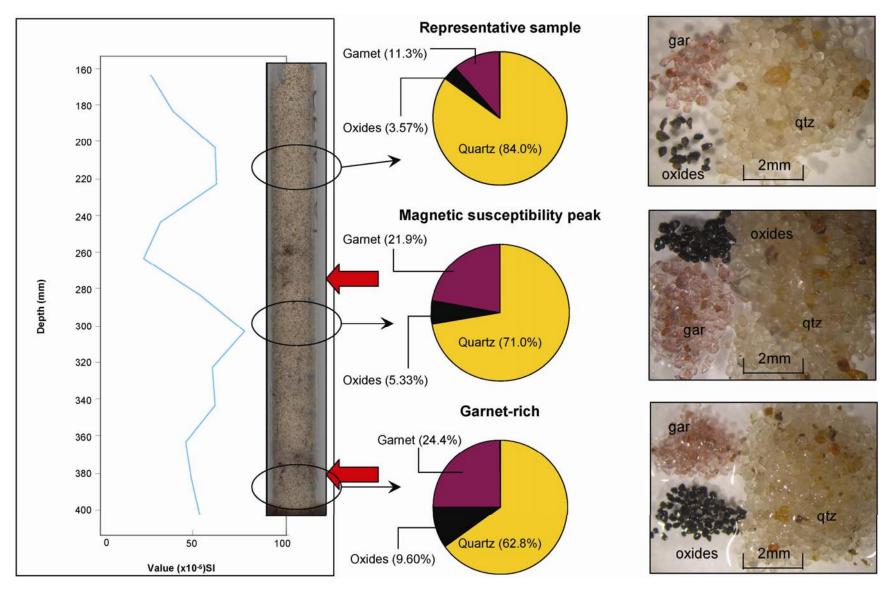


Figure 24. Magnetic susceptibility and general lithology of beach sand at Calling Lake west (sample RE06-GB-011).

Appendix 3 – Electron Microprobe Analytical Results for Garnet-Rich Beach Sands in East-Central Alberta: A) Garnet (All Species), B) Non-Garnet Kimberlite-Indicator Minerals (Clinopyroxene, Chromite and Ilmenite), and C) Garnet from a Garnetiferous Pelitic Gneiss Erratic Discovered in the Area

Table 6. Electron microprobe analytical results for garnet.

¹ Physical grain types identified during heavy-mineral indicator processing, some of which were identified by semi-quantive EDS analysis.

² Geochemical grain types identified by entering EMPA data from this study into the program MinIdent-Win (Smith and Higgins, 2001). The score is a "matching index" calculation of mineral identification probability where a score of 1000 represents a perfect match.

³ Stoichiometric garnet end member calculations based on EMPA data from this study. Values are in per cent and total 100%.

Sample ID	mount	Grain Grain ID size (mm)	Probe spot	TiO ₂ SiO ₂ K ₂ O Na ₂	×	Cr ₂ O ₃ Al ₂ O ₃	Ca0	MgO	MnO	474969	NiO V ₂ O ₃	Total Grain type (physical ID)		Score	Spess	Almand .		dr Uvar	Knorr G	oss Pyrope
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	1 0.5-1.0 2 0.5-1.0 3 0.5-1.0	Core Core Core	0.046 38.43 0.003 0 0.05 38.297 0 0.0 0.039 38.211 0 0.0	26 27.162	0 20.803	7.092 9.812 6.804	4.355 2.895 4.06	1.937 1.683 3.298	0.017 0. 0	.004 0.004 .006 0.02 0 0.008	100.652 Almandine 100.682 Almandine 100.411 Almandine	Almandine Almandine Almandine	972 924 975	4.3 3.7 7.3	58.9 57.3 57.5	1.2 0.1 2.1 0.1 3.2 0.1	0.0 0.0 0.0	0.0 2 0.0 1	3.5 16.9 5.4 11.3 6.0 15.9
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	4 0.5-1.0 5 0.5-1.0 6 0.25-0.5	Core Core Core	0.004 37.988 0.002 0.00 0.024 37.823 0 0.0 0 36.844 0.001 0.0	4 35.37 18 34.988		4.192	5.427 3.89 1.183	0.813 0.202 2.563	0	0 0.014 0 0.01 0 0	100.878 Almandine 100.868 Almandine 100.167 Almandine	Almandine Almandine Almandine	928 903 876	1.8 0.5 5.8	72.7 76.8 77.1	0.7 0.0 1.9 0.1 2.4 0.0	0.0	0.0 5	1.7 21.1 1.5 15.3 1.9 4.7
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	7 0.25-0.5 8 0.25-0.5 9 0.25-0.5	Core Core Core	0.055 38.346 0 0.00 0.051 37.28 0 0.00 0.044 38.645 0 0.01	33.67	0.007 20.544		4.712 1.033 5.249	0.939 0.129 0.989	0.031	.014 0.027 0 0 .003 0.033	100.639 Almandine 100.38 Almandine 100.843 Almandine	Almandine Almandine Almandine	969 867 974	2.1 0.3 2.2	60.5 73.7 57.5	1.7 0.2 2.3 0.2 1.1 0.1		0.0 1	7.3 18.2 9.4 4.1 3.9 20.2
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	10 0.25-0.5 11 0.25-0.5 12 0.25-0.5	Core Core Core	0.035 37.92 0.001 0.00 0.209 38.773 0.001 0.00 0.009 37.775 0 0	26 4.791	0.001 20.448	3.167 33.225 4.866	3.975 0.122 2.242	0.157 0.783 0.255	0.037 0.	.011 0.018 .004 0.007 0 0.012	100.981 Almandine 98.425 Almandine 101.052 Almandine	Almandine Grossular Almandine	916 981 891	0.3 1.7 0.6	75.0 6.4 76.7	1.2 0.1 5.8 0.6 1.1 0.0	0.1 0.0 0.3	0.0 8	7.7 15.6 5.0 0.5 2.5 8.9
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	13 0.25-0.5 14 0.25-0.5 15 0.25-0.5	Core Core Core	0.061 37.533 0 0.0 0.403 39.015 0 0.0 0.111 38.166 0 0.0	03 6.571 18 30.426	0.004 17.731 0.085 21.377	3.766	1.335 0.105 5.663	0.387 0.117 1.059	0.043 0.011 0.	0 0 0 0.07 .015 0.029	101.332 Almandine 99.497 Almandine 100.726 Almandine	Almandine Grossular Almandine	864 972 970	0.9 0.3 2.3	77.9 2.7 65.3	2.5 0.2 17.2 1.2 0.8 0.3	0.0 0.3	0.0 7 0.0 9	3.2 5.3 3.2 0.4 1.2 21.8
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	16 0.25-0.5 17 0.25-0.5 18 0.25-0.5	Core Core Core	0.574 41.909 0 0.00 0.041 38.993 0 0.00 0.206 39.632 0 0			4.498 4.581 33.556	21.415 6.529 0.147	0.294 0.462 0.348	0.028	0.02 0.025 0 0.008 .004 0.035	99.709 Almandine 101.515 Almandine 99.749 Almandine	Low-Crpyrope Almandine Grossular	986 974 982	0.6 1.0 0.8	12.9 61.5 6.7	4.7 1.5 2.0 0.1 7.3 0.6	0.0	0.0 1	.0 75.0 0.4 24.9 4.1 0.6
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	19 0.25-0.5 20 0.25-0.5 21 0.25-0.5	Core Core Core	0.02 38.376 0 0.00 0.07 37.821 0.004 0.00 0 38.37 0 0			4.147	3.54 1.746 6.135	1.611 3.335 0.397	0 0.	0 0.027 .011 0.011 0 0.012	101.335 Almandine 100.872 Almandine 101.433 Pink almandine		954 908 918	3.6 7.6 0.9		1.4 0.1 2.4 0.2 0.1 0.0	0.0	0.0 9	7.0 13.8 1.5 7.0 1.4 23.6
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	22 0.25-0.5 23 0.25-0.5 24 0.25-0.5	Core Core Core	0 38.227 0 0.0 0.014 39.261 0 0.1 0.024 39.13 0.001 0.0	4 26.838	0.105 22.229 0.005 22.172	2.152 1.094	4.345 9.718 9.306	1.424 0.748 0.245	0 0	.002 0.014).01 0 0 0.022	101.72 Pink almandine 101.187 Pink almandine 101.114 Pink almandine	e Almandine	918 961 943	3.2 1.6 0.5		0.3 0.0 0.1 0.0 0.1 0.1	0.3	0.0 6	.8 16.9 i.8 36.2 !.9 35.1
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	25 0.25-0.5 26 0.25-0.5 27 0.25-0.5	Core Core Core	0.01 39.141 0 0.00 0.013 38.205 0 0.0 0.017 38.745 0.001 0.00	4 34.17	0.049 21.65	1.196 1.012 1.034	7.759 4.472 7.046	0.326 2.143 0.514	0	.002 0.013 0 0).01 0	101.415 Pink almandine 101.758 Pink almandine 101.779 Pink almandine	e Almandine	944 916 933	0.7 4.7 1.1	66.2 74.8 69.0	0.2 0.0 0.0 0.0 0.3 0.0	0.2	0.0 2	1.1 29.7 1.8 17.4 1.7 26.9
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	28 0.25-0.5 29 0.25-0.5 30 0.25-0.5	Core Core Core	0.005 37.866 0 0.00 0.041 38.568 0 0.00 0.005 39.706 0 0.0	25 31.197	0.055 21.892 0.022 22.316		3.913 7.969 10.419	0.896 0.28 0.274	0.089	.006 0 .0 0.019 .013 0.048	101.339 Pink almandine 101.269 Pink almandine 101.907 Pink almandine	e Almandine	887 940 947	2.0 0.6 0.6	79.5 66.1 55.4	0.1 0.0 0.1 0.1 1.0 0.0	0.2 0.1	0.0 2 0.0 4	1.0 15.4 1.8 30.1 1.5 38.5
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	31 0.25-0.5 32 0.25-0.5 33 0.25-0.5	Core Core Core	0.002 38.41 0 0.0 0.003 38.425 0.007 0.0 0.024 37.185 0 0	32.522 32.379	0.013 21.897 0 20.969	1.114 1.12	5.658 6.568 2.173	1.088 0.909 7.026	0.045	.006 0.005 0 0.004 0 0.012	101.441 Pink almandine 101.51 Pink almandine 100.918 Pink almandine	e Almandine e Almandine	929 935 900	2.4 2.0 15.9	72.1 69.8 72.2	0.6 0.0 0.0 0.0 0.4 0.1		0.0	1.9 21.9 1.0 25.1 1.8 8.7
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	34 0.25-0.5 36 0.5-1.0 37 0.5-1.0	Core Core Core	0.007 37.506 0 0.0 0.021 37.606 0.002 0.0 0.029 36.829 0 0.0	3 26.247 39 27.009	0.017 21.068 0 20.629	0.486 0.246	4.858 0.965 0.369	0.391 14.768 14.723	0 0.005	0 0.006 0 0.016 0 0	100.58 Pink almandine 101.209 Mn almandine 99.908 Mn almandine	Amandine-Spessartine-series Amandine-Spessartine-series	899 900 878	0.9 34.3 34.7	77.3 60.2 62.7	0.2 0.0 0.0 0.1 0.1 0.1	0.1 0.1 0.0	0.0 1	.6 18.9 .4 3.9 l.9 1.5
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	38 0.25-0.5 39 0.5-1.0 40 0.25-0.5	Core Core Core	0.027 36.484 0 0.0 0.008 36.084 0 0.0 0.113 38.627 0 0.0	5 27.03 5.592	0.02 1.73 0 18.52	2.493 31.981 34.493	0.566 0.036 0.064	0.462 0.371	0.022 0. 0.041 0.	.012 0.009 .004 0 .011 0.011	98.247 Mn almandine 97.383 Andradite 97.856 Grossular	Almandine-Spessartine-series Andradite Grossular	945 910 980	38.9 1.0 0.8	3.2	1.7 0.1 90.7 0.0 13.6 0.3	0.0	0.0 1	.1 2.4 .1 0.1 1.8 0.2
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1 GB1	41 0.25-0.5 42 0.25-0.5 43 0.25-0.5 44 0.25-0.5	Core Core Core Core	0.206 39.441 0.002 0.0 0.443 27.695 0.007 0 0.438 42.171 0 0.0 0.183 38.706 0 0	12.499	0.028 52.37 0.522 22.113	34.006 0 5.406 29.938	0.099 2.08 19.149 0.108	0.447 0.054 0.388 1.441	0.014 0.016 0.	0.01 0.098 0 0.038 .013 0.046 .006 0.156	99.74 Grossular 95.228 Grossular 100.186 Grossular 99.011 Grossular	Grossular Staurolite Low-Cr pyrope	983 999 980 989	1.0 0.3 0.8 3.2		13.8 0.6 -1.2 1.2 4.1 1.2 10.1 0.5	0.0 1.5	0.1 0 0.0 7	9.1 0.4 0.0 22.7 0.3 68.2 2.5 0.4
RE06-GB-001 RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	45 0.25-0.5 46 0.25-0.5 47 0.25-0.5	Core Core Core	0.073 40.106 0 0.00 0.904 38.504 0 0.00 0.192 39.243 0 0.0	24 19.593 23 7.246	0.161 21.883	5.434 33.929 29.774	12.442 0.062 0.086	0.508 0.401 2.166	0.062 0.024	0 0.027 0 0.068 .006 0.02	100.313 Grossular 98.313 Grossular 99.44 Grossular	Grossular Almandine-Pyrope-series Grossular Grossular	985 981 989	1.1 0.9 4.8	38.6 4.4 11.9	2.8 0.2 17.3 2.7 8.1 0.6	0.5 0.1	0.0 1 0.0 7	1.0 45.8 4.4 0.2 4.4 0.3
RE06-GB-001 RE06-GB-001 RE06-GB-001	GB1 GB1 GB1	48 0.25-0.5 49 0.25-0.5 50 0.25-0.5	Core Core Core	0.457 38.642 0 0.00 0.074 40.236 0.004 0.0 0.046 36.395 0 0.00	7.459 2 21.486	0 17.818 0 22.095	33.92 7.653 0.274	0.018 9.908 0.083	0.183 0.297 26.081	0.037 0.011 0.	0 0.035 .002 0.014).02 0	98.608 Grossular 101.8 Grossular 98.358 Spessartine	Grossular Almandine Spessartine	982 950 914	0.4 0.6 62.9	5.7 42.6 35.8	15.9 1.4 2.7 0.2 0.4 0.1	0.0 0.0 0.0	0.0 7 0.0 1	7.5 36.4 14 0.4
RE06-GB-002 RE06-GB-002 RE06-GB-002	GB1 GB1 GB1	1 0.25-0.5 2 0.25-0.5 3 0.25-0.5	Core Core Core	0.004 38.338 0 0.13 0.019 39.108 0 0.0 0.048 39.48 0 0.0	35 32.908 19 30.393	0 21.46 0.031 22.055	3.135 1.416 0.804	4.802 8.126 10.465	0.504 0.339 0.431	0.008 0.068 0.	0 0.005 .002 0.005 .008 0.02	101.299 Almandine 101.611 Almandine 101.203 Almandine	Almandine Almandine Almandine	939 948 933	1.1 0.7 0.9	70.9 64.4 57.6	0.9 0.0 0.3 0.1 1.2 0.1		0.0 8	1.5 18.6 1.7 30.8 1.9 39.2
RE06-GB-002 RE06-GB-002 RE06-GB-002	GB1 GB1 GB1	4 0.25-0.5 5 0.25-0.5 6 0.25-0.5	Core Core Core	0 38.338 0.006 0.00 0 37.757 0 0.00 0.037 38.208 0 0	9 33.56	0.011 21.297 0.001 21.296	1.177 1.376	5.398 5.215 2.536	1.156 1.432 1.043	0.044 0.04	0 0.026 0 0.019 0 0.009	101.043 Almandine 100.384 Almandine 101.408 Almandine	Almandine Almandine Almandine	926 932 921	2.6 3.2 2.3	72.8 72.4 68.1	1.4 0.0 0.6 0.0 2.4 0.1	0.0	0.0 2	1.1 21.1 1.5 20.4 7.1 10.0
RE06-GB-002 RE06-GB-002 RE06-GB-002	GB1 GB1 GB1	7 0.25-0.5 8 0.25-0.5 9 0.25-0.5	Core Core Core	0.003 38.476 0 0.0 0.005 38.168 0 0.0 0.048 38.539 0 0.0	4 33.35 4 32.197	0 21.508 0 21.558	1.698 1.336 1.982	4.669 6.486 8.373	1.67 0.6 0.525	0 0. 0.044	.015 0 0 0.023 0.01 0.004	101.401 Almandine 100.431 Almandine 99.915 Almandine	Almandine Almandine Almandine	931 938 963	3.7 1.3 1.1	73.1 69.8 61.2	0.6 0.0 0.3 0.0 1.2 0.1	0.0	0.0 4 0.0 3	.2 18.3 i.4 25.1 i.0 32.1
RE06-GB-002 RE06-GB-002 RE06-GB-002	GB1 GB1 GB1	10 0.25-0.5 11 0.25-0.5 12 0.25-0.5	Core Core Core	0.022 38.392 0 0.0 0 38.02 0 0.0 0.014 38.253 0 0.0	5 30.707 21 35.936	0 21.455 0.006 21.448	2.835 1.466 1.232	4.661 3.341 5.604	2.495 1.078 0.741	0.023 0. 0.046 0.	.005 0 .007 0.002 .002 0.001	100.61 Almandine 101.371 Almandine 101 Almandine	Almandine Almandine Almandine	964 887 925	5.6 2.4 1.6	67.8 80.0 73.0	0.5 0.1 0.0 0.0 0.4 0.0	0.0 0.0	0.0 7 0.0 4	.6 18.4 .3 13.3 .1 21.8
RE06-GB-002 RE06-GB-002 RE06-GB-002	GB1 GB1 GB1	13 0.25-0.5 14 0.25-0.5 15 0.25-0.5	Core Core Core	0.031 37.95 0 0.0 0 38.505 0.007 0 0.005 39.101 0.002 0.0	7 32.379 32.446	0 21.355 0.035 21.628	1.221 1.335 1.086	6.477 6.094 7.96	0.391 0.821 0.517	0.033 0.	.009 0.001 .023 0 0 0.008	99.864 Almandine 100.927 Almandine 101.301 Almandine	Almandine Almandine Almandine	934 937 944	0.9 1.8 1.1	70.4 70.7 65.4	0.6 0.1 0.3 0.0 1.0 0.0	0.0 0.1	0.0	1.8 25.2 1.3 23.7 1.0 30.5
RE06-GB-002 RE06-GB-002 RE06-GB-002	GB1 GB1 GB1	16 0.25-0.5 17 0.25-0.5 18 0.25-0.5	Core Core Core	0.049 38.679 0 0.0 0.092 38.829 0.002 0.0 0.024 39.074 0 0.0	11 21.389	0.009 21.497	6.892 2.793 0.787	4.821 7.814 8.202	0.529 7.473 0.525	0.009 0.	.022 0.042 .004 0.043 .006 0.015	100.813 Almandine 99.995 Almandine 102.048 Almandine	Almandine Almandine Almandine	965 982 932	1.2 16.4 1.2	60.7 45.4 64.4	3.2 0.1 1.4 0.3 0.0 0.1	0.1 0.0 0.1	0.0	5.9 18.8 6.2 30.2 6.2 32.1
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	1 0.25-0.5 2 0.25-0.5 3 0.25-0.5	Core Core Core	0.073 38.365 0 0.03 0.071 38.544 0.004 0 0.019 38.685 0 0.0	23.62° 01 32.60°	0.025 21.064 0.043 21.921	6.813 13.93 0.871	4.339 2.555 6.154	0.554 0.457 0.962	0.031 0.	0 0.024 .007 0.045 0 0.008	100.823 Almandine 100.354 Almandine 101.38 Almandine	Almandine Aluminferropargasite Almandine	957 847 931	1.2 1.0 2.1	62.7 50.0 71.4	2.8 0.2 2.6 0.2 0.0 0.1		0.0 3	6.1 16.9 6.2 10.0 1.3 24.0
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	4 0.25-0.5 5 0.25-0.5 6 0.25-0.5	Core Core Core	0.133 38.642 0.002 0.00 0.211 38.993 0 0.00 0.109 36.899 0.012 0.00	24 19.789 02 32.690	0.132 21.482 0 19.969		8.196 5.715 1.396	0.867 0.74 0.815	0.04 0 0.	0 0.028 0 0.023 .002 0.019	99.227 Almandine 99.932 Almandine 99.123 Almandine	Almandine Aluminferrotschermakite Almandine	983 927 886	1.9 1.6 1.9	48.9 41.4 71.6	2.7 0.4 1.5 0.6 3.7 0.3	0.4 0.0	0.0 3 0.0 1	4.7 31.3 2.7 21.8 5.9 5.6
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	7 0.25-0.5 8 0.25-0.5 9 0.25-0.5	Core Core Core	0.141 39.26 0.005 0.0 0.177 38.423 0 0.0 0.185 39.151 0.003 0.0	04 21.13 53 24.815	0.005 21.392 0 21.465	5.732 8.142	5.918 4.57 6.391	0.461 8.637 0.482	0.036 0.015 0.	0 0.031 0 0.033 .001 0.051	101.02 Almandine 100.139 Almandine 100.754 Almandine	Almandine Almandine Almandine	951 970 970	1.0 19.3 1.0	50.1 46.4 51.8	1.0 0.4 0.5 0.5 2.2 0.5	0.0 0.0	0.0 1 0.0 2	4.9 22.6 5.2 18.0 0.0 24.5
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	10 0.25-0.5 11 0.25-0.5 12 0.25-0.5	Core Core Core	0.023 39.599 0 0.00 0.027 38.468 0.001 0 0.042 37.902 0 0.0	30.522 38 34.16	0.012 21.586 0.06 21.449	0.833 1.109 0.782	13.266 7.699 4.942	0.306 0.398 1.11	0.065 0.065 0.	0 0.057 0 0.021 .004 0.026	100.112 Almandine 99.908 Pink almandine 100.551 Pink almandine	e Almandine	937 945 913	0.6 0.9 2.5	48.2 66.1 75.7	0.7 0.1 0.6 0.1 0.0 0.1	0.1 0.0 0.2	0.0 2	.5 48.8 .4 29.9 .9 19.5
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	13 0.25-0.5 14 0.25-0.5 15 0.25-0.5	Core Core Core	0.016 38.326 0 0 0.009 39.152 0 0 0 39.167 0 0.00		0.033 22.067	1.662 1.357 1.278	4.758 10.188 9.135	1.351 0.365 0.43	0.024 0. 0.022 0.	0 0.017 .003 0.044 .006 0.011	100.969 Pink almandine 100.375 Pink almandine 100.594 Pink almandine	e Almandine e Almandine	931 944 951	3.0 0.8 0.9	73.5 57.1 60.6	0.0 0.0 0.8 0.0 0.2 0.0	0.1 0.1	0.0 2 0.0 3	.7 18.8 !.7 38.4 !.3 34.8
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	16 0.25-0.5 17 0.25-0.5 18 0.25-0.5	Core Core	0 37.518 0 0.11 0.012 39.305 0.002 0.01 0.025 39.585 0.002 0.01	11 25.389 19 27.563	0.044 21.939 0.02 22.345		4.267 11.63 10.157	1.928 0.291 0.235	0.021 0. 0.094 0.	0 0.007 .012 0.009 .011 0.02	99.86 Pink almandine 99.803 Pink almandine 101.176 Pink almandine	e Amandine-Pyrope-series e Amandine	923 930 939 947	4.3 0.6 0.5		0.0 0.0 1.3 0.0 0.1 0.1	0.1	0.0 2	.4 16.9 .6 43.7 .9 38.2
RE06-GB-003 RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1 GB1	19 0.25-0.5 21 0.25-0.5 22 0.25-0.5 23 0.25-0.5	Core Core Core Core	0.049 38.371 0 0.0 0.121 37.395 0 0.0 0.198 37.905 0 0.0 0.112 37.783 0 0.0	7 20.143 2 20.413	0 20.923 0.014 20.972	4.362	6.441 1.524 3.866 0.933	0.259 16.883 11.48 11.073	0 0. 0.015	0 0.032 .002 0.02 0 0.01 0 0.013	100.526 Pink almandine 99.052 Mn almandine 99.259 Mn almandine 99.604 Mn almandine	Amandine-Spessartine-series Amandine-Spessartine-series	968 973 925	0.6 40.1 26.2 25.6	68.8 47.3 45.5 47.5	0.2 0.1 0.0 0.4 0.8 0.6 0.1 0.3	0.0	0.0 5 0.0 1	i.2 25.0 i.8 6.4 1.3 15.5 2.6 3.8
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	24 0.25-0.5 25 0.25-0.5 26 0.25-0.5	Core Core Core	0.005 36.918 0 0.0 0.03 37.164 0 0.11 0.015 40.651 0 0	2 19.368		0.785 2.351 8.972	1.401 1.007 12.354	19.426 11.081 0.316	0 0. 0.018	.004 0.002 0 0.01 0 0.006	98.554 Mn almandine 99.615 Mn almandine 99.97 Low Cr pyrope	Amandine-Spessartine-series Amandine-Spessartine-series	952 897 935	46.2 25.9 0.7	45.5 62.2 30.1	0.0 0.0 0.2 0.1 1.4 0.0	0.0 0.1	0.0 2 0.0 7	.4 5.9 .5 4.1 2.3 45.5
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	27 0.25-0.5 28 0.25-0.5 29 0.25-0.5	Core Core Core	0.464 27.514 0 0.0 0.248 42.064 0 0.0 0.011 36.695 0 0.0	8 13.352 12 7.627	0.02 53.209 3.215 20.701	0.014 4.615 0.585	1.735 20.955 2.245	0.228 0.346 18.882	0 0. 0.031	.005 0.033 0 0.02 .005 0	96.592 Low Crpyrope 99.864 Pyrope 98.114 Spessartine		998 993 958	1.4 0.7 44.7	79.8 13.2 43.9	-0.9 1.3 3.0 0.7 0.8 0.0	0.0 8.3	0.1 0 0.8 0	1.0 18.4 1.0 73.4 1.2 9.4
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	30 0.25-0.5 31 0.25-0.5 32 0.25-0.5	Core Core Core	0.036 36.665 0 0.00 0.054 36.367 0 0 0.228 37.936 0 0.00	26 16.023 18.224	0 20.201	0.096 0.274 30.517	1.457	23.178 21.689 2.598	0.235 0. 0.063 0.	.018 0 .005 0.007 0 0.067	97.935 Spessartine 97.408 Spessartine 97.308 Grossular	Almandine-Spessartine-series Almandine-Spessartine-series Grossular	931 929 988	55.9 52.9 5.7	37.5 43.0 8.5	0.3 0.1 0.7 0.2 7.1 0.7	0.0	0.0 0	1.0 6.2 1.0 3.3 7.5 0.5
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	33 0.25-0.5 34 0.25-0.5 35 0.25-0.5	Core Core Core	0.414 38.569 0 0.0 0.201 39.513 0.001 0.0 0.074 37.069 0 0.0	07 6.003 09 4.707	0.007 18.567 0.009 19.738	34.036 35.149 0.49	0.102 0.112 0.222	0.256 0.35 22.36	0.023 0. 0	.015 0.104 0 0.095 .003 0.007	98.103 Grossular 99.884 Grossular 98.909 Grossular	Grossular Grossular Almandine-Spessartine-series	982 977 919	0.6 0.8 54.2	4.7 3.3 43.3	12.6 1.2 10.1 0.6 0.0 0.2	0.0 0.0	0.0 8 0.0 8	0.5 0.4 4.8 0.4 .3 0.9
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	36 0.25-0.5 37 0.25-0.5 38 0.25-0.5	Core Core Core	0.963 39.082 0 0.0 0.781 38.377 0 0.0 0.206 39.049 0.002 0		0 18.743 0.025 17.797 0 20	34.658 31.885 32.582	0.13 0.096 0.138	0.158 1.655 0.582	0.024	0 0.057 0 0.083 .001 0.02	98.598 Grossular 97.771 Grossular 98.412 Grossular	Grossular Grossular Grossular	973 990 988	0.3 3.7 1.3	2.8 6.0 7.5	11.2 2.8 14.3 2.3 7.7 0.6		0.0 7	2.3 0.5 3.2 0.4 2.4 0.5
RE06-GB-003 RE06-GB-003 RE06-GB-003	GB1 GB1 GB1	39 0.25-0.5 40 0.25-0.5 41 0.25-0.5	Core Core Core	0.837 38.996 0 0.00 0.854 39.004 0.004 0.00 0.776 38.166 0 0	9 4.771 4.281	0.147 19.412 0.01 19.382 0 20.092	34.469 33.477	0.115 0.114 0.055	0.104 0.211 0.896	0.03 0. 0.038 0.	.005 0.169 .005 0.026 .004 0.01	98.713 Grossular 98.889 Grossular 97.795 Grossular	Grossular Grossular Grossular	966 975 978	0.2 0.5 1.9	2.5 4.3 5.9	8.4 2.4 9.0 2.5 5.0 2.3	0.0 0.0	0.0 8 0.0 8	5.5 0.4 3.3 0.4 4.6 0.2
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	1 0.25-0.5 2 0.25-0.5 4 0.25-0.5	Core Core Core	0.225 41.616 0 0.00 0 36.472 0.003 0.00 0.131 40.081 0.001 0.00	35 6.974 35 7.541	3.839 20.138 5.641 18.974 3.812 19.148	4.818	20.889 20.031 11.79	0.36 0.406 0.355	0.011 0. 0.029 0.	.005 0.053 .001 0.032 .001 0.049	99.256 Pyrope 93.012 Pyrope 87.761 Pyrope	Pyrope Pyrope Pyrope-Almandine-series	991 940 931	0.7 0.8 1.0	12.3 14.3 21.5	2.9 0.6 0.0 0.0 0.0 0.4	12.2	5.6 0 0.0 6	1.0 72.5 1.0 67.5 i.0 59.9
RE06-GB-004 RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1 GB1	5 0.25-0.5 6 0.25-0.5 7 0.25-0.5 8 0.5-1.0	Core Core Core Core	0.38 39.214 0 0.0 0.203 38.8 0 0.0 1.499 40.002 0 0.0 0.012 37.451 0 0	21 7.013	4.943 17.434 3.72 19.119 3.007 18.341 0 0.009 20.362	5.248 4.439 4.785 6.751	9.416 11.629 15.198 1.184	0.273 0.338 0.279 3.514	0.016 0. 0.012 0.	.007 0.043 .005 0.028 .024 0.045 0 0.004	83.609 Pyrope 85.331 Pyrope 89.99 Low Cr pyrope 99.957 Almandine		925 944 908	0.9 1.0 0.7 8.1	21.7 20.7 16.1 67.5	0.0 1.2 0.0 0.6 0.8 4.4 3.0 0.0	12.2 9.4	0.0 4 0.0 1	.5 55.1 .1 61.3 .1 67.5 5.6 4.8
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	9 0.5-1.0 10 0.5-1.0 11 0.5-1.0	Core Core Core	0.012 37.451 0 0 0.013 37.799 0 0.00 0 37.656 0 0 0.041 37.953 0 0.00	36 31.23 20.483	0 21.343 0.008 20.975	1.105 3.094 7.263	4.49 2.042 2.384	2.977 14.851 1.121	0	0 0.004 0 0.003 .002 0.011	98.994 Almandine 99.112 Almandine 100.339 Almandine	Almandine Almandine Almandine-Spessartine-series Almandine	944 977 923	6.9 34.9 2.5	71.4 47.5 67.1	0.0 0.0 0.1 0.0 2.6 0.1	0.0	0.0 3	1.4 18.3 1.1 8.4 3.1 9.5
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	12 0.5-1.0 13 0.25-0.5 14 0.25-0.5	Core Core Core	0.006 37.615 0 0.0 0.066 37.817 0 0.0 0.046 37.987 0 0.0	02 30.768 15 30.994	0.009 21.217 0.001 20.678	2.546 8.686	2.576 1.459 3.485	5.887 0.751 4.032	0.046 0 0.	0 0.009 .011 0.009 .003 0.015	100.681 Almandine 100.517 Almandine 100.217 Almandine	Almandine Almandine Almandine	934 889 970	13.4 1.7 9.0	69.0 67.4 58.1	0.0 0.0 2.6 0.2 1.7 0.1	0.0	0.0 7 0.0 2	.3 10.3 2.3 5.8 7.4 13.7
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	15 0.25-0.5 16 0.25-0.5 17 0.25-0.5	Core Core Core	0.004 37.925 0 0.00 0.125 38.719 0 0.00 0.011 37.674 0 0.0	21 33.709 26 26.326	0.004 20.96 0.018 21.422	4.941 6.354 7.234	3.031 6.564 2.938	0.272 1.011 1.519	0.012 0.018 0.	0 0.018 .005 0.02 0 0.059	100.897 Almandine 100.608 Almandine 100.1 Almandine	Almandine Almandine Almandine	914 986 940	0.6 2.2 3.4	73.3 55.2 64.5	1.9 0.0 1.9 0.4 2.0 0.0	0.0 0.1	0.0 1 0.0 1	2.2 12.0 5.3 25.1 3.5 11.6
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	18 0.25-0.5 19 0.25-0.5 20 0.25-0.5	Core Core Core	0.033 38.199 0 0.1 0 37.946 0 0.0 0.028 37.602 0 0.1	7 28.898	0 20.726	6.177 6.543 6.531	4.26 2.418 2.138	0.37 3.697 1.78	0	.005 0.024 0 0.009 0 0.007	100.824 Almandine 100.244 Almandine 99.989 Almandine	Almandine Almandine Almandine	951 945 923	0.8 8.4 4.0	64.9 63.1 68.1	2.9 0.1 2.6 0.0 2.2 0.1	0.0 0.0 0.0	0.0 1	4.7 16.5 6.3 9.7 7.0 8.5
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	21 0.25-0.5 22 0.25-0.5 23 0.25-0.5	Core Core Core	0.073 39.944 0.001 0.0 0.165 37.539 0 0.0 0 36.257 0 0.0	3 24.26 8 23.958	0.054 20.849 0 20.199	1.251 10.201 1.277	13.55 2.329 1.073	0.614 3.5 14.931	0.022 0. 0 0.	0 0.016 .006 0.007 .007 0	100.661 Almandine 98.986 Almandine 97.72 Mn almandine	Almandine-Pyrope-series Almandine Almandine-Spessartine-series	950 915 929	1.3 7.9 35.6	45.9 53.4 55.9	1.4 0.2 1.0 0.5 0.7 0.0	0.2 0.0	0.0 2 0.0 3	.7 49.5 7.7 9.3 1.2 4.5
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	24 0.25-0.5 25 0.5-1.0 26 0.25-0.5	Core Core Core	0.058 37.977 0 0.0 0.393 35.479 0 0.0 0.307 47.731 0.304 0.8	25.75 39 13.556	0 1.915 0 6.946	5.909 30.197 11.649	4.756 0.124 13.869	8.893 1.224 0.307	0.039 0. 0	.019 0.013 .016 0.079 0 0.058	98.941 Mn almandine 95.241 Andradite 95.596 Spessartine	Almandine Andradite magnesiohornblende	968 935 986	20.1 2.9 0.9	-20.1	3.9 0.2 BB.2 1.4 47.6 0.9	0.0 0.0	0.0 0	2.9 18.9 1.3 0.5 1.0 70.7
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	27 0.25-0.5 28 0.25-0.5 29 0.25-0.5	Core Core Core	0.058 35.755 0 0.0 0.526 35.897 0 0.0 0.144 37.134 0 0.0	18 4.256 15 10.772	0.029 16.159 0.226 19.289	2.565 4.013 11.382	0.997	22.507 31.554 17.445	0.01 0	0 0 0 0.01 0 0.039	96.108 Spessartine 94.088 Spessartine 97.443 Spessartine	Almandine-Spessartine-series Spessartine Almandine-Spessartine-series	950 959 873	54.7 79.8 40.9	21.1	2.8 0.2 11.4 1.7 5.6 0.4	0.0 0.7	0.1 0 0.0 2	7.0 4.1
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	30 0.25-0.5 31 0.25-0.5 32 0.25-0.5	Core Core Core	0.068 36.674 0 0.00 0.005 37.534 0 0.0 0.047 38.146 0 0.0 0.074 36.888 0 0.0	4 33.679 1 27.014	0 20.88 0.046 20.732	0.863 2.358 6.642 7.149	0.931 3.4 5.989 1.611	17.592 2.178 0.909	0 0. 0.027	0 0.004 .011 0.012 0 0.012 .002 0.012	98.326 Spessartine 100.071 Spessartine 99.575 Spessartine 98.916 Spessartine	Almandine-Spessartine-series Almandine Almandine	936 922 981 891	42.2 4.9 2.0 1.4	51.1 74.6 56.3 71.3	1.5 0.2 1.3 0.0 3.6 0.1	0.0 0.1	0.0 5 0.0 1	.1 3.9 i.5 13.6 4.7 23.2 7.1 6.5
RE06-GB-004 RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1 GB1	33 0.25-0.5 34 0.25-0.5 35 0.25-0.5 36 0.25-0.5	Core Core Core Core	0.074 36.666 0 0.0 0.076 37.361 0 0.0 0.161 38.419 0 0.0 0.031 37.268 0 0	7 30.353	0 20.369 0 20.907	7.149 6.471 7.674 7.066	3.564 8.329 2.595	0.591 0.908 0.404 1.182	0 0.017	.002 0.012 0 0.004 0 0.044 0 0.038	98.916 Spessartine 99.123 Spessartine 98.981 Spessartine 99.247 Spessartine	Almandine Almandine Almandine Almandine	947 970 926	2.0 0.9 2.7	65.3 46.5 66.7	3.5 0.2 3.3 0.2 3.7 0.5 4.0 0.1	0.0	0.0 1 0.0 1	5.0 14.1 6.9 31.6 6.2 10.4
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	37 0.25-0.5 38 0.25-0.5 39 0.25-0.5	Core Core Core	0.073 36.492 0.001 0.11 0.057 38.373 0 0 0.034 37.467 0 0.01	05 27.756 27.638	0 19.903 0.028 21.118	2.546 5.843 7.942	0.746 5.765 0.791	10.605 1.264 0.771	0 0. 0.021 0.	.008 0.002 .007 0	98.237 Spessartine 100.114 Spessartine 99.913 Spessartine	Almandine-Spessartine-series Almandine Almandine	984 870	25.2 2.8 1.8	63.5 58.6 71.9	2.3 0.2 2.3 0.2 3.1 0.1	0.0	0.0 6 0.0 1	3.7 3.1 3.7 22.3 3.0 3.2
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	40 0.25-0.5 41 0.25-0.5 42 0.25-0.5	Core Core Core	0.034 37.467 0 0.0 0.076 37.857 0 0.0 0.059 37.384 0 0.0 0.211 38.672 0 0	30.38	0.037 20.979	6.88 4.639 32.363	3.396 1.864 0.109	0.293 3.636 1.114	0 0.	0 0.007 0 0.007 .008 0.007 0 0.014	99.949 Grossular 99.883 Grossular 98.21 Grossular	Amandine Almandine Almandine Grossular	939 923 988	0.7 8.3 2.4	71.9 66.2 70.6 7.5	1.5 0.2 1.2 0.2 7.9 0.6	0.1	0.0 1 0.0 1	7.9 13.4 2.2 7.5 1.2 0.4
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	43 0.25-0.5 44 0.25-0.5 45 0.25-0.5	Core Core Core	0.25 39.535 0 0.00 0.171 39.059 0.005 0.00 0.422 38.925 0 0	08 4.417	0.029 19.878 0 20.354 0.029 19.333	34.359 33.027 32.652	0.106 0.123 0.082	0.301 1.128 0.604	0.044 0. 0.014 0.	.007 0.08 .005 0.017 0 0.009	99.014 Grossular 98.282 Grossular 98.617 Grossular	Grossular Grossular Grossular Grossular	975 980 989	0.7 2.5 1.3	3.6 5.2 7.6	8.8 0.7 6.4 0.5 9.8 1.2	0.1 0.0	0.0 8 0.0 8	5.7 0.4 5.0 0.5 9.6 0.3
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	46 0.25-0.5 47 0.25-0.5 48 0.25-0.5	Core Core Core	0.02 37.081 0 0.0 0.359 39.107 0 0.0 0.54 27.366 0.002 0	14 1.768 31 3.068	19.856 5.242 0.051 20.345	33.137 34.697	0.075 0.134 1.366	0.177 0.341 0.292	0.025 0. 0.018 0.	.003 0.034 .007 0.026 0 0.014	97.432 Grossular 98.184 Grossular	Uvarovite Grossular Staurolite	970 976 997	0.4 0.7 1.9	-1.9 2.6	9.0 0.1 6.0 1.0 -1.4 1.5	65.3 0.2	0.0 2 0.0 8	6.9 0.3 3.9 0.5 1.0 15.2
RE06-GB-004 RE06-GB-004 RE06-GB-004	GB1 GB1 GB1	49 0.25-0.5 50 0.25-0.5 51 0.25-0.5	Core Core Core	0.269 38.747 0 0.00 0.368 39.202 0 0.00 0.283 38.605 0 0	25 8.239 13 6.749 7.159	0 19.531 0.003 19.219 0.007 18.379	31.87 32.89 33.296	0.079 0.089 0.111	0.136 0.589 0.385	0.006 0.018 0.017	0 0.023 0 0.048 0 0.051	98.925 Grossular 99.188 Grossular 98.293 Grossular	Grossular Grossular Grossular	989 988 987	0.3 1.3 0.8	11.5 7.3 6.4	9.4 0.8 10.9 1.1 13.8 0.8	0.0 0.0 0.0	0.0 7 0.0 7 0.0 7	7.7 0.3 9.0 0.3 7.6 0.4
RE06-GB-004 RE06-GB-005 RE06-GB-005	GB1 GB1 GB1	52 0.25-0.5 1 0.25-0.5 2 0.25-0.5	Core Core Core	0.2 39.413 0 0.00 0.068 42.362 0.003 0.00 0.21 42.64 0.005 0.00	24 5.578 34 7.274 76 7.662	0 19.166 3.888 20.588 2.714 21.356	33.843 4.65 4.48	0.118 21.437 21.626	0.827 0.374 0.35	0.036 0 0.015 0. 0.028 0	0.01 0.044 .019 0.036 0.02 0.028	99.259 Grossular 100.748 Pyrope 101.195 Pyrope	Grossular Pyrope Pyrope	983 990 989	1.8 0.7 0.7	4.1 12.4 12.8	11.9 0.6 2.9 0.2 3.3 0.6	0.0 8.8 7.6	0.0 8 2.1 0 0.0 0	1.2 0.5 1.0 72.9 1.2 75.0
RE06-GB-005 RE06-GB-005 RE06-GB-005	GB1 GB1 GB1	3 0.25-0.5 4 0.25-0.5 5 0.25-0.5	Core Core Core	0.146 42.227 0 0.0 0 41.894 0 0.0 0.009 37.698 0 0.0	2 6.402 38 7.282 22 36.36	6.299 18.226 5.351 19.46 0 21.255	5.793 4.666 1.974	21.264 21.121 2.901	0.282 0.448 1.17	0.017 0 0.032 0.	0 0.047 0 0.035 .014 0.007	100.723 Pyrope 100.295 Pyrope 101.443 Pyrope	Knorringite-Pyrope-series Pyrope Almandine	986 989 881	0.6 0.9 2.6		5.0 0.4 2.7 0.0 0.3 0.0	9.4 9.3 0.0	5.9 0 0.0 5	0.0 66.8 0.0 68.6 0.3 11.4
RE06-GB-005 RE06-GB-005 RE06-GB-005	GB1 GB1 GB1	6 0.5-1.0 7 0.5-1.0 8 0.5-1.0	Core Core	0.05 38.01 0 0.0 0 38.108 0 0.0 0.068 38.903 0 0.0	1 30.6 6 23.99	0 21.411 0 21.724	4.779 9.424	1.639 3.781 6.278	1.197 2.558 0.471	0.008 0. 0.022	.006 0.008 .021 0.028 0 0.03	102.221 Almandine 101.305 Almandine 100.916 Almandine	Almandine Almandine Almandine	960 953	2.7 5.7 1.0	80.8 66.2 49.8	0.7 0.1 0.8 0.0 1.5 0.2	0.0	0.0 1 0.0 2	0.1 6.5 2.6 14.7 3.9 23.7
RE06-GB-005 RE06-GB-005 RE06-GB-005	GB1 GB1 GB1	9 0.5-1.0 10 0.5-1.0 11 0.25-0.5 12 0.25-0.5	Core Core Core	0.202 36.25 0 0.00 0 38.086 0 0.00 0.011 37.525 0 0.00 0.097 37.319 0 0.0	07 20.137 23 17.018	0 20.82 0 20.194		1.953 2.035	37.188 13.428 16.273 19.099	0 0.059 0.	.001 0 0 0.02 .015 0.011 .001 0	96.925 Almandine 100.463 Almandine 99.286 Almandine 99.936 Almandine	Spessartine Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series	920 971 985 917	92.2 30.7 37.5 45.6	2.2 44.0 36.2 51.4	0.0 0.6 2.2 0.0 3.7 0.0 1.1 0.3	0.0 0.0	0.0 1 0.0 1	.6 0.2 5.2 7.9 4.2 8.3 1.3 1.4
RE06-GB-005 RE06-GB-005 RE06-GB-005	GB1 GB1 GB1	13 0.25-0.5 14 0.25-0.5	Core Core Core	0.08 37.265 0 0.00 0.135 37.557 0 0.00	1 19.868 1 25.003	0.012 20.388 0.026 20.575	0.218 6.488	1.63 1.155	19.099 20.242 9.24 0.135	0.093 0.032	0 0.008 0 0.023	99.936 Almandine 99.822 Almandine 100.265 Almandine 96.548 Almandine	Almandine-Spessartine-series Almandine-Spessartine-series Almandine Staumlite	942 910	45.6 47.6 21.2	44.9 55.2	1.1 0.3 0.5 0.2 2.0 0.4	0.0 0.1	0.0 0 0.0 1	1.0 6.7 6.5 4.7
RE06-GB-005	GB1	15 0.25-0.5	Core	0.404 27.234 0.006 0.00	14 13.932	0 53.011	0.012	1.771	u.135	0 0.	.u14 U.025	96.548 Almandine	Staurolite	996	0.8	80.8	-1.0 1.1	0.0	0.0 (.0 18.3

Table 6 (continued)				
Sample ID Probe mount Grain lib Grain size (mm) Probe spot RE06-GB-005 GB1 16 0.25-0.5 Core RE06-GB-005 GB1 17 0.25-0.5 Core	0 38.668 0 0.01 31.559 0.022 2 0.041 39.03 0.004 0.016 29.988 0.018 2	No. No. <td>(physical ID) 101.27 Pink almandine Almandine 101.482 Pink almandine Almandine</td> <td>Score Spess Almand Andr Ti-Andr Uvar Knorr Gross Pyrope 940 1.6 66.8 1.1 0.0 0.1 0.0 1.8 28.7 941 0.7 63.0 0.4 0.1 0.1 0.0 2.3 33.5</td>	(physical ID) 101.27 Pink almandine Almandine 101.482 Pink almandine Almandine	Score Spess Almand Andr Ti-Andr Uvar Knorr Gross Pyrope 940 1.6 66.8 1.1 0.0 0.1 0.0 1.8 28.7 941 0.7 63.0 0.4 0.1 0.1 0.0 2.3 33.5
RE06-GB-005 GB1 18 0.25-0.5 Core RE06-GB-005 GB1 19 0.25-0.5 Core RE06-GB-005 GB1 20 0.25-0.5 Core	0.004 39.053 0 0.028 27.659 0.026 2 0.038 39.011 0 0.008 31.353 0.011 2	1.843 0.993 8.41 0.381 0.032 0.021 0.013 1.817 1.138 10.088 0.296 0.047 0 0.013 1.973 1.15 7.898 0.351 0.043 0 0.02	100.169 Pink almandine Almandine 101.856 Pink almandine Almandine	940 0.8 64.7 0.7 0.1 0.0 0.0 1.9 31.7 941 0.6 57.9 1.3 0.0 0.1 0.0 1.9 38.2 940 0.8 66.2 0.6 0.1 0.0 0.0 2.5 29.9
RE06-GB-005 GB1 21 0.25-0.5 Core RE06-GB-005 GB1 22 0.25-0.5 Core RE06-GB-005 GB1 23 0.25-0.5 Core RE06-GB-005 GB1 24 0.25-0.5 Core	0.022 39.432 0 0 28.706 0.025 2 0.032 38.153 0 0.005 32.106 0.001 2	1.912 1.162 9.825 0.29 0.041 0.011 0.001 2.059 1.229 9.822 0.243 0.039 0 0.01 1.503 0.767 7.697 0.408 0.019 0.003 0 2.016 1.095 9.831 0.246 0.095 0 0.005	101.087 Pink almandine Almandine 101.587 Pink almandine Almandine 100.694 Pink almandine Almandine	941 0.6 59.4 1.4 0.0 0.0 0.0 1.7 36.9 941 0.5 59.5 1.2 0.1 0.1 0.0 2.0 36.7 930 0.9 67.8 1.1 0.1 0.0 0.0 0.9 29.2 941 0.5 59.5 0.4 0.0 0.0 0.0 2.6 36.9
RE06-GB-005 GB1 25 0.25-0.5 Core RE06-GB-005 GB1 26 0.25-0.5 Core RE06-GB-005 GB1 27 0.25-0.5 Core RE06-GB-005 GB1 28 0.25-0.5 Core	0 38.437 0.007 0.01 29.073 0.015 2 0.73 42.672 0.003 0.082 7.732 1.613 2	1.561 0.968 6.598 0.483 0.07 0.006 0.022 1.157 7.59 3.89 1.145 0 0.002 0.017 0.812 4.557 22.234 0.253 0.028 0.01 0.04 0.671 4.784 1.448 15.567 0.039 0.02 0.018	101.343 Mn almandine Almandine 100.766 Andradite Pyrope	931 1.1 70.6 0.2 0.0 0.1 0.0 2.4 25.6 953 2.5 61.3 2.5 0.0 0.0 0.0 18.6 15.0 979 0.5 10.5 7.0 1.9 2.9 1.6 0.0 75.6 979 36.4 43.4 0.2 0.3 0.1 0.0 13.6 6.0
RE06-GB-005 GB1 29 0.25-0.5 Core RE06-GB-005 GB1 30 0.25-0.5 Core RE06-GB-005 GB1 31 0.25-0.5 Core	0.489 37.384 0 0.031 11.645 0 1 0.123 37.406 0.003 0.023 16.487 0.028 1 0.116 36.734 0 0.005 7.486 0.025 2	3.205 5.621 1.19 23.256 0 0.02 0 3.909 5.984 0.897 18.44 0.021 0 0.017 0.199 0.27 0.216 33.192 0.295 0 0	98.841 Spessartine Almandine-Spessartine-series 99.338 Spessartine Almandine-Spessartine-series 98.538 Spessartine Spessartine	952 55.0 23.1 5.9 1.5 0.0 0.0 9.5 4.9 969 43.1 35.3 4.0 0.4 0.1 0.0 13.3 3.7 969 80.7 17.5 0.5 0.4 0.0 0.1 0.0 0.8
RE06-GB-005 GB1 32 0.25-0.5 Core RE06-GB-005 GB1 33 0.25-0.5 Core RE06-GB-005 GB1 34 0.25-0.5 Core RE06-GB-005 GB1 35 0.25-0.5 Core	0.051 38.001 0 0 14.151 0.027 1 0.104 36.975 0 0.058 17.358 0 1	9.96 0.333 1.229 29.025 0.106 0 0.002 3.957 10.356 0.507 16.682 0.027 0.001 0.002 9.901 1.364 0.656 22.178 0 0.011 0.008 3.931 0.306 0.296 20.169 0 0 0	99.782 Spessartine Almandine-Spessartine-series	967 69.9 23.8 0.9 0.3 0.0 0.0 0.0 5.2 900 38.7 28.9 5.2 0.2 0.1 0.0 25.0 2.1 943 53.4 39.4 2.7 0.3 0.0 0.0 1.5 2.8 917 48.9 48.8 1.0 0.1 0.0 0.0 0.0 1.2
RE06-GB-005 GB1 36 0.25-0.5 Core RE06-GB-005 GB1 37 0.25-0.5 Core RE06-GB-005 GB1 38 0.25-0.5 Core RE06-GB-005 GB1 39 0.25-0.5 Core	0 37.272 0.005 0.034 21.48 0 2 0.232 39.508 0 0.044 22.262 0.117 2	0.236	99.12 Spessartine Almandine-Spessartine-series 99.765 Spessartine Almandine-Spessartine-series 100.1 Spessartine Almandine	917 49.1 48.5 0.9 0.1 0.0 0.0 0.0 1.3 963 38.7 48.3 1.7 0.0 0.0 0.0 6.1 5.2 968 0.8 46.1 1.5 0.7 0.4 0.0 14.4 36.2 981 43.6 26.2 3.0 0.2 0.1 0.0 16.2 10.7
RE06-GB-005 GB1 40 0.25-0.5 Core RE06-GB-005 GB1 41 0.25-0.5 Core RE06-GB-005 GB1 42 0.25-0.5 Core	0.045 36.483 0 0.01 24.947 0 2 0.22 39.31 0 0.025 24.899 0.088 2 0.067 37.235 0 0.023 15.91 0 2	0.125	98.756 Spessartine Almandine-Spessartine-series 101.545 Spessartine Almandine Almandine-Spessartine-series	903 38.5 57.7 0.6 0.1 0.0 0.0 0.0 3.0 980 1.1 50.8 2.0 0.6 0.3 0.0 15.0 30.3 950 54.1 36.5 1.5 0.2 0.0 0.0 0.9 6.8
RE06-GB-005 GB1 43 0.25-0.5 Core RE06-GB-005 GB1 44 0.25-0.5 Core RE06-GB-005 GB1 45 0.25-0.5 Core RE06-GB-005 GB1 46 0.25-0.5 Core	0.014 36.779 0 0 22.849 0.006 4 0 35.878 0 0.024 27.664 0	9.786 0.287 0.825 20.247 0.169 0 0.008 0.189 33.438 0.008 0.476 0.009 0.008 0 0.06 32.909 0.184 0.128 0.018 0 0 0.757 32.277 0.06 1.199 0.021 0.009 0.013	97.776 Andradite Andradite 96.865 Andradite HydroAndradite	929 49.1 46.5 0.4 0.4 0.0 0.0 0.0 3.5 941 1.1 3.6 78.2 0.0 0.0 0.0 17.1 0.0 866 0.3 3.8 95.1 0.0 0.0 0.0 0.0 0.7 944 2.7 4.1 80.4 0.0 0.1 0.0 12.5 0.2
RE06-GB-005 GB1 47 0.5-1.0 Core RE06-GB-005 GB1 48 0.5-1.0 Core RE06-GB-005 GB1 49 0.5-1.0 Core RE06-GB-005 GB1 50 0.25-0.5 Core	0.27 35.262 0 0.021 6.559 0.035 1 0.329 37.069 0.001 0.036 2.329 0.027 1	9.378 33.961 0.162 0.422 0.054 0 0.041 9.409 31.989 0.165 0.214 0.044 0 0.027 9.962 35.239 0.059 0.034 0.056 0.013 0.045 9.779 36.01 0.062 0.215 0.029 0.002	98.91 Grossular Grossular 92.995 Grossular Grossular 95.199 Grossular Grossular 98.588 Grossular Grossular	981 0.9 4.4 10.6 0.8 0.0 0.0 82.7 0.6 966 0.5 9.1 8.5 0.8 0.1 0.0 80.4 0.6 985 0.1 2.0 4.7 1.0 0.1 0.0 91.9 0.2 979 0.5 0.8 5.6 0.3 0.0 0.0 92.7 0.2
RE06-GB-005 GB1 51 0.25-0.5 Core RE06-GB-005 GB1 52 0.25-0.5 Core RE06-GB-005 GB1 53 0.25-0.5 Core RE06-GB-005 GB1 54 0.25-0.5 Core	0.124 39.765 0.007 0.008 5.305 0 2 0.223 39.705 0.001 0 4.996 0 1	0.233 34.598 0.139 0.586 0.028 0 0.008 0.801 32.97 0.169 0.398 0.016 0.006 0.03 0.137 34.869 0.132 0.301 0.004 0.006 0.03 0.686 34.764 0.057 0.28 0.023 0 0.031	98.32 Grossular Grossular 99.599 Grossular Grossular 99.408 Grossular Grossular 97.739 Grossular	978 1.3 3.4 6.8 0.6 0.0 0.0 87.3 0.5 983 0.9 7.5 5.9 0.4 0.0 0.0 84.8 0.6 975 0.7 2.5 12.4 0.6 0.0 0.0 83.3 0.5 972 0.6 2.6 7.0 1.5 0.9 0.0 87.1 0.2
RE06-GB-005 GB1 55 0.25-0.5 Core RE06-GB-005 GB1 56 0.25-0.5 Core RE06-GB-005 GB1 57 0.25-0.5 Core	0.11 38.631 0.006 0 7.111 0.011 1 0.221 39.43 0.001 0.02 5.018 0.007 2 0.478 36.703 0 0.028 3.139 11.32 1	3.272 32.294 0.056 0.81 0.039 0.013 0.044 0.615 33.184 0.146 0.438 0.027 0.006 0.038 0.521 31.962 0.348 0.886 0.043 0.002 1.339	98.397 Grossular Grossular 99.149 Grossular Grossular 96.769 Grossular Grossular-Uvarovite-series	989 1.8 8.5 10.5 0.3 0.0 0.0 78.7 0.2 982 1.0 6.9 5.9 0.6 0.0 0.0 85.1 0.6 982 2.1 0.8 9.7 1.5 37.2 0.0 47.2 1.4
RE06-GB-006 GB2 2 0.25-0.5 Core RE06-GB-006 GB2 2 0.25-0.5 Rim RE06-GB-006 GB2 3 0.25-0.5 Core RE06-GB-006 GB2 3 0.25-0.5 Rim	0.675 42 0 0.091 7.32 5.92 7.0724 41.73 0 0.081 7.19 4.46 7.0737 41.84 0 0.079 7.17 4.44 7.0737	8.37 5.44 20.11 0.38 0.019 0 0.04 8.73 5.59 20.49 0.366 0.053 0.014 0.054 9.17 4.62 21.34 0.276 0.033 0.017 0.041 9.18 4.57 20.97 0.272 0.034 0.013 0.05	99.683 Pyrope Pyrope 99.354 Pyrope Pyrope	988 0.8 13.2 2.4 1.8 10.1 7.1 0.0 64.7 985 0.7 12.6 2.7 1.8 10.0 6.7 0.0 65.4 987 0.6 11.6 4.1 2.0 6.1 6.6 0.0 69.1 988 0.6 11.9 3.8 2.0 6.3 6.3 0.0 69.1
RE06-GB-006 GB2 4 0.25-0.5 Core RE06-GB-006 GB2 4 0.25-0.5 Rim RE06-GB-006 GB2 5 0.25-0.5 Core RE06-GB-006 GB2 5 0.25-0.5 Rim	0.047 42.28 0 0.029 7.99 2.56 2 0.042 36.97 0 0.032 25.39 0.01 2	1.76 5 20.01 0.486 0 0 0.01 2.04 4.86 19.9 0.504 0.06 0 0.009 0.92 0.39 1.307 15.47 0 0.01 0 0.96 0.634 1.271 15.36 0 0	99,918 Pyrope Pyrope 100.28 Pyrope Pyrope 100.54 Almandine Almandine-Spessartine-series 100.341 Almandine Almandine-Spessartine-series	992 1.0 15.5 0.8 0.1 7.4 0.0 4.7 70.6 991 1.0 15.8 0.3 0.1 7.2 0.0 5.0 70.7 911 35.6 57.8 0.0 0.1 0.0 0.0 1.1 5.3 916 35.5 57.4 0.0 0.1 0.0 0.0 1.8 5.2
RE06-GB-006 GB2 6 0.25-0.5 Core RE06-GB-006 GB2 6 0.25-0.5 Rim RE06-GB-006 GB2 7 0.25-0.5 Core RE06-GB-006 GB2 7 0.25-0.5 Rim	0.044 37.94 0.009 0.043 25.71 0 2 0.016 36.99 0 0.09 27.58 0 2	0.71 3.91 1.81 10.55 0.019 0 0 1.31 4.14 1.643 10.63 0 0 0 0.65 1.039 0.649 13.75 0 0 0 1.33 2.76 0.654 13.05 0 0	100.623 Almandine Almandine-Spessartine-series 101.47 Almandine Almandine-Spessartine-series 100.765 Almandine Almandine-Spessartine-series 101.759 Almandine Almandine-Spessartine-series	922 24.0 57.2 1.8 0.2 0.0 0.0 9.5 7.3 923 24.0 57.3 0.1 0.1 0.0 0.0 11.8 6.5 887 31.7 62.2 0.9 0.0 0.0 0.0 2.6 2.6 911 30.1 59.4 0.0 0.0 0.0 0.8 3 2.2
RE06-GB-006 GB2 8 0.25-0.5 Core RE06-GB-006 GB2 8 0.25-0.5 Rim RE06-GB-006 GB2 9 0.25-0.5 Core	0.067 38.01 0 0.029 30.08 0.033 2 0.038 37.94 0 0.022 30.27 0.036 2 0.06 37.9 0 0.039 24.63 0 2	0.87 7.2 1.78 3.27 0 0 0.009 0.88 7.08 1.76 3.23 0.025 0 0.008 1.54 10.89 1.559 4.12 0.013 0 0.01	101.347 Almandine Almandine 101.289 Almandine Almandine 100.761 Almandine Almandine	922 7.3 65.1 2.2 0.2 0.1 0.0 18.1 7.0 922 7.2 65.6 2.1 0.1 0.1 0.0 17.9 6.9 889 9.1 54.0 0.0 0.2 0.0 0.0 30.6 6.1
RE06-GB-006 GB2 10 0.25-0.5 Core RE06-GB-006 GB2 10 0.25-0.5 Rim RE06-GB-006 GB2 11 0.25-0.5 Core	0.071 38.59 0 0.019 25.39 0 0.093 39.4 0 0.034 25.33 0.029 2 0.038 38.4 0 0.012 28.53 0.011 2	21.8 7.24 5 2.99 0.013 0.014 0 2.42 7.23 5.04 2.94 0.034 0.014 0.026 1.28 6.92 3.68 2.33 0.031 0 0.011	101.127 Almandine Almandine 102.592 Almandine Almandine 101.243 Almandine Almandine	984 6.5 54.4 0.2 0.2 0.0 0.0 19.6 19.1 983 6.4 54.3 0.0 0.3 0.1 0.0 19.7 19.3 963 5.1 61.1 1.7 0.1 0.0 0.0 17.6 14.3
RE06-GB-006 GB2 11 0.25-0.5 Rim RE06-GB-006 GB2 12 0.25-0.5 Core RE06-GB-006 GB2 12 0.25-0.5 Rim RE06-GB-006 GB2 13 0.25-0.5 Core	0.029 38.24 0.006 0.013 29.14 0 2 0.022 38.53 0 0.009 28.92 0 2	1.38 6.92 3.66 2.36 0 0 0.024 1.34 7.86 2.17 2.56 0.018 0 0.012 1.43 7.89 2.12 2.65 0.015 0 0.003 1.49 3.76 2.68 0.53 0.029 0 0		963 5.2 61.3 1.0 0.1 0.1 0.0 18.1 14.2 929 5.7 63.5 0.9 0.1 0.0 0.0 21.2 8.5 929 5.9 63.3 0.9 0.1 0.0 0.0 21.4 8.4 891 1.2 77.8 0.0 0.2 0.0 0.0 10.3 10.5
RE06-GB-006 GB2 13 0.25-0.5 Rim RE06-GB-006 GB2 14 0.25-0.5 Core RE06-GB-006 GB2 14 0.25-0.5 Rim RE06-GB-006 GB2 15 0.25-0.5 Core	0 37.83 0 0.027 34.43 0 2 0.01 37.78 0 0.035 34.46 0.009	1.43 3.78 2.68 0.524 0.025 0 0.01 1.42 1.314 2.52 4.56 0.05 0 0 21.5 1.309 2.58 4.34 0 0 0.016 1.82 0.653 2.33 3.75 0 0.007 0	101.914 Almandine Almandine 102.15 Almandine Almandine 102.038 Almandine Almandine 102.432 Pink almandine Almandine	891 1.2 77.7 0.1 0.1 0.0 0.0 10.5 10.5 894 102 76.0 0.0 0.0 0.0 0.3.9 9.9 895 9.7 76.2 0.0 0.0 0.0 0.0 3.8 10.2 870 8.5 80.1 0.0 0.0 0.0 0.0 2.0 9.3
RE06-GB-006 GB2 15 0.25-0.5 Core RE06-GB-006 GB2 16 0.25-0.5 Core RE06-GB-006 GB2 16 0.25-0.5 Rim RE06-GB-006 GB2 17 0.25-0.5 Core	0 38.26 0 0.043 35.67 0.034 2 0.019 38.37 0 0.054 35.78 0.046 2	1.93 0.646 2.43 3.76 0 0 0 0 2.13 0.874 4.72 0.749 0.051 0 0.01 1.95 0.868 4.68 0.77 0.07 0 0.013 2.36 1.331 6.17 0.177 0.046 0 0.01	102.852 Pink almandine Almandine 102.541 Pink almandine Almandine	868 8.4 79.9 0.0 0.0 0.0 0.0 1.9 9.6 895 1.6 77.4 0.0 0.0 0.1 0.0 2.5 18.3 893 1.7 77.6 0.0 0.1 0.1 0.0 2.5 18.1 920 0.4 72.4 0.0 0.0 0.1 0.0 3.6 23.5
RE06-GB-006 GB2 17 0.25-0.5 Rim RE06-GB-006 GB2 18 0.25-0.5 Core RE06-GB-006 GB2 18 0.25-0.5 Rim	0 38.95 0.01 0.029 34.15 0.008 2 0 38.43 0 0.03 34.65 0.03 2 0 38.5 0 0.018 35.03 0.015 2	2.23 1.311 5.88 0.166 0.059 0 0.014 2.11 1.188 5.18 1.011 0.034 0 0.01 2.07 1.09 4.92 1.149 0.014 0 0.01	102.807 Pink almandine Almandine 102.673 Pink almandine Almandine 102.816 Pink almandine Almandine	917 0.4 73.4 0.0 0.0 0.0 0.0 3.7 22.5 913 2.2 74.5 0.0 0.0 0.1 0.0 3.3 19.9 907 2.5 75.5 0.0 0.0 0.0 0.0 3.1 18.9
RE06-GB-006 GB2 19 0.25-0.5 Core RE06-GB-006 GB2 19 0.25-0.5 Rim RE06-GB-006 GB2 20 0.25-0.5 Core RE06-GB-006 GB2 20 0.25-0.5 Rim	0.027 38.99 0 0.019 29.23 0.039 2 0.038 38.99 0 0.036 30.41 0.023 2 0.016 39.62 0 0.081 30.16 0.025 2	261 1.194 9.7 0.281 0.036 0 0 264 1.226 9.75 0.287 0.06 0.01 0.01 2.54 1.74 8.28 0.519 0.031 0 0.01 2.73 1.81 8.25 0.536 0.03 0 0.016	102.625 Pink almandine Almandine 103.274 Pink almandine Almandine	939 0.6 60.4 0.0 0.0 0.0 0.0 3.2 35.8 938 0.6 60.3 0.0 0.1 0.1 0.0 3.1 35.8 951 1.1 63.3 0.0 0.1 0.1 0.0 4.6 30.7 952 1.1 62.9 0.0 0.0 0.1 0.0 5.1 30.7
RE06-GB-006 GB2 21 0.25-0.5 Core RE06-GB-006 GB2 21 0.25-0.5 Rim RE06-GB-006 GB2 22 0.25-0.5 Core RE06-GB-006 GB2 22 0.25-0.5 Rim	0.01 38.75 0 0.023 34.15 0.018 2 0.03 39.85 0 0.022 30.49 0.043 2 0.026 39.89 0 0.034 30.89 0.037 2	2.52	103.137 Pink almandine Almandine 103.794 Pink almandine Almandine 103.925 Pink almandine Almandine	918 1.2 71.6 0.0 0.0 0.0 0.0 2.5 24.7 915 1.2 72.3 0.0 0.0 0.1 0.0 2.5 23.9 942 0.9 63.6 0.0 0.1 0.1 0.0 3.9 31.4 941 0.9 64.1 0.0 0.1 0.1 0.0 3.8 31.1
RE06-GB-006 GB2 23 0.25-0.5 Core RE06-GB-006 GB2 23 0.25-0.5 Rim RE06-GB-006 GB2 24 0.25-0.5 Core RE06-GB-006 GB2 24 0.25-0.5 Rim	0.04 39.54 0 0.017 29.8 0.015 0 38.43 0.006 0.016 34.81 0.016	2.93 1.227 9.24 0.279 0 0 0.025 1.27 1.121 9.42 0.28 0.029 0 0 1.21 0.812 4.12 2.76 0.021 0 0 2.04 0.8 4.13 2.84 0.048 0 0.018	102.963 Pink almandine Almandine 103.091 Pink almandine Almandine	936 0.6 62.0 0.0 0.0 0.1 0.0 3.2 34.1 937 0.6 61.6 0.0 0.1 0.0 0.0 2.9 34.7 904 6.1 75.6 0.0 0.0 0.0 0.0 2.3 16.0 902 6.2 75.5 0.0 0.1 0.0 0.0 2.3 15.9
RE06-GB-006 GB2 25 0.25-0.5 Core RE06-GB-006 GB2 25 0.25-0.5 Rim RE06-GB-006 GB2 26 0.25-0.5 Core RE06-GB-006 GB2 26 0.25-0.5 Rim	0.133 40.14 0 0.023 18.16 0.033 2 0.137 39.84 0 0.018 18.16 0.018 2 0.01 41.15 0 0.024 15.11 0 2	2.65 10.35 9.73 0.372 0.013 0 0.026 2.53 10.49 9.71 0.35 0.023 0 0.016 3.46 7.36 14.21 0.236 0.036 0 0 3.78 7.31 13.86 0.272 0.039 0 0.018	101.632 Low Cr-pyrope Aluminferrotschermakite 101.292 Low Cr-pyrope Aluminferrotschermakite 101.596 Low Cr-pyrope Almandine-Pyrope-series	907 0.8 36.7 0.5 0.4 0.1 0.0 26.2 35.4 908 0.7 36.6 0.6 0.4 0.1 0.0 26.4 35.2 954 0.5 30.1 0.0 0.0 0.0 0.1 18.9 50.5 950 0.6 30.9 0.0 0.2 0.0 0.0 18.8 49.6
RE06-GB-006 GB2 27 0.25-0.5 Core RE06-GB-006 GB2 27 0.25-0.5 Rim RE06-GB-006 GB2 28 0.25-0.5 Core	0.172 37.35 0 0.056 19.33 0 2 0.021 37.3 0 0.032 19.34 0 0.256 37.35 0 0.054 16.17 0 2	1.09 0.532 0.798 22.35 0 0 0 21.5 0.477 0.706 22.9 0 0 0.01 0.29 1.71 1.442 23.99 0 0 0.003	101.678 Spessartine Almandine-Spessartine-series 102.285 Spessartine Almandine-Spessartine-series 101.272 Spessartine Almandine-Spessartine-series	930 51.2 43.7 0.0 0.5 0.0 0.0 1.3 3.2 924 52.1 43.5 0.0 0.1 0.0 0.0 1.5 2.8 953 54.6 34.4 2.8 0.8 0.0 0.0 1.6 5.8
RE06-GB-006 GB2 28 0.25-0.5 Rim RE06-GB-006 GB2 29 0.25-0.5 Core RE06-GB-006 GB2 29 0.25-0.5 Rim RE06-GB-006 GB2 30 0.25-0.5 Core	0.017 37.78 0 0.031 12.24 0 2 0.01 38.5 0 0.009 13.1 0 2 0.023 38.68 0 0.009 30.14 0 2	0.17 2.23 1.346 23.87 0 0 0 0 1.49 0.174 2.01 28.78 0.096 0.01 0.011 1.81 0.401 2.34 27.14 0.046 0 0 1.73 5.36 3.46 3.44 0.022 0.01 0.019	103.355 Spessartine Spessartine	957 54.2 33.7 3.0 0.8 0.0 0.0 2.9 5.4 946 64.4 27.0 0.0 0.1 0.0 0.0 0.6 7.9 928 60.7 28.9 0.0 0.0 0.0 0.0 12 9.2 959 7.5 64.4 0.7 0.1 0.0 0.0 14.1 13.3
RE06-GB-006 GB2 30 0.25-0.5 Rim RE06-GB-006 GB2 31 0.25-0.5 Core RE06-GB-006 GB2 31 0.25-0.5 Rim RE06-GB-006 GB2 32 0.25-0.5 Core	0.229 37.81 0 0.065 13.8 0.019 2 0.255 37.73 0 0.077 14.21 0	1.79 5.27 3.12 3.52 0.01 0 0.017 0.21 2.58 0.754 26.89 0 0 0 20.2 2.84 0.802 26.28 0 0 0.012 1.76 5.01 1.474 0.943 0.01 0 0.011	102.357 Spessartine Spessartine	950 7.7 65.8 0.4 0.1 0.0 0.0 14.1 12.0 956 61.0 28.3 4.0 0.7 0.1 0.0 3.0 3.0 950 59.3 29.0 4.0 0.8 0.0 0.0 3.7 3.2 865 2.1 78.2 0.0 0.0 0.0 0.0 14.0 5.7
RE06-GB-006 GB2 32 0.25-0.5 Rim RE06-GB-006 GB2 33 0.25-0.5 Core RE06-GB-006 GB2 33 0.25-0.5 Rim RE06-GB-006 GB2 34 0.25-0.5 Core	0.012 38.5 0 0.014 35.94 0 2	2.14 4.93 1.367 1.072 0 0 0.01 1.91 1.184 4.17 1.5 0.053 0.008 0.023 2.24 1.351 4.32 1.46 0.031 0 0.003 22 5.02 4.91 2.2 0 0 0.008	103.813 Spessartine Almandine	860 2.4 78.5 0.0 0.0 0.0 0.0 13.8 5.3 882 3.3 77.4 0.0 0.0 0.0 0.0 3.3 16.0 900 3.2 76.4 0.0 0.1 0.0 0.3 3.7 16.6 975 4.7 62.9 0.4 0.1 0.1 0.0 13.2 18.6
RE06-GB-006 GB2 34 0.25-0.5 Rim RE06-GB-006 GB2 35 0.25-0.5 Core RE06-GB-006 GB2 35 0.25-0.5 Rim	0.022 39.53 0 0.017 29.75 0.05 2 0.086 39.44 0 0.02 30 0.01 2 0.074 39.26 0.006 0.02 29.91 0 2	2.28 5.06 4.82 2.26 0.033 0 0.005 2.27 2.58 7.66 0.99 0.01 0 0.015 2.35 2.53 7.8 0.973 0.045 0.01 0.01 1.61 5.63 1.184 1.34 0 0 0.013	103.83 Spessartine Almandine 103.082 Spessartine Almandine 102.988 Spessartine Almandine	972 4.9 63.1 0.0 0.1 0.2 0.0 13.6 18.2 967 2.1 62.4 0.4 0.2 0.0 0.0 6.3 28.5 966 2.0 62.2 0.0 0.2 0.0 0.0 6.6 28.9 866 3.0 76.7 0.1 0.0 0.0 0.0 15.6 4.6
RE06-GB-006 GB2 36 0.25-0.5 Rim RE06-GB-006 GB2 37 0.25-0.5 Core RE06-GB-006 GB2 37 0.25-0.5 Core	0 38.16 0 0.026 35.09 0 2 0.296 39.97 0 0.029 5.44 0 0.26 39.65 0 0.009 5.44 0 2	1.53 5.62 1.171 1.33 0 0.016 0 20.3 34.84 0.068 0.25 0 0 0.038 0.37 34.61 0.08 0.236 0.023 0.011 0.041	102.943 Spessartine Almandine 101.23 Grossular Grossular 100.729 Grossular Grossular	868 2.9 76.6 0.3 0.0 0.0 0.0 15.6 4.6 974 0.5 5.7 8.6 0.8 0.0 0.0 84.1 0.3 975 0.5 6.2 7.9 0.7 0.0 0.0 84.4 0.3
RE06-GB-006 GB2 38 0.25-0.5 Core RE06-GB-006 GB2 38 0.25-0.5 Rim RE06-GB-006 GB2 39 0.25-0.5 Core RE06-GB-006 GB2 39 0.25-0.5 Rim	0.07 39.04 0 0 6.88 0 1 0.312 39.44 0 0.044 4.15 0.012 2	8.77 34.39 0.135 0.423 0 0.007 0.047 8.56 34.43 0.135 0.416 0.017 0.01 0.037 1.06 34.41 0.112 0.648 0 0 0 0.83 34.12 0.096 0.647 0 0 0.018	100.189 Grossular Grossular	981 0.9 5.4 14.4 0.2 0.0 0.0 78.6 0.5 980 0.9 5.0 14.7 0.2 0.0 0.0 78.7 0.5 970 1.4 5.6 4.6 0.9 0.0 0.0 87.0 0.4 972 1.4 5.6 4.7 1.0 0.0 0.0 87.0 0.4
RE06-GB-006 GB2 40 0.25-0.5 Core RE06-GB-006 GB2 40 0.25-0.5 Rim RE06-GB-006 GB2 41 0.25-0.5 Core RE06-GB-006 GB2 41 0.25-0.5 Rim	0.153 39.56 0 0.015 5.81 0 0.515 39.23 0 0.033 6.5 0	0.72 33.52 0.105 0.209 0 0 0.018 20.6 33.52 0.09 0.214 0 0.011 0.043 8.01 35.32 0.23 0.134 0.019 0 0.031 7.92 35.29 0.219 0.136 0.032 0 0.037	100.016 Grossular Grossular	982 0.4 8.2 6.3 0.4 0.0 0.0 84.2 0.4 982 0.5 7.9 6.7 0.4 0.0 0.0 84.2 0.3 975 0.3 3.1 16.3 1.5 0.0 0.0 78.0 0.9 975 0.3 3.1 15.8 1.6 0.0 0.0 78.4 0.8
RE06-GB-006 GB2 42 0.25-0.5 Core RE06-GB-006 GB2 42 0.25-0.5 Rim RE06-GB-006 GB2 43 0.25-0.5 Core RE06-GB-006 GB2 43 0.25-0.5 Rim	0.121 39.85 0 0.01 7.1 0 2 0.163 39.19 0 0.026 6.97 0.009 2 0.203 39.1 0.009 0.01 6.32 0	1.13 31.97 0.148 0.525 0.01 0 0.015 0.74 31.99 0.148 0.506 0.01 0 0.011 8.84 34.89 0.209 0.233 0.01 0 0.094 8.73 34.86 0.212 0.257 0.01 0 0.055	99.762 Grossular Grossular 99.92 Grossular Grossular	986 1.1 11.6 5.1 0.3 0.0 0.0 81.2 0.6 988 1.1 11.1 55 0.5 0.0 0.0 81.2 0.6 978 0.5 4.6 13.5 0.6 0.0 0.0 80.1 0.8 978 0.5 4.3 13.7 0.6 0.0 0.0 80.1 0.8
RE06-GB-006 GB2 44 0.25-0.5 Core RE06-GB-006 GB2 44 0.25-0.5 Rim RE06-GB-006 GB2 45 0.25-0.5 Core	0.367 39.35 0 0.016 6.35 0 2 0.393 39.33 0 0 6.34 0.011 0.146 39.5 0 0.017 6.49 0.011	0.03 32.45 0.058 1.36 0.013 0 0 19.8 32.76 0.067 1.33 0 0 0.01 9.93 33.26 0.128 0.748 0 0 0.048	99.994 Grossular Grossular 100.041 Grossular Grossular 100.275 Grossular Grossular	988 2.9 8.1 8.1 1.1 0.0 0.0 79.5 0.2 988 2.9 7.5 9.0 1.1 0.0 0.0 79.2 0.3 987 1.6 7.5 9.4 0.4 0.0 0.0 80.5 0.5
RE06-GB-006 GB2 45 0.25-0.5 Rim RE06-GB-006 GB2 46 0.25-0.5 Core RE06-GB-006 GB2 46 0.25-0.5 Rim RE06-GB-006 GB2 47 0.25-0.5 Core	0.32 39.24 0 0 6.03 0.066 0 0.338 39.71 0 0.025 5.92 0.069 0 0.715 38.35 0 0.027 6.69 4.58	0.45 33.95 0.108 0.591 0 0 0.035 9.11 34.7 0.123 0.341 0.027 0 0.067 9.41 34.65 0.115 0.327 0.015 0 0.057 4.12 35.1 0.159 0.285 0.01 0 0.041	100.077 Cr-grossular Grossular-Uvarovite-series	979 1.3 64 7.2 0.4 0.0 0.0 84.3 0.4 978 0.7 4.9 12.0 0.9 0.2 0.0 80.8 0.5 979 0.7 5.0 11.3 1.0 0.2 0.0 81.3 0.4 946 0.6 2.8 17.8 2.1 14.3 0.0 61.8 0.6
RE06-GB-006 GB2 47 0.25-0.5 Rim RE06-GB-006 GB2 48 0.25-0.5 Core RE06-GB-006 GB2 48 0.25-0.5 Rim RE06-GB-006 GB2 49 0.25-0.5 Core	0.386 38.18 0 0.019 3.4 11.44 1 0.067 32.88 0 0.009 2.36 0.012 2	7.19 34.95 0.229 0.319 0.01 0.007 0.036 1.28 33.91 0.123 0.432 0.01 0 1.056 0.44 33.79 0.046 0.587 0.018 0 0.016 1.59 32.66 0.156 1.69 0 0 0.428	100.236 Cr-grossular Grossular-Uvarovite-series 90.224 Cr-grossular Hydrogrossular	978 0.7 3.8 17.5 2.6 1.6 0.0 73.1 0.9 974 1.0 1.2 9.6 1.2 36.1 0.0 50.5 0.5 984 1.3 5.1 0.0 0.2 0.0 0.0 93.2 0.2 979 3.8 2.8 17.9 1.2 25.8 0.0 47.9 0.6
RE06-GB-006 GB2 49 0.25-0.5 Core RE06-GB-007 GB2 1 0.25-0.5 Rim RE06-GB-007 GB2 1 0.25-0.5 Rim RE06-GB-007 GB2 2 0.25-0.5 Core	0.646 42.2 0 0.076 7.04 5.84 1 0.678 42.58 0.01 0.057 6.92 5.9	0.02 33.5 0.163 0.86 0 0 0.547 8.68 5.35 21.45 0.307 0.021 0.007 0.058 8.82 5.32 20.7 0.298 0.023 0.014 0.052 4.09 6.57 19.83 0.357 0.02 0 0.063	100.01 Cr-grossular Grossular-Uvarovite-series 101.675 Pyrope Knorringite-Pyrope-series 101.372 Pyrope Pyrope	964 1.9 1.9 18.6 0.8 37.4 0.0 38.7 0.6 981 0.6 11.2 3.9 1.7 8.1 8.2 0.0 66.3 982 0.6 11.8 2.9 1.8 9.1 7.4 0.0 66.3 995 0.7 11.6 26 0.5 13.9 22.3 0.0 48.4
RE06-GB-007 GB2 2 0.25-0.5 Rim RE06-GB-007 GB2 3 0.25-0.5 Core RE06-GB-007 GB2 3 0.25-0.5 Rim	0.186 40.34 0 0.04 6.65 12.6 0.043 41.54 0 0.039 7.55 4.63 2 0.036 41.41 0 0.036 7.55 4.55 2	3.87 6.6 20.02 0.351 0.029 0.014 0.061 0.68 5.19 20.69 0.399 0 0 0.023 0.63 5.15 20.79 0.422 0 0 0.018	100.761 Pyrope Knorringite 100.784 Pyrope Pyrope 100.593 Pyrope Pyrope	995 0.7 11.4 2.8 0.5 13.7 22.9 0.0 48.0 992 0.8 14.6 0.0 0.1 13.0 0.1 0.0 71.4 992 0.8 14.5 0.2 0.1 12.7 0.2 0.0 71.5
RE06-GB-007 GB2 4 0.25-0.5 Core RE06-GB-007 GB2 4 0.25-0.5 Rim RE06-GB-007 GB2 5 0.25-0.5 Core RE06-GB-007 GB2 5 0.25-0.5 Rim	0.059 40.96 0 0.023 7.76 6.95 0 0.55 41.96 0 0.05 6.69 4.72 0.539 41.83 0 0.056 6.66 4.9	8.84 6.47 19.23 0.456 0.019 0 0.076 8.66 6.44 19.28 0.433 0 0.007 0.054 9.69 5.06 21.69 0.288 0.014 0.015 0.057 9.39 5.08 21.39 0.285 0.019 0.016 0.048	100.626 Pyrope Knorringite-Pyrope-series 100.778 Pyrope Pyrope 100.214 Pyrope Pyrope	990 0,9 15.2 0,1 0,1 16.2 3,8 0,0 63,7 991 0,9 15.1 0,3 0,2 15.9 4,0 0,0 63,7 994 0,6 11.2 2,8 1,5 8,6 4,6 0,0 70,7 984 0,6 11.2 3,0 1,4 8,7 5,2 0,0 70,0
RE06-GB-007 GB2 6 0.25-0.5 Core RE06-GB-007 GB2 6 0.25-0.5 Rim RE06-GB-007 GB2 7 0.25-0.5 Core RE06-GB-007 GB2 7 0.25-0.5 Rim	0.277 41.72 0 0.056 7.48 5.43	22 4.46 21.03 0.376 0.036 0 0.036 2.07 4.42 21.34 0.372 0.021 0.013 0.025 9.73 5.08 20.8 0.415 0.022 0.007 0.041 9.56 5.08 20.62 0.393 0.018 0 0.045	101.571 Pyrope Pyrope 101.057 Pyrope Pyrope	991 0.7 15.3 0.7 0.6 7.1 0.0 2.8 72.6 990 0.7 14.9 0.9 0.6 7.2 0.0 2.5 73.2 990 0.8 13.9 1.0 0.7 11.2 4.1 0.0 68.2 991 0.8 13.7 1.3 0.7 11.0 4.2 0.0 68.2
RE06-GB-007 GB2 8 0.25-0.5 Core RE06-GB-007 GB2 8 0.25-0.5 Rim RE06-GB-007 GB2 9 0.25-0.5 Core RE06-GB-007 GB2 9 0.25-0.5 Rim	0.105 41.21 0 0.046 7.22 8.71 1 0.078 42.29 0 0.055 7.93 3.17	17.3 6.11 19.75 0.403 0.049 0.008 0.038 7.21 6.12 20.09 0.397 0.055 0 0.061 21.9 4.64 20.81 0.416 0.01 0 0.022 1.66 4.61 20.89 0.425 0.022 0.01 0.021	101.225 Pyrope Knorringite-Pyrope-series 101.321 Pyrope Pyrope	998 0.8 13.4 1.3 0.3 14.1 10.7 0.0 59.3 998 0.8 13.1 1.7 0.3 13.7 11.2 0.0 59.3 992 0.8 15.4 0.0 0.2 8.8 0.0 2.7 72.0 993 0.8 15.4 0.1 0.2 9.0 0.0 24 72.1
RE06-GB-007 GB2 10 0.25-0.5 Core RE06-GB-007 GB2 10 0.25-0.5 Rim RE06-GB-007 GB2 11 0.25-0.5 Core	0.041 42.35 0 0.042 7.16 4.34 2 0.052 41.74 0 0.042 7.12 4.42 2 0.011 41.89 0 0.023 7.9 3.94 2	1.01 4.69 21.14 0.427 0.033 0 0.016 0.69 4.74 21.29 0.453 0.023 0 0.024 1.34 5.16 20.3 0.473 0 0 0.022	1 101.251 Pyrope Pyrope 100.593 Pyrope Pyrope 1 101.059 Pyrope Pyrope	990 0.8 13.7 0.4 0.1 11.4 0.7 0.0 72.8 989 0.9 13.4 0.6 0.1 11.2 1.2 0.0 72.5 993 0.9 15.4 0.0 0.0 11.1 0.0 1.9 70.6
RE06-GB-007 GB2 12 0.25-0.5 Core RE06-GB-007 GB2 12 0.25-0.5 Rim RE06-GB-007 GB2 13 0.5-1.0 Core	0.294 42.3 0 0.068 7.96 2.89 2 0.283 42.39 0.007 0.069 7.97 2.88 2 0.014 39.21 0 0.022 30.44 0 2	1.79 4.47 21.18 0.384 0 0.01 0.029 1.75 4.49 21.64 0.398 0.027 0.011 0.015 2.27 4.29 4.69 2.54 0 0 0.021	101.375 Pyrope	992 0.8 14.9 0.7 0.8 8.0 0.0 1.8 73.0 990 0.8 14.3 1.4 0.7 8.0 0.0 1.1 73.7 968 5.5 64.9 0.0 0.0 0.0 0.0 11.8 17.8
RE06-GB-007 GB2 14 0.5-1.0 Core RE06-GB-007 GB2 14 0.25-0.5 Rim RE06-GB-007 GB2 15 0.25-0.5 Core RE06-GB-007 GB2 15 0.25-0.5 Rim	0.01 38.94 0 0.025 34.37 0 2 0.137 40.92 0 0.029 16.12 0.012 2 0.114 41.33 0 0.036 16.33 0.024 2	2.11 1.79 2.48 5.83 0 0 0.126 2.72 1.76 2.52 4.27 0 0 0.116 3.08 8.69 12.53 0.308 0.019 0 0.016 3.15 8.61 12.71 0.319 0.031 0.007 0	104.73 Almandine Almandine 101.861 Almandine Almandine-Pyrope-series 102.661 Almandine Almandine-Pyrope-series	908 13.0 72.2 0.0 0.1 0.1 0.0 4.9 9.7 890 9.5 75.5 0.0 0.0 0.0 0.0 5.1 9.9 940 0.6 32.1 0.4 0.4 0.0 0.0 21.6 44.8 941 0.6 32.0 1.0 0.3 0.1 0.0 20.9 45.2
RE06-GB-007 GB2 16 0.25-0.5 Core RE06-GB-007 GB2 16 0.25-0.5 Rim RE06-GB-007 GB2 17 0.25-0.5 Core RE06-GB-007 GB2 17 0.25-0.5 Rim	0.143 39.76 0 0.019 24.39 0.078 2 0.14 40.38 0 0.01 24.15 0.083 2 0.01 38.61 0 0.016 30.79 0 2	2.32 6.22 8.98 0.605 0.031 0 0.029 2.53 6.36 9.02 0.594 0.019 0 0.023 1.81 6 3.17 2.55 0 0 0.016 1.97 5.94 2.92 3.02 0.01 0 0	102.574 Almandine Almandine 103.309 Almandine Almandine	975 1.3 49.5 0.9 0.4 0.2 0.0 14.9 32.8 970 1.2 49.0 0.9 0.4 0.2 0.0 15.2 33.0 947 5.5 65.8 0.4 0.0 0.0 0.0 16.2 12.1 945 6.6 65.8 0.0 0.1 0.0 0.0 16.4 11.2
RE06-GB-007 GB2 18 0.25-0.5 Core RE06-GB-007 GB2 18 0.25-0.5 Rim RE06-GB-007 GB2 19 0.25-0.5 Core RE06-GB-007 GB2 19 0.25-0.5 Rim	0.009 38.07 0 0.023 30.84 0.018 2 0.014 37.62 0 0.012 29.89 0.015 2 0.068 38.33 0 0.02 32.09 0	1.42 4.89 1.74 5.82 0.01 0 0.013 1.51 4.71 1.624 6.77 0.01 0 0.02 21.6 6.87 2.86 0.827 0.018 0 0.02 1.14 6.77 2.78 0.842 0.018 0.019 0.014	1 102.853 Almandine Almandine 102.176 Almandine Almandine 102.703 Almandine Almandine	920 12.8 66.7 0.7 0.0 0.1 0.0 13.0 6.7 922 15.0 65.4 0.0 0.0 0.0 0.0 13.2 6.3 922 1.8 68.3 0.7 0.2 0.0 0.0 18.1 10.9 918 1.8 68.8 1.6 0.3 0.0 0.0 16.9 10.6
RED6-GB-007 GB2 20 0.25-0.5 Core RED6-GB-007 GB2 21 0.25-0.5 Core	0.061 38.06 0 0.013 31.67 0 2	1.19 9.86 0.633 0.919 0 0.024 0	102.004 Armandine Amandine 102.43 Almandine 102.157 Almandine Almandine Almandine	918 1.8 8.8 1.5 0.3 0.0 0.0 10.0 18.9 10.5 863 2.0 67.9 1.5 0.2 0.0 0.0 25.9 2.5 970 1.5 47.5 0.8 0.3 0.0 0.0 14.6 35.3

Table 6																							
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	Probe mount GB2 GB2 GB2 GB2	22 22 23	Grain size (mm) 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Probe spot Core Rim Core	TiO ₂ SiO ₂ 0 38.08 0.009 37.32 0.013 38.66 0.022 39.77	K₂O Na₂O 0 0.053 0 0.021 0.007 0.027 0 0.012	27.24 26.94 33.71 32.47	Cr ₂ O ₃ Al ₂ 0.034 21 0 21 0.027 22 0.053 22	49 4.22 17 4.13 51 1.279	2.52 2.42	9.01 9.47 0.658 0.612	P ₂ O ₅ 0.01 0 0.038 0	0 0 0		Total Grain type (physical ID) 102.697 Almandine 101.493 Almandine 103.015 Pink almandine 103.999 Pink almandine		939 936 923 932			Andr Ti-A 0.5 0.0 0.6 0.0 0.0 0.0 0.0 0.0	ndr Uvar 0 0.1 0 0.0 0 0.1		.3 9.7 .0 9.4 5 23.1
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	GB2 GB2 GB2 GB2 GB2 GB2	24 24 25 25	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Core Rim Core Rim Core	0.022 35.77 0 38.91 0.013 39.63 0 39.17 0.01 38.87 0 39.03	0 0.012 0 0.029 0 0.027 0.01 0.01 0 0.017 0 0.017	32.56 32.28 31.9 32.1 32.66	0.016 22 0 23 0.012 22	51 0.817 11 0.85 63 1.122 48 1.098	7.32 7.16 7.61 7.7	0.646 0.642 0.671 0.694 0.592	0.135 0.098 0.04 0.038 0.037	0 0 0 0 0.01	0.025 0.018 0.021 0.018 0.021	103.995 Pink almandine 103.828 Pink almandine 103.196 Pink almandine 103.032 Pink almandine 103.33 Pink almandine	e Almandine e Almandine e Almandine e Almandine	928 926 936 935 932	1.4 1.4 1.4 1.5 1.3	68.7 68.9 67.0 66.9 68.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 2 0.0 2 0.0 3 0.0 3	3 27.5 4 27.2 0 28.5 0 28.6
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	GB2 GB2 GB2 GB2 GB2 GB2	26 27 27 28	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Rim	0.011 39.32 0 39.14 0.012 39.49 0.01 39.4 0.025 38.71	0 0.019 0 0.017 0 0.017 0 0.023 0 0.014	32.64 33.02 32.48 32.13 32.21	0.037 22 0.036 22	1.7 1.26 52 1.378 79 1.42 75 0.868	7.11 6.44 6.57 7.71	0.616 0.754 0.72 0.465 0.44	0.039 0.05	0 0 0.014 0	0.02 0.01 0.01 0.01 0.01	103.772 Pink almandine 103.364 Pink almandine 103.553 Pink almandine 103.453 Pink almandine 102.515 Pink almandine	e Amandine e Amandine e Amandine e Amandine	931 931 934 929 930	1.3 1.6 1.6 1.0	68.6 70.2 69.4 67.6 67.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.1 0.0 0.0 0.0	0.0 3. 0.0 3. 0.0 3. 0.0 2. 0.0 2.	3 26.6 7 24.4 9 25.0 4 28.9
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	GB2 GB2 GB2 GB2 GB2	29 30 30	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core	0.028 39.38 0.01 39.74 0.01 38.37 0.01 39.25 0.011 37.86	0 0.019 0 0.01 0 0.044 0 0.021 0 0.067	31.48 32.28 34.17 34.04 28.87	0.012 22 0.031 23 0.015 22 0.011 22 0 21	07 1.21 1.1 0.91 79 0.89	7.36 3.7	0.359 0.376 4 3.85 12.68	0.01 0.037 0.051 0	0 0.01 0 0 0	0.017 0 0.013 0	103.131 Pink almandine 104.133 Pink almandine 103.387 Pink almandine 104.529 Pink almandine 103.096 Mn-almandine	e Almandine e Almandine	940 928 907 902 870	0.8 0.8 8.8 8.5 28.7	66.2 68.2 74.1 74.6 64.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.0 0.0	0.0 3. 0.0 3. 0.0 2. 0.0 2. 0.0 5.	2 27.7 7 14.3 6 14.3
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	GB2 GB2 GB2 GB2 GB2	32 33 33 34	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Core Rim Core	0.014 37.89 0.012 37.91 1.298 41.85 1.298 41.12 0.826 42.53	0 0.068 0 0.032 0 0.101 0 0.124 0 0.085	28.75 29.52 10.84 10.94 8.99	1.96 21	59 0.342 09 5.48 72 5.51 03 4.74	19.36 19.34 21.03	12.63 13.39 0.364 0.373 0.305	0	0 0 0 0.009 0.02	0 0.084 0.072 0.054	103.167 Mn-almandine 103.901 Mn-almandine 101.198 Low Cr-pyrope 100.251 Low Cr-pyrope 101.57 Low Cr-pyrope	Low Cr-pyrope Low Cr-pyrope	857 973 972 989	28.6 29.9 0.7 0.7 0.6	64.2 65.1 17.5 17.4 14.3	0.0 0.0 0.0 0.0 5.7 3.5 6.2 3.5 4.9 2.2	0.0 5 2.1 5 2.0 2 5.1	0.0 5. 0.0 1. 0.0 3. 0.0 2. 0.4 0.	1 3.9 0 67.6 7 67.5 0 72.6
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	GB2 GB2 GB2 GB2 GB2	35 35 36 36	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Rim	0.81 43.12 0.213 42.26 0.226 41.94 0.403 37.49 0.312 38.31	0 0.073 0 0.068 0 0.087 0 0.084 0 0.05	8.91 10.47 10.58 11.28 11.83	0 20	96 5.47 1.6 5.42 44 2.12 21 2.94	18.95 19.01 0.456 0.511	0.288 0.252 0.245 30.36 28.69	0 0.03 0 0.01	0.007 0.019 0 0.01 0	0.048 0.013 0.022 0.01 0.01	102.404 Low Cr-pyrope 101.73 Low Cr-pyrope 101.221 Low Cr-pyrope 101.654 Spessartine 102.873 Spessartine	Low Cr-pyrope Low Cr-pyrope Spessartine Spessartine	987 961 965 983 978	0.6 0.5 0.5 69.9 65.5	14.2 20.3 20.1 21.6 23.7	4.8 2.1 0.0 0.6 0.6 0.6 5.4 1.3 4.4 0.9	0.2 0.2 0.0 0.0	0.0 12 0.0 0. 0.0 3.	0.2 65.4 0.4 65.6 0 1.8 4 2.1
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	GB2 GB2 GB2 GB2 GB2 GB2	37 38 38 39	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Core Core Rim Core Core	0.41 37.17 0.364 37.71 0.356 39.48 0.542 38.35 0.244 39.44 0.221 39.56	0 0.096 0 0.05 0 0 0 0.007 0 0.012 0 0.011	13.66 13.7 5.99 5.88 6.9 6.89	0 19 0.009 18 0 19	34 3.11 54 3.59 83 35.27 02 34.7 99 31.19 07 31.4	0.072 0.099 0.1	26.37 26.54 0.163 0.364 2.23 2.37	0 0 0 0.01 0	0 0 0 0	0.009 0.038 0.036 0.038 0.03	101.171 Spessartine 102.362 Spessartine 100.208 Grossular 99.009 Grossular 100.154 Grossular 100.671 Grossular	Spessartine Spessartine Grossular Grossular Grossular Grossular	956 958 973 978 990 989	60.0 59.9 0.3 0.8 4.8 5.1	26.5 26.2 3.8 5.3 9.1 8.9	6.2 1.3 6.6 1.1 13.5 1.0 10.9 1.6 8.6 0.7 8.7 0.6	0.0 0.0 0.0 0.0 0.0	0.0 2 0.0 2 0.0 81 0.0 76 0.0 76	8 3.4 .0 0.3 .0 0.4 .4 0.4
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	GB2 GB2 GB2 GB2 GB2 GB2	40 40 41 41	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core	0.263 39.37 0.249 39.6 0.182 39.93 0.182 40.07 0.241 39.53	0 0 0 0.02 0 0.007 0 0.019 0 0.013	6.08 5.98 4.5 4.63 6.46	0.027 19 0.02 20 0 21 0 21 0 20	79 33.7° 07 33.86 28 33.96 31 34.17	0.075 0.082 0.15 0.152	0.541 0.531 0.32 0.217 0.566	0.01	0 0.007 0 0	0.053 0.034 0.016 0	99.919 Grossular 100.473 Grossular 100.336 Grossular 100.76 Grossular 100.661 Grossular	Grossular Grossular Grossular Grossular Grossular	984 982 973 972 986	1.2 1.1 0.7 0.5 1.2	6.7 6.8 6.5 6.6 8.9	9.4 0.8 8.8 0.7 4.5 0.5 4.7 0.5 7.1 0.7	0.1 0.1 0.0 0.0 0.0	0.0 81 0.0 82 0.0 87 0.0 87 0.0 87	.6 0.3 .2 0.3 .2 0.6 .1 0.6
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	GB2 GB2 GB2 GB2 GB2	44 44 45 45	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Rim	0.304 39.41 0.202 39.93 0.226 39.58 0.212 39.22 0.221 38.93	0 0.019 0 0.023 0.007 0.01 0 0.018 0 0.018	6.64 4.17 4.26 7.97 7.93	0 21 0 21 0 17 0 17	29 34.8	0.147 0.135 0.077 0.089	0.593 0.333 0.322 0.415 0.395	0.012 0	0 0.011 0 0.01	0.07 0.028 0.038 0.04 0.037	100.336 Grossular 100.693 Grossular 100.02 Grossular 100.134 Grossular 99.731 Grossular	Grossular Grossular Grossular Grossular Grossular	987 968 971 977 977	1.3 0.7 0.7 0.9 0.8	9.4 5.7 6.0 4.3 4.2	7.1 0.9 4.5 0.6 4.5 0.6 19.4 0.6 19.5 0.7	0.0 0.0 0.0 0.0	0.0 81 0.0 87 0.0 87 0.0 74 0.0 74	.9 0.5 .6 0.5 .5 0.3 .5 0.3
RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007 RE06-GB-007	GB2 GB2 GB2 GB2 GB2 GB2	46 47 47 48	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core Core	0.317 39.49 0.278 39.53 0.228 39.26 0.271 39.31 0.229 37.53 0.39 38.64	0.01 0.011 0 0.017 0 0.015 0 0.009 0 0.012 0 0.031	4.31 4.3 5.1 5.04 8.36 6.27	0 20 0 21 0 21 12.34 10		0.111 0.129 0.145 0.282	0.27 0.289	0.031 0 0.013 0.026 0.01 0.018	0.01 0 0 0 0 0.014	0.015 0 0 0.024 0.635 0.768	99.931 Grossular 100.055 Grossular 99.764 Grossular 100.151 Grossular 100.152 Cr-grossular 101.282 Cr-grossular	Grossular Grossular Grossular Grossular Grossular-Uvarovite-series Grossular-Uvarovite-series	971 971 978 976 969 986	0.6 0.6 0.6 0.6 2.0 1.5	5.8 5.4 8.1 7.5 12.3 6.8	5.0 0.9 5.6 0.8 4.1 0.7 4.7 0.8 9.8 0.7 10.5 1.2	0.0 0.0 0.0 3 39.5	0.0 87 0.0 86 0.0 86 0.0 34 0.0 48	.3 0.4 i.1 0.5 i.0 0.5 i.6 1.1
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2 GB2	1 1 2 2	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core	0 42.7 0 43.83 0.108 40.55 0.077 40.21 0.122 40.57	0 0.029 0 0.021 0 0.013 0 0.048 0 0.009	7.54 7.43 19.46 20.1 19.9	1.92 22	94 4.02 94 4.08 81 6.31 47 6.03	21.65 21.23 12.24 12.04	0.353 0.37	0.026 0.027	0 0 0.009 0	0.014 0.009 0.027 0.029 0.023	101.191 Pyrope 102.797 Pyrope 101.983 Almandine 101.483 Almandine 102.197 Almandine	Pyrope Pyrope Almandine-Pyrope-series Almandine-Pyrope-series Almandine-Pyrope-series	977 963 974 976 939	0.7 0.7 0.9 0.9 0.9	14.5 14.6 38.7 39.7 40.8	0.1 0.0 0.0 0.0 0.9 0.3 1.6 0.3 0.1 0.3	5.3 5.0 6.0 7.0 9.0 9.0	0.0 4 0.0 5 0.0 15 0.0 14 0.0 21	7 74.7 3 74.3 5.2 44.0 5.0 43.5
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2	3 4 4 5	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Rim	0.117 40.29 0.022 38.77 0 38.71 0 38.81 0 38.42	0 0.027 0 0.01 0.01 0.025 0 0.007 0.009 0	19.79 35.46 35.75 34.75 34.69		26 1.133 27 1.093 42 1.104 05 1.104	4.65 4.64 5.25 5.2	0.435 1.232 1.262 1.131 1.128 4.44	0.035 0.035 0.044 0 0.039	0 0.008 0 0 0	0.01 0.023 0 0.01 0.01	102.142 Almandine 103.639 Pink almandine 103.82 Pink almandine 103.509 Pink almandine 102.65 Pink almandine 103.655 Pink almandine	Almandine-Pyrope-series Almandine Almandine Almandine Almandine Almandine	944 899 895 910 912 945	0.9 2.7 2.7 2.5 2.5 9.7	40.1 76.3 76.5 74.4 74.6	0.2 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.1 0.1 0.1 0.0	0.0 20 0.0 3. 0.0 3. 0.0 3. 0.0 3.	0 17.8 1 17.7 0 20.0 0 19.9
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2 GB2	6 7 7 8	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core Rim	0.019 38.87 0.021 37.8 0.024 39.36 0.025 38.95 0.015 39.31 0.027 40.06	0 0.011 0 0.032 0 0.008 0 0.011 0 0.036 0 0.018	31.65 31.73 32.52 32.92 30.63 30.48	0.009 22 0.024 21 0.049 22 0.023 22 0.076 22 0.117 23	77 1.68 52 0.945 36 0.952	7.46 7.33 7.23	4.44 4.41 0.453 0.475 1.148 1.121	0.026 0.01 0.045 0.048 0.01 0.034	0 0.008 0 0	0.01 0.01 0.008 0.019 0.024 0.014	103.055 Pink almandine 102.027 Pink almandine 103.401 Pink almandine 103.113 Pink almandine 103.159 Pink almandine 104.151 Pink almandine	e Almandine e Almandine e Almandine e Almandine	948 929 926 960 953	9.6 1.0 1.0 2.4	68.2 68.5 69.0 64.5 65.0	0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1	0.1 0.1 0.1 0.1 0.2	0.0 4 0.0 4 0.0 2 0.0 2 0.0 5 0.0 5	7 17.4 4 28.0 5 27.4 7 27.1
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2	9 9 10 10	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core	0.019 39.81	0 0 0.008 0.028 0 0.031 0 0.045 0 0.029	29.29 31 34.18 34.36 32.35	0.081 22 0.109 22 0.02 22 0.015 22 0.023 22	94 1.178 31 1.137 49 1.048 23 1.038	9.64 8.39 5.9 5.8	0.388 0.411 0.769 0.795 0.394	0.03 0.051 0.045 0.072 0.049	0 0 0 0 0	0.027 0.04 0.015 0.021 0.017	103.402 Pink almandine 102.29 Pink almandine 103.314 Pink almandine 103.074 Pink almandine 102.966 Pink almandine	e Amandine e Amandine e Amandine e Amandine	936 940 916 915 928	0.8 0.9 1.7 1.7	60.6 64.7 72.9 73.2 68.0	0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1	0.2 0.3 0.1 0.0	0.0 2 0.0 2 0.0 2 0.0 3 0.0 3	8 35.5 7 31.2 9 22.4 0 22.0
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2	12 12 13 13	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Rim	0.01 38.64 0.018 39.42 0.024 39.2 0.01 39.41 0.018 39.81	0 0.014 0 0.019 0 0.023 0 0.028 0 0.02	32.49 31.7 31.66 31.24 31.32	0.068 22 0.017 22 0.011 23	62 0.88° 59 0.896 78 0.83° 27 0.819	8.03 8.26 8.48 8.44	0.37 0.406 0.404 0.487 0.481	0.096 0.091 0.09 0.07	0.008 0.01 0 0 0.006	0.018 0.024 0.015 0.017 0.007	102.472 Pink almandine 103.278 Almandine 103.234 Almandine 103.395 Almandine 104.273 Almandine	Almandine Almandine Almandine Almandine	928 932 932 932 926	0.8 0.9 0.9 1.0 1.0	68.0 66.6 66.0 65.1 65.3	0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1	0.2 0.2 0.1 0.0	0.0 2 0.0 2 0.0 2 0.0 2 0.0 2	3 30.1 2 30.7 3 31.5 2 31.4
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2 GB2	14 15	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.5-1.0 0.5-1.0	Core Rim Core Rim Core Rim	0.062 39.58 0.058 39.27 0.045 38.11 0.056 38.6 0.184 39.73 0.203 39.82	0 0.028 0 0.025 0 0.023 0 0.014 0 0.029 0 0.03	26.48 27.33 32.78 32.84 25.54 25.79	0.018 22 0.009 21 0 21 0.008 21 0.064 22 0.072 22	97 7.06 41 7.2 58 7.12 5.6 5.91	6.09 1.97	0.686 0.746 0.846 0.865 0.612 0.622	0.02 0.015 0.01 0.023 0.016 0.024	0 0 0 0 0.01	0.041 0.031 0.027 0.025 0.037 0.03	102.726 Almandine 102.603 Almandine 102.421 Almandine 103.09 Almandine 102.792 Spessartine 102.871 Spessartine	Almandine Almandine Almandine Almandine Almandine Almandine	978 977 899 898 981 981	1.5 1.6 1.9 1.9 1.3	54.9 56.5 70.4 70.7 53.0 53.1	0.8 0.2 1.2 0.2 0.9 0.2 0.9 0.2 0.0 0.8 0.5 0.6	0.0 0.0 0.0 0.0 0.0	0.0 18 0.0 17 0.0 19 0.0 18 0.0 15	.7 22.8 1.1 7.6 1.8 7.6
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2 GB2	17 17 18 18	0.5-1.0 0.5-1.0 0.5-1.0 0.5-1.0 0.25-0.5	Core Rim Core Rim Core	0.15 38.83 0.156 39.13 0.019 38.04 0.034 37.87 0.117 37.79	0 0.019 0 0.021 0 0 0.008 0.033 0.008 0.039	23.75 23.75 18.72 18.64 19.47	0.072 22 0.018 22 0 21 0 21 0.01 21	02 5.55 97 5.56 58 0.825 .3 0.748	3.97 3.98 5 2.32 3 2.07	8.83 8.82 21.54 21.88 22.47	0	0 0.007 0 0	0.018 0.01 0 0	103.254 Spessartine 103.417 Spessartine 103.074 Spessartine 102.593 Spessartine 103.12 Spessartine	Almandine Almandine Almandine Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series	966 966 958 955 936	19.0 19.1 47.7 48.8 50.3	50.7 50.5 40.9 40.8 43.0	0.0 0.4 0.0 0.1 0.4 0.1 0.1 0.3	0.1 0.0 0.0 0.0	0.0 14 0.0 14 0.0 2 0.0 1 0.0 2	.7 15.0 .5 15.1 3 9.0 7 8.1
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2	19 20 20 21 21	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Core	0.027 37.81 0.01 37.55 0.035 36.67 0.152 37.86 0.131 37.31	0 0.017 0 0.04 0 0.039 0 0.041 0.01 0.054	19.61 16.91 16.97 18.18 18.15	0 21 0.014 21 0 20 0 20 0.008 20	48 0.726 77 0.836 92 0.972 63 0.944	0.485 0.546 1.494 1.522	21.79 25.55 25.81 23.11 23.22	0.046 0.013 0 0.01 0.02	0 0 0 0	0.01 0 0.024 0	103.343 Spessartine 102.778 Spessartine 101.701 Spessartine 102.739 Spessartine 101.999 Spessartine	Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series	911 914 946 947	48.6 57.9 58.0 51.9 52.1	43.2 37.9 37.3 39.2 38.9	0.0 0.1 0.0 0.0 0.6 0.1 1.6 0.8 2.0 0.4	0.0 0.0 0.0 0.0 5 0.0	0.0 4 0.0 2 0.0 1 0.0 0	7 3.5 2 1.9 9 2.2 9 5.9 6 6.0
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2 GB2	22 23 23 24	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core Rim	0.077 37.88 0.046 38.66 0.185 38.2 0.111 37.99 0.071 37.52 0 37.85	0 0.032 0 0.007 0 0.019 0 0.01 0 0.03	8.76 8.47 15.49 15.19 20.89 19.86	0 21 0 21 0 21 0.018 21 0.012 21 0 21	.9 0.479 19 4.82 23 5.1 13 0.844	2.56 2.32 2.11 0.919	31.29 31.51 20.18 20.55 21.26 22.01	0.105 0.068 0 0 0.01	0 0 0 0	0 0 0.036 0.042 0	102.774 Spessartine 103.7 Spessartine 102.44 Spessartine 102.686 Spessartine 102.686 Spessartine 102.899 Spessartine	Spessartine Spessartine Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series	959 953 992 988 934 932	69.5 70.0 44.6 45.3 47.7 49.9	19.2 18.6 32.8 32.3 46.1 44.5	0.0 0.2 0.0 0.1 1.4 0.5 1.1 0.3 0.3 0.2 0.0 0.0	0.0 0.0 0.1 0.0	0.0 1.	.6 9.0 .8 8.2 0 3.6
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2 GB2	25 25 26 26	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core	0.04 39.17 0.038 38.99 0.219 38.66 0.197 39.58 0.082 38.33	0 0.013 0 0.019 0 0.016 0 0.013 0 0.026	16.53 14.36 12.89 12.87 28.49	0.143 21 0.013 21 0.013 21 0.038 21 0 21	55 6.66 93 6.22 14 9.64 62 9.8	3.98 2.46 2.1 2.03 0.796	14.78 19.08 17.45 17.31 4.99	0 0.01 0.01 0.01	0 0.01 0 0 0.009	0.016 0.016 0.025 0.021 0.014	102.882 Spessartine 103.146 Spessartine 102.164 Grossular 103.489 Grossular 102.688 Grossular	Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series	983 985 935 927 895	32.1 41.9 38.4 38.1 11.1	34.3 31.2 26.5 26.8 62.2	1.8 0.1 0.0 0.1 2.3 0.6 1.7 0.6 0.1 0.2	0.4 0.0 0.0 0.0 0.1	0.0 16 0.0 17 0.0 24 0.0 24 0.0 23	i.0 15.2 i.2 9.5 i.0 8.1 i.9 7.9
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2	27 28 28 29 29	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Rim	0.098 38.94 0.321 39.81 0.32 40.41 0.479 39.77 0.585 39.44	0.01 0.018 0 0.012 0 0.016 0 0	4.89 4.72 3.79 4.22	0 21 0.01 20 0 19	58 33.8° 08 33.9° 08 35.49 49 35.1°	0.099 0.172 0.211	5.11 0.66 0.629 0.237 0.263	0.01	0 0 0 0.016 0.015	0 0.018 0.032 0.026 0.036	103.6 Grossular 100.19 Grossular 101.286 Grossular 100.081 Grossular 99.44 Grossular	Almandine Grossular Grossular Grossular Grossular	896 978 973 970 970	11.4 1.4 1.3 0.5 0.6	63.0 5.9 6.1 2.4 2.4	0.0 0.3 6.7 0.9 5.7 0.9 8.4 1.4 9.9 1.7	0.0 0.0 0.0 0.0 0.0	0.0 22 0.0 84 0.0 85 0.0 86 0.0 84	.7 0.3 i.5 0.4 i.6 0.6 i.6 0.8
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008	GB2 GB2 GB2 GB2 GB2 GB2	30 31 31 32	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Core Core Core Core Rim	0.557 39.29 0.459 39.41 0.403 39.04 0.375 39.07 0.291 39.16 0.314 38.42	0 0.008 0 0.018 0 0.013 0 0 0 0.02	5.98 5.89 6.93 7.01 7.74 7.83	0.011 18 0.01 18 0 1 0.01 19	.16 33.64 92 34.48 73 34.06 9 33.7 14 32.16 76 32.36	0.148 0.06 0.034 0.144	0.311 0.26 0.194 0.218 0.777 0.76	0 0 0 0 0	0 0 0 0.008 0.01	0.044 0.038 0.022 0.049 0.018	99.278 Grossular 99.635 Grossular 99.461 Grossular 99.475 Grossular 99.475 Grossular 98.625 Grossular	Grossular Grossular Grossular Grossular Grossular Grossular	986 979 982 984 991 990	0.7 0.6 0.4 0.5 1.7	5.6 4.3 6.3 7.1 9.0 8.9	11.0 1.6 12.5 1.3 13.0 1.3 11.9 1.1 11.5 0.6 12.1 0.9	0.0 2 0.0 1 0.0 3 0.0	0.0 80 0.0 78 0.0 79 0.0 76 0.0 75	1.7 0.6 1.9 0.2 1.2 0.1 1.4 0.6
RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-008 RE06-GB-009	GB2 GB2 GB2 GB2 GB2 GB2	33 33 34 34	0.5-1.0 0.5-1.0 0.5-1.0 0.5-1.0 0.5-1.0	Core Rim Core Rim Core	0.314 36.42 0.26 39.68 0.245 39.24 0.306 39.4 0.274 39.53 0.093 41.93	0 0.008 0 0.013 0 0.01 0 0.01 0 0.034	7.63 3.13 2.99 4.86 4.53 7.53	0 21 0 21	82 34.63 49 34.56 79 35.26 99 35.1	0.212 0.213 0.099	0.245 0.222 0.179 0.238 0.431	0.01 0.013 0.024 0.021	0 0 0 0 0	0.03 0 0.03 0.073 0.031	99.995 Grossular 99.006 Grossular 100.058 Grossular 99.921 Grossular 101.218 Pyrope	Grossular Grossular Grossular Grossular Knorringite-Pyrope-series	967 973 976 975 988	0.5 0.5 0.4 0.5 0.9	5.3 4.7 4.1 3.7 14.1	2.0 0.7 2.4 0.7 9.4 0.9 8.9 0.8 1.2 0.3	0.0 0.0 0.3 0.1	0.0 90 0.0 90 0.0 84 0.0 85 4.6 0.	0.8 0.9 0.8 0.6 0.4 0.7 0.3
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2 GB2	2 2 3 3	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Core	0.089 41.32 0.205 42.22 0.219 41.65 0.106 42.56 0.112 42.71	0 0.045 0 0.044 0 0.053 0 0.057 0.01 0.044	7.5 7.01 7.15 7.63 7.65	5.98 19 6.12 19 2.94 22 2.91 22	98 5.69 43 5.14 09 5.12 22 4.8 23 4.8	20.65 20.63	0.426 0.408	0.03 0.075 0.016 0.01	0.012 0 0.011 0 0.016	0.034 0.041 0.052 0.01 0.02	100.407 Pyrope 101.296 Pyrope 101.035 Pyrope 101.415 Pyrope 101.549 Pyrope	Knorringite-Pyrope-series Pyrope Pyrope Pyrope Pyrope	989 986 985 989 989	0.9 0.8 0.7 0.8 0.8	14.0 12.9 12.8 14.9 15.0	1.2 0.2 1.3 0.5 1.7 0.6 0.0 0.3 0.0 0.3	11.3 10.7 8.2 8.1	4.7 0. 5.5 0. 6.6 0. 0.0 3. 0.0 3.	0 67.6 0 66.8 8 72.0 9 72.0
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2 GB2 GB2	5 6	0.5-1.0 0.5-1.0 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Core Core Rim	0.11 39.12 0.073 39.26 0.149 40.45 0.122 40.55 0.026 38.26 0.02 38.66	0 0.016 0 0.007 0 0.025 0 0.011 0 0.014 0 0.015	29.19 29.34 20.07 20.03 38.59 38.73		81 7.25 46 2.58	4.71 4.38 10.86 10.95 2.19 2.17	2.34 2.47 0.335 0.315 0.26 0.235	0 0.01 0.042 0.039 0.028 0.016	0.01 0 0.013 0 0	0.015 0.025 0.03 0.031 0	103.004 Almandine 103.3 Almandine 102.135 Almandine 102.108 Almandine 103.408 Almandine 104.181 Almandine	Almandine Almandine Almandine-Pyrope-series Almandine-Pyrope-series Almandine Almandine	977 972 957 958 839 835	5.1 5.4 0.7 0.7 0.6 0.5	62.1 63.1 40.8 40.5 83.6 83.8	02 0.3 0.0 0.2 0.2 0.4 0.5 0.3 0.8 0.1	0.0 0.1 0.0 0.0	0.0 14 0.0 18 0.0 18 0.0 6 0.0 6	.5 16.8 i.5 39.4 i.1 39.8 4 8.5
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2 GB2 GB2	7 7 8 8	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core	0.028 38.1 0.068 38.79 0.084 38.66 0.092 38.81 0.071 41.04	0 0 0 0.014 0 0.028 0 0.023 0 0.022	36.78 31.97 31.98 32.2 19.02	0 21 0 21 0 21 0.008 21 0.122 23	59 3.13 67 7.14 72 7 75 6.94	1.92 2.63 2.64	1.279 0.555 0.554 0.549 0.438	0 0.014 0.03 0	0.01 0.007 0 0 0.007	0.009 0 0.013 0.02 0.015	102.846 Almandine 102.858 Almandine 102.709 Pink almandine 103.031 Pink almandine 102.526 Almandine	Almandine Almandine Almandine	864 915 917 915 979	2.8 1.2 1.2 1.2 0.9	80.8 68.7 69.0 69.3 37.8	0.0 0.1 0.8 0.2 0.4 0.2 0.5 0.3 0.3 0.2	0.0 2 0.0 2 0.0 3 0.0	0.0 8. 0.0 18 0.0 19 0.0 18	7 7.5 1.9 10.2 1.0 10.2
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2	9 9 11 11	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Rim	0.106 40.86 0 39.17 0.02 39.22 0 38.6 0.013 38.44	0.008 0.009 0.01 0.01 0 0.011 0.01 0.009 0 0.02	19.2 26.13 26.25 34.05 32.1	0.065 22 0 22 0 22 0.019 21 0 21	98 4.89 19 6.16 14 6.03 53 5.78 69 7.18	5.42 5.22 2.35 2.08	3.86 3.93 0.738 0.71		0 0 0 0 0 0.009	0	102.33 Almandine 102.95 Almandine 102.836 Almandine 103.101 Almandine 102.251 Almandine	Almandine-Pyrope-series Almandine Almandine Almandine Almandine	980 992 992 899 906	0.9 8.2 8.4 1.6 1.6	37.7 54.8 55.4 73.2 70.1	0.9 0.3 0.3 0.0 0.3 0.1 1.1 0.0 0.0 0.0	0.0 0.0 0.1 0.0	0.0 11 0.0 16 0.0 16 0.0 14 0.0 20	i.4 20.3 i.1 19.7 i.9 9.1 i.1 8.1
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009		12 13 13 14	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core	0.018 38.39 0 38.28 0.168 39.61 0.168 39.23 0.011 38.74	0.01 0.01 0 0.017 0 0.019 0 0.028 0 0.019	31.51 31.4 27.82 27.86 22.34	0 21 0 22 0.024 22 0.01 21	07 5.59 03 5.65 45 6.35	2.36 2.25 7.06 7.15 3.26 3.75	3.47 3.64 0.524 0.533 10.4	0 0 0.021 0.025 0	0.01 0 0 0 0		102.898 Almandine 102.599 Almandine 102.916 Almandine 102.736 Almandine 102.592 Almandine	Almandine Almandine Almandine Almandine Almandine Almandine-Spessartine-series	930 929 980 981 949	7.6 8.0 1.1 1.1 22.8	68.1 68.1 57.5 57.2 47.0	0.3 0.0 0.3 0.0 1.2 0.5 1.0 0.5 1.8 0.0	0.0 0.0 0.1 0.0	0.0 14 0.0 14 0.0 13 0.0 13 0.0 15	.8 8.7 1.4 26.3 1.7 26.5 1.8 12.5
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2	15 15 16 16	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core	0.027 39.6 0.01 39.31 0.014 38.75 0 38.96 0 39.47 0 38.73	0.008 0.025 0 0.022 0 0 0 0.03 0 0.021 0 0.011	23.48 32.5 32.27 33.54 33.59 36.88	0.021 22 0 22 0 22 0 22 0 22 0.022 22	.23 0.873 .43 1.189 !.7 1.159	7.44 7.53 6.1 5.86	8.29 0.67 0.702 1.082 1.049 0.635	0.015 0.017 0.01 0 0.031	0.01 0 0 0 0	0.012 0 0 0 0	103,943 Almandine 103,561 Pink almandine 102,386 Pink almandine 103,341 Pink almandine 103,848 Pink almandine 103,756 Pink almandine	e Almandine e Almandine e Almandine	962 928 932 926 922 875	17.9 1.4 1.5 2.3 2.3 1.4	49.7 68.3 67.9 71.2 72.0 79.4	0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 17 0.0 2 0.0 2 0.0 3 0.0 3 0.0 2	4 27.9 3 28.2 4 23.1 3 22.4
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2 GB2	17 18 18 19 19	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Rim	0.009 39.28 0.009 38.79 0 39.42 0.022 39.08 0.016 40.01	0 0.028 0 0 0 0.018 0.009 0.013 0 0.01	36.76 35.14 35.31 33 33.35	0.023 22 0.01 22 0.01 22 0.064 22 0.088 23	45 0.858 9 0.983 9 1.028 46 0.857 29 0.85	4.54 3 5.17 4.65 7.29 6.44	0.598 0.952 1.047 0.343 0.337	0.021 0 0.019 0.032 0.066	0 0.011 0 0 0	0 0.01 0.01 0.027 0.024	104.565 Pink almandine 103.376 Pink almandine 104.408 Pink almandine 103.196 Pink almandine 104.482 Pink almandine	Almandine Almandine Almandine Almandine Almandine Almandine Almandine	875 904 895 923 911	1.3 2.1 2.3 0.7 0.7	78.9 75.4 76.7 69.5 72.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1	0.1 0.0 0.0 0.0 1 0.2 0.3	0.0 2 0.0 2 0.0 2 0.0 2 0.0 2	4 17.4 6 19.8 9 18.0 1 27.4 1 24.8
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2 GB2	20 20 21 21 22	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Core Rim Core Rim Core	0.027 39.4 0 39.76 0.012 38.92 0.012 39.3 0 38.47	0 0 0 0.024 0 0 0 0 0 0.031	30.37 31.49 33.17 33.2 34.93	0.008 22 0.01 22 0.011 22	08 1.267 26 0.499 76 0.506 18 0.89	7.77 9 5.41 6 5.35 4.97	0.278 0.268 3.08 3.12 1.62		0 0 0 0 0.008	0	102.915 Pink almandine 103.705 Pink almandine 103.417 Pink almandine 104.296 Pink almandine 103.227 Pink almandine	e Amandine e Amandine e Amandine e Amandine	941 934 925 921 907	0.6 0.6 6.7 6.8 3.5	63.4 66.6 71.2 71.3 74.9	0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.0 0.0 0.0 0.0	0.0 2	5 29.3 3 20.7 3 20.5 6 19.0
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2	23 23 24	0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5 0.5-1.0	Rim Core Rim Core Rim Core	0 39.35 0.011 38.95 0.017 39.33 0 39.38 0.018 39.1 0.012 37.78	0.012 0.025 0 0.019 0 0.031 0 0.016 0.007 0.027 0 0.023	34.86 34.77 34.77 32.4 32.51 27.27	0.028 22 0.042 22 0.027 22 0.021 22 0.019 22 0 21	39 1.171 87 1.186 57 0.825 61 0.843	5.38 5.27 7.68 7.71	1.64 0.7 0.698 0.38 0.395 14.7	0.064 0.031 0.025 0.072 0.104 0.063	0 0 0 0.01 0	0 0 0.01	104.641 Pink almandine 103.464 Pink almandine 104.224 Pink almandine 103.364 Pink almandine 103.361 Pink almandine 103.622 Mn almandine	e Almandine e Almandine e Almandine	903 909 905 927 926 892	3.6 1.5 1.5 0.8 0.8 32.9	74.8 74.6 74.8 68.1 68.0 60.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1	0.1 0.1 0.1 0.1 0.1	0.0 2 0.0 3 0.0 3 0.0 2 0.0 2 0.0 2	2 20.6 3 20.2 2 28.8 3 28.7
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2 GB2	25 26 26 27 27	0.5-1.0 0.25-0.5 0.25-0.5 0.25-0.5 0.25-0.5	Rim Core Rim Core Rim	0.017 37.49 0 37.73 0 38.31 0.013 37.1 0.012 36.91	0 0.04 0 0.018 0 0.038 0.007 0.112 0 0.023	26.53 33.88 34.02 31.35 32.43	0.013 21 0 21 0 21 0.014 21 0 20	57 0.367 74 1.99 39 2.03 55 0.71 99 0.947	1.394 0.957 0.928 0.591 0.55	15.52 6.76 6.83 10.14 10.34	0.047 0.025 0 0 0 0.026	0 0 0 0 0	0 0 0 0.015	102.989 Mn almandine 103.1 Mn almandine 103.546 Mn almandine 101.602 Mn almandine 102.228 Mn almandine	Almandine-Spessartine-series Almandine Almandine Almandine Almandine	900 866 862 849 839	34.7 15.2 15.3 23.4 23.2	58.6 75.2 75.0 71.5 71.8	0.0 0.1 0.0 0.0 0.7 0.0 0.0 0.0 0.1 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 1. 0.0 5. 0.0 5. 0.0 2. 0.0 2.	2 5.5 8 3.8 3 3.7 6 2.4 6 2.2
RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2		0.5-1.0 0.5-1.0 0.25-0.5 0.25-0.5	Core Rim Core Rim	0.022 37.55 0.046 37.89 0.188 37.63 0.16 37.4	0 0.038 0 0.041 0.007 0.07 0 0.06	14.66 14.33 14.73 14.93	0 21 0 21 0 20 0 20	.7 0.842 1.7 0.597	1.25 0.613		0 0.01 0 0	0 0 0	0	102.519 Spessartine 103.04 Spessartine 101.875 Spessartine 102.017 Spessartine	Spessartine Spessartine Spessartine Spessartine	933 934 932 931	59.4 60.6 62.9 63.2	32.3 31.8 32.5 32.2	0.0 0.1 0.0 0.1 1.3 0.6 1.6 0.5	0.0	0.0 3. 0.0 2. 0.0 0. 0.0 0.	5 4.9 2 2.5

Table 6 (continued)

	Sample ID RE06-GB-009 RE06-GB-009	Probe mount GB2 GB2	ID si	Grain ze (mm) 1.25-0.5	Probe spot Core Rim	TiO ₂ SiO ₂ 0.043 38.72 0.033 39.46	K ₂ O Na ₂ O 0 0.024 0 0.022	20.35	Cr ₂ O ₃ 0.035 0.008	Al ₂ O ₃ 21.44 21.65	CaO 6.07 6.04	MgO 3.91 3.73	MnO 12.19 12.63	P ₂ O ₅ 0.043 0.021	NiO 0 0.01	V ₂ O ₃	Total Grain type	Grain type (geochemical Amandine-Spessartine-series Amandine-Spessartine-series		Spess 26.3 27.4		3				14.4	
Column	RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2	31 0 31 0 32 0 32 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core Rim	0.089 37.79 0.043 37.85 0 37.97 0 38.24	0.006 0.007 0 0.017 0 0.063 0 0.051	20.44 19.93 23.45 23	0 0 0	21.3 22.2 21.44 22.03	0.21 0.325 1.126 1.038	0.85 0.724 2.72 2.68	22.46 22.54 16.14 16.33	0.017 0 0.032 0	0.008 0.01 0 0	0 0 0	103.177 Spessartine 103.639 Spessartine 102.941 Spessartine 103.369 Spessartine	Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series	918 917 951 950	50.6 51.3 35.5 36.1	45.4 44.8 50.5 50.3	0.0 0.0 0.5 0.0	0.3 0.1 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.4 0.9 2.9 3.2	3.4 2.9 10.5 10.4
	RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2	33 0 34 0 34 0 35 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim Core	0.057 38.09 0.016 37.94 0.024 37.69 0.101 37.6	0 0.028 0 0.012 0 0.014 0 0.038	20.41 36.45 36.51 19.42	0 0.131 0.141 0	21.58 21.4 21.44 20.76	0.84 1.61 1.66 1.56	0.729 1.123 1.17 1.047	22.26 4.73 4.75 21.6	0.101 0.031 0.027 0.01	0.016 0 0 0 0.007	0 0.01 0 0	104.11 Spessartine 103.453 Spessartine 103.426 Spessartine 102.143 Spessartine	Almandine-Spessartine-series Almandine Almandine Almandine-Spessartine-series	924 845 846 951	49.7 10.6 10.6 48.9	45.0 80.4 80.1 42.3	0.0 0.0 0.0 1.7	0.2 0.0 0.1 0.3	0.0 0.4 0.4 0.0	0.0 0.0 0.0 0.0	2.3 4.2 4.2 2.6	2.9 4.4 4.6 4.2
Section Sect	RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2	36 0 37 0 38 0	1.25-0.5 1.25-0.5 1.25-0.5	Core Core Core	0.354 39.44 0.207 39.64 0.321 39.27	0 0 0 0.011 0 0.032	5.19 6.07 7.21	0 0.012 0.101	20.49 20.34 19.2	33.3 32.8 32.98	0.048 0.101 0.082	0.487 0.361 0.143	0.01 0 0.02	0 0 0.006	0.01 0.034 0.192	99.33 Grossular 99.576 Grossular 99.558 Grossular	Grossular Grossular Grossular	981 986 988	1.1 0.8 0.3	7.0 8.2 8.2	6.2 7.3 11.0	1.0 0.6 0.9	0.0 0.0 0.3	0.0 0.0 0.0	84.5 82.7 78.9	0.2 0.4 0.3
Section Sect	RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2	39 0 39 0 40 0 40 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core Rim	0.508 39.53 0.505 40.02 0.177 39.69 0.222 40.27	0 0.016 0 0.018 0 0.008 0 0.013	6.83 6.78 6.09 6.16	0.023 0.041 0 0.011	19.61 20.07 20.78 21.31	32.42 32.24 32.32 32.46	0.103 0.087 0.217 0.196	0.467 0.437 0.642 0.564	0 0 0.01 0.029	0 0 0.01 0	0.016 0.01 0.025 0.03	99.523 Grossular 100.207 Grossular 99.97 Grossular 101.265 Grossular	Grossular Grossular Grossular Grossular	990 989 988 983	1.0 1.0 1.4 1.2	8.5 9.2 9.1 9.9	9.3 8.1 5.9 4.7	1.5 1.4 0.5 0.6	0.1 0.1 0.0 0.0	0.0 0.0 0.0 0.0	79.2 79.9 82.3 82.8	0.4 0.3 0.8 0.7
Section Sect	RE06-GB-009 RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2 GB2	41 0 42 0 42 0 43 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim Core	0.306 39.33 0.338 39.36 0.215 39.66 0.27 39.64	0 0.013 0 0.024 0 0.017 0.007 0.017	8.31 4.54 4.99 5.01	0 0 0	17.03 21.06 20.99 20.84	32.5 33.34 32.98 33.16	0.084 0.07 0.084 0.116	2.33 0.743 0.853 0.363	0 0 0	0 0 0 0 0.011	0.016 0.026 0.016 0.025	99.919 Grossular 99.502 Grossular 99.805 Grossular 99.459 Grossular	Grossular Grossular Grossular Grossular	986 977 981 981	5.1 1.6 1.8 0.8	4.5 7.0 7.4 7.3	20.4 4.0 4.9 5.2	0.9 1.0 0.6 0.8	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	68.7 86.1 84.9 85.5	0.3 0.3 0.3 0.4
Section Sect	RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2	44 0 44 0 45 0	1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core	0.264 39.73 0.25 40.6 0.58 39.4	0 0.032 0 0.019 0 0.028	5.24 5.22 5.78	0.024 0 0.028	20.97 21.71 19.61	32.45 32.47 33.38	0.118 0.107 0.113	0.481 0.479 0.421	0 0.018 0.01	0	0.065 0.058 0.031	99.374 Grossular 100.93 Grossular 99.381 Grossular	Grossular Grossular Grossular	983 976 985	1.1 1.0 0.9	8.3 9.1 6.4	4.6 3.2 9.1	0.8 0.7 1.7	0.1 0.0 0.1	0.0 0.0 0.0	84.8 85.6 81.4	0.5 0.4 0.4
	RE06-GB-009 RE06-GB-009 RE06-GB-009	GB2 GB2 GB2	46 0 47 0 47 0	1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim	0.407 39.73 0.654 38.95 0.671 39.46	0 0.015 0 0.024 0.01 0.053	7.12 4.58 4.72	0.044 3.18 3.83	18.74 17.04 16.74	33.51 34.16 33.98	0.113 0.367 0.432	0.252 0.333 0.333	0 0 0.01	0.007 0.012 0.008	0.118 0.023 0.079	100.055 Grossular 99.323 Cr-grossular 100.325 Cr-grossular	Grossular Grossular Grossular	986 976 974	0.6 0.7 0.7	6.4 3.2 3.4	13.5 10.1 10.2	1.2 1.9 1.9	0.1 9.8 11.7	0.0 0.0 0.0	77.9 72.9 70.4	0.4 1.4 1.7
Section Sect	RE06-GB-010 RE06-GB-010 RE06-GB-010 RE06-GB-010	GB3 GB3 GB3 GB3	1 0 2 0 2 0 3 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core	0.652 41.69 0.011 40.12 0.01 40.28 0.03 39.61	0 0.01 0 0.033 0 0.018	6.66 29.7 29.69 30.55	10 0.032 0.047 0.025	15.65 22.96 23.57 22.95	6.36 0.865 0.828 1.054	20.49 9.58 9.47 8.78	0.371 0.36 0.455	0.045 0.078 0.1 0.054	0.023 0 0 0 0.009	0.024 0.025 0.021	101.985 Pyrope 103.75 Pink almandine 104.413 Pink almandine 103.555 Pink almandine	Knorringite-Pyrope-series Almandine Almandine Almandine	930 923 936	0.6 0.8 0.8 1.0	61.5 61.8 63.6	3.6 0.0 0.0 0.0	0.0 0.0 0.1	0.1 0.1 0.1	0.0 0.0 0.0	2.2 2.2 2.7	35.4 35.1 32.6
Section Sect	RE06-GB-010 RE06-GB-010 RE06-GB-010 RE06-GB-010	GB3 GB3 GB3 GB3	4 0 4 0 5 0 5 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core Rim	0.009 40.19 0.018 40.95 0.018 40.51 0.026 40.01	0 0 0 0.02 0 0.015 0 0	28.74 28.92 27.92 27.96	0.02 0.031 0.087 0.09	23.03 23.67 23.1 22.96	0.996 1.049 1.68 1.68	10.25 10.01 10.03 10.21	0.335 0.338 0.484 0.482	0.024 0.018 0.04 0.041	0 0 0	0.017 0.018 0.021 0.03	103.612 Pink almandine 105.043 Pink almandine 103.906 Pink almandine 103.489 Pink almandine	Almandine Almandine Almandine Almandine	927 918 939 941	0.7 0.7 1.0 1.0	59.1 59.6 57.6 57.3	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.1	0.1 0.1 0.3 0.3	0.0 0.0 0.0 0.0	2.5 2.7 4.2 4.1	37.6 36.8 36.9 37.3
Second Street	RE06-GB-010 RE06-GB-010 RE06-GB-010 RE06-GB-010	GB3 GB3 GB3 GB3	6 0 7 0 8 0 9 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Core Core	0 40.37 0 39.91 0.024 39.2 0.034 38.98	0 0.028 0 0.013 0 0.018 0.012 0.02	30.99 29.95 34.63 29.5	0.05 0.063 0 0	23.65 22.97 22.42 22.22	0.947 1.7 1.173 6.57	8.23 8.44 5.79 2.9	0.162 0.522 0.323 3.14	0.065 0 0.068 0.024	0.01 0 0 0	0.008 0.022 0 0.01	104.509 Pink almandine 103.59 Pink almandine 103.644 Pink almandine 103.409 Pink almandine	Almandine Almandine Almandine Almandine	922 948 910 948	0.3 1.1 0.7 6.9	65.8 62.8 74.0 63.7	0.0 0.0 0.0 0.0	0.0 0.0 0.1 0.1	0.1 0.2 0.0 0.0	0.0 0.0 0.0 0.0	2.6 4.4 3.2 18.2	31.1 31.5 22.0 11.2
Second Col 1	RE06-GB-010 RE06-GB-010 RE06-GB-010	GB3 GB3 GB3	10 0 11 0 12 0	1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Core	0.016 39.67 0.011 40.16 0.147 39.04	0 0.02 0 0 0 0.014	32.09 30.19 13.75	0.013 0.014 0.083	22.96 23.38 21.81	0.96 1.65 6.52	7.37 8.22 4.98	0.352 0.488 16.29	0.108 0.049 0	0	0.013 0.009 0.037	103.573 Pink almandine 104.171 Pink almandine 102.672 Spessartine	Almandine Almandine Almandine-Spessartine-series	928 941 983	0.8 1.0 34.9	68.5 63.6 28.5	0.0 0.0 0.9	0.0 0.0 0.4	0.0 0.0 0.3	0.0 0.0 0.0	2.6 4.4 16.2	28.0 30.9 18.8
Section Column	RE06-GB-010 RE06-GB-010 RE06-GB-010	GB3 GB3 GB3	13 0 14 0 14 0	1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Core	0.356 39.43 0.065 38.67 0.047 38.68	0 0.035 0 0.015 0 0.033	11.59 19.61 19.59	0 0.01 0.015	21.65 21.73 21.52	12.94 8.19 8.36	1.353 2.53 2.58	15.48 11.62 11.47	0	0 0.009 0	0.066 0.009 0	102.9 Spessartine 102.458 Spessartine 102.295 Spessartine	Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series	845 946 943	34.1 25.4 25.1	24.5 42.1 41.6	1.1 0.4 1.3	1.0 0.2 0.1	0.0 0.0 0.0	0.0 0.0 0.0	34.1 22.1 21.9	5.2 9.7 10.0
Section 19	RE06-GB-010 RE06-GB-010 RE06-GB-010	GB3 GB3 GB3	16 0 16 0 17 0	1.25-0.5 1.25-0.5 1.25-0.5	Core Core Core	0.128 39.57 0.379 39.97 0.564 28.28	0 0.034 0 0.106 0 0.017	23.65 23.57 13.42	0 0 0.075	22.12 22.17 54.74	9.41 9.44 0.009	6.21 6.1 2.1	0.787 0.697 0.206	0.029 0.034 0.01	0 0 0.024	0.023 0.038 0.036	101.961 Spessartine 102.503 Spessartine 99.481 Spessartine	Almandine Almandine Staurolite	956 953 996	1.7 1.5 1.2	49.4 49.5 77.0	0.8 0.5 -1.2	0.4 1.1 1.5	0.0 0.0 0.0	0.0 0.0 0.2	24.4 24.5 0.0	23.3 23.0 21.3
Section Sect	RE06-GB-010 RE06-GB-010 RE06-GB-010 RE06-GB-010	GB3 GB3 GB3 GB3	18 0 18 0 19 0 19 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core Rim	0.16 38.9 0.147 39.99 0.242 38.48 0.068 38.67	0 0.032 0 0.019 0 0.037 0 0.038	12.75 12.81 18.44 18.86	0.021 0.029 0.032 0.079	21.05 21.4 20.49 20.88	20.76 20.67 8.68 8.18	0.333 0.365 1.552 1.72	6.79 6.67 14.4 14.44	0 0 0 0.019	0 0 0 0 0.01	0.051 0.045 0 0.017	100.847 Spessartine 102.145 Spessartine 102.353 Spessartine 102.98 Spessartine	Piemontite Piemontite Almandine-Spessartine-series Almandine-Spessartine-series	928 911 945 953	15.0 14.8 31.9 31.8	25.7 25.8 37.5 38.6	3.1 3.2 4.4 3.6	0.5 0.4 0.7 0.2	0.1 0.1 0.1 0.2	0.0 0.0 0.0 0.0	54.4 54.3 19.3 19.0	1.3 1.4 6.1 6.7
Section 1985 1985	RE06-GB-010 RE06-GB-010 RE06-GB-010 RE06-GB-010	GB3 GB3 GB3 GB3	20 0 21 0 21 0 22 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim Core	0.142 40.14 0.08 37.61 0.066 37.92 0.082 39.99	0 0.007 0 0.009 0 0.011 0 0	10.28 16.93 16.98 4.02	0.149 0 0 0	20.53 21.24 21.47 21.19	25.73 0.517 0.517 33.2	0.263 0.174 0.152 0.098	4.35 26.21 26.36 0.505	0 0.037 0.032 0	0	0.082 0 0.017	101.674 Spessartine 102.806 Spessartine 103.525 Spessartine 99.098 Grossular	Grossular Almandine-Spessartine-series Spessartine Grossular	954 896 893 974	9.6 59.7 59.8 1.1	17.7 38.1 38.0 5.8	6.8 0.0 0.0 4.4	0.4 0.2 0.2 0.2	0.4 0.0 0.0 0.0	0.0 0.0 0.0 0.0	64.0 1.3 1.3 88.1	1.0 0.7 0.6 0.4
Section Column	RE06-GB-010 RE06-GB-010 RE06-GB-010 RE06-GB-010	GB3 GB3 GB3 GB3	23 0 23 0 24 0 24 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core	0.355 39.69 0.268 40.27 0.166 39.77 0.188 39.49	0 0.014 0 0.01 0 0 0 0.01	5.05 4.71 6.5	0 0 0 0.016	19.44 19.8 20.93 20.89	33.94 34.47 31.34 31.29	0.133 0.108 0.082 0.105	0.406 0.4 1.056 0.924	0 0.02 0 0.045	0	0.059 0.017 0.015	99.108 Grossular 100.115 Grossular 99.861 Grossular 99.592 Grossular	Grossular Grossular Grossular	980 974 987 988	0.9 0.9 2.3	3.9 3.2 10.6 11.0	10.5 10.2 5.1 4.8	1.0 0.8 0.5 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	83.1 84.5 81.2 81.1	0.5 0.4 0.3
Section Column	RE06-GB-010 RE06-GB-010 RE06-GB-011	GB3 GB3 GB3	25 0 26 0 1 0	1.25-0.5 1.25-0.5 1.25-0.5	Core Core Core	0.368 39.92 0.435 40.69 0.498 42.62	0 0.01 0 0.021 0 0.065	5.72 6.46 7.15	0 0 3.97	21.1 19.1 20.48	32.01 34.26 4.49	0.181 0.107 22.1	0.591 0.249 0.314	0 0.01 0.032	0 0 0.011	0.052 0.019 0.049	99.951 Grossular 101.351 Grossular 101.778 Pyrope	Grossular Grossular Pyrope	985 977 985	1.3 0.5 0.6	9.5 4.8 11.9	4.2 13.4 3.0	1.1 1.2 1.3	0.0 0.0 7.1	0.0 0.0 3.9	83.2 79.6 0.0	0.7 0.4 72.2
September Sept	RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3	2 0 3 0 3 0	1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim	0.255 42.51 0.354 41.93 0.483 42.1	0 0.066 0 0.054 0 0.067	7.15 7.22 7.2	7.56 7.22 7.18	18.69 18.12 18.11	5.39 5.5 5.44	20.27 20.52 20.17	0.395 0.317 0.281	0.067 0.032 0	0 0.012 0.008	0.025 0.065 0.046	102.378 Pyrope 101.345 Pyrope 101.086 Pyrope	Knorringite-Pyrope-series Knorringite-Pyrope-series Knorringite-Pyrope-series	992 994 993	0.8 0.6 0.6	13.9 12.8 13.1	0.4 2.3 2.0	0.7 1.0 1.3	12.9 11.0 11.0	9.5 9.3	0.0 0.0 0.0	63.2 62.9 62.7
Section Control Cont	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	4 0 5 0 5 0 6 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core	0.181 42.62 0.038 42.19 0.027 42.87 0.218 42.73	0 0.05 0 0.024 0 0.032 0 0.054	7.36 8.05 8.09 8.15	4.88 3.81 3.7 2.5	20.77 21.3 21.66 22.02	4.83 4.89 4.89 4.28	20.33 19.93 21.06	0.402 0.406 0.411 0.371	0.029 0 0 0	0 0 0	0.017 0.024 0.024	101.711 Pyrope 101.055 Pyrope 101.635 Pyrope 101.408 Pyrope	Pyrope Pyrope Pyrope Pyrope	992 995 993 990	0.8 0.8 0.8 0.7	14.5 15.7 16.1 15.0	0.0 0.2 0.0 1.3	0.5 0.1 0.1 0.6	12.0 10.7 10.3 6.9	1.6 0.0 0.0 0.0	0.0 1.4 2.2 2.1	70.6 71.1 70.5 73.3
	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	7 0 7 0 8 (1.25-0.5 1.25-0.5 0.5-1.0 0.5-1.0	Core Rim Core Rim	0.407 37.76 0.341 38.12 0.054 40.15 0.058 40.09	0 0.02 0 0.027 0 0.012 0 0	5.01 5.32 23.55 24.59	14.29 14.94 0.084 0.072	9.03 8.71 22.6 22.66	30.28 30.02 6.1 6.07	0.184 0.169 8.64 7.74	0.562 0.667 1.52 1.74	0 0 0 0.01	0 0 0 0 0.007	1.454 1.48 0 0.019	98.997 Cr-grossular 99.794 Cr-grossular 102.71 Almandine 103.055 Almandine	Grossular-Uvarovite-series Grossular-Uvarovite-series Almandine Almandine	962 955 980 985	1.4 1.6 3.2 3.7	5.7 6.3 48.6 51.3	8.9 9.0 0.2 0.0	1.3 1.0 0.2 0.2	46.3 48.1 0.2 0.2	0.0 0.0 0.0 0.0	35.7 33.2 15.6 15.9	0.8 0.7 31.9 28.8
Sept. Sept. GR 10 C C C C C C C C C	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	9 (10 (10 (11 (0.5-1.0 0.5-1.0 0.5-1.0 0.5-1.0	Rim Core Rim Core	0.024 38.94 0.021 38.49 0.029 39.33 0.033 38.9	0 0.016 0 0 0 0.011 0 0.017	34.55 24.29 24.25 30.59	0.028 0 0 0	22.28 19.89 20.34 22.17	3.25 17.36 17.4 4.93	1.218 0.096 0.09 4.96	4.49 1.104 1.12 1.094	0.01 0 0 0	0 0 0	0 0 0.019 0.013	104.806 Almandine 101.251 Almandine 102.588 Almandine 102.706 Almandine	Almandine Almandine Almandine Almandine	871 840 821 965	10.0 2.5 2.5 2.4	76.0 48.3 48.4 65.2	0.0 7.5 6.9 0.0	0.1 0.1 0.1 0.1	0.1 0.0 0.0 0.0	0.0 0.0 0.0 0.0	9.1 41.3 41.8 13.5	4.8 0.4 0.4 18.8
BEES-BATH GET 1.0	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	12 (12 (13 (13 (0.5-1.0 0.5-1.0 0.5-1.0 0.5-1.0	Core Core Core Rim	0.018 38.57 0.026 38.43 0.2 39.66 0.135 40.03	0 0.052 0 0.124 0 0.029 0 0.034	32.54 32.54 26.68 27.22	0 0 0 0.044	21.75 21.59 22.35 22.64	4.44 4.47 6.81 6.48	2.71 2.77 6.37 6.05	2.97 2.97 0.556 0.597	0.014 0 0 0.02	0	0.013 0 0.049 0.039	103.076 Almandine 102.92 Almandine 102.704 Almandine 103.288 Almandine	Almandine Almandine Almandine Almandine	928 929 978 975	6.5 6.5 1.2 1.3	70.4 69.8 56.3 57.9	0.2 0.7 0.0 0.0	0.1 0.1 0.6 0.4	0.0 0.0 0.0 0.1	0.0 0.0 0.0 0.0	12.3 12.2 18.0 17.3	10.5 10.7 24.0 22.9
EBS-66-01 GBT 71 25-55 Cor 25-55	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	14 (15 (15 (16 0	0.5-1.0 0.5-1.0 0.5-1.0 1.25-0.5	Rim Core Core	0.017 38.58 0.077 38.82 0.046 39.05 0.039 38.36	0 0.065 0 0.009 0 0.022 0.01 0.028	27.83 30.82 30.83 33.79	0 0.04 0.031 0.01	22.19 22.2 22.12 21.38	1.69 7.13 7.16 7.44	0.565 2.19 2.22 0.917	13.33 2.02 2.04 0.848	0 0 0.01 0.021	0 0.013	0 0.014 0.012	104.267 Almandine 103.32 Almandine 103.554 Almandine	Amandine-Spessartine-series Amandine Amandine	882 922 922 865	30.2 4.5 4.5 1.9	62.3 67.1 66.9 73.5	0.0 0.0 0.0 1.0	0.0 0.2 0.1 0.1	0.0 0.1 0.1 0.0	0.0 0.0 0.0 0.0	5.1 19.6 19.8 19.9	2.3 8.5 8.6 3.6
Self-Sci-Qui 198	RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3	17 0 17 0 18 0	1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core	0.066 38.89 0.021 39.15 0.094 38.37	0 0.007 0 0.015 0 0.034	31.37 30.83 33.84	0 0.019 0.019	21.69 22.11 21.35	7.75 7.89 7.24	2.36 2.4 0.931	0.743 0.664 0.83	0 0.01 0.01	0 0.007 0	0.01 0.013 0.007	102.887 Almandine 103.13 Almandine 102.726 Almandine	Almandine Almandine Almandine	912 914 867	1.6 1.5 1.9	67.6 67.1 73.9	0.8 0.0 0.9	0.2 0.1 0.3	0.0 0.1 0.1	0.0 0.0 0.0	20.6 22.0 19.4	9.1 9.3 3.7
EBES-GB-011 GBS 21 D2-5-6 Rem GBS 41,98 10 O1 CBS 21,94 CBS	RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3	19 0 20 0 20 0	1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim	0.06 38.98 0.182 38.02 0.046 37.61	0 0.018 0 0.056 0 0.036	31.45 14.15 13.77	0 0 0	21.91 20.64 20.92	6.45 1.81 1.83	3.37 1.151 1.096	0.814 26.58 26.78	0.01 0 0.015	0.011 0.013 0	0.017 0.008 0.011	103.09 Almandine 102.61 Almandine 102.115 Almandine	Almandine Spessartine Spessartine	936 945 952	1.8 60.1 60.4	67.4 29.8 29.8	0.3 2.7 1.3	0.2 0.5 0.1	0.0 0.0 0.0	0.0 0.0 0.0	17.4 2.2 4.0	12.9 4.6 4.4
EES-6-8011 GB3 24 02-505 Coro DB3 73 78 DB DB CD 22 23 DB DB DB CD DB DB DB DB	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	21 0 22 0 22 0 23 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core	0.083 40.58 0.038 38.61 0.012 39.37 0 38.22	0 0.017 0 0.022 0 0.026 0 0.051	27.72 33.41 33.17 21.71	0.108 0 0 0	22.53 21.32 22.02 21.63	6.41 7.42 7.32 2	5.57 1.399 1.304 2.27	0.595 0.622 16.88	0.01 0.028 0 0.016	0	0.015 0 0	102.858 Almandine 103.844 Almandine 102.777 Mn-almandine	Almandine Almandine Almandine-Spessartine-series	974 878 877 969	3.4 1.3 1.4 37.5	58.2 72.2 72.8 47.7	0.5 1.7 0.0 0.0	0.2 0.1 0.0 0.0	0.3 0.0 0.0 0.0	0.0 0.0 0.0 0.0	16.4 19.2 20.7 5.9	21.0 5.5 5.1 8.9
REG-Ge-Bol G83	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	24 0 25 0 25 0 26 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim Core	0.077 39.18 0.051 37.84 0.028 38.39 0.024 37.89	0 0.02 0.01 0.025 0 0.015 0 0.033	21.1 23.13 22.69 31.01	0 0 0 0.01	21.69 21.39 22.1 21.16	8.88 0.432 1.58 7.21	0.751 1.121 1.035 0.858	11.87 19.12 18.19 4.01	0 0 0 0.015	0 0.007 0 0.01	0 0 0	103.568 Mn-almandine 103.126 Mn-almandine 104.028 Mn-almandine 102.231 Spessartine	Almandine-Spessartine-series Almandine-Spessartine-series Almandine-Spessartine-series Almandine	908 923 937 894	26.4 42.9 40.9 8.9	45.6 51.3 50.4 67.3	0.9 0.0 0.0 1.2	0.2 0.2 0.1 0.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	23.9 1.2 4.5 19.1	2.9 4.4 4.1 3.4
REGG-68-011 683 30 225-05	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	27 0 27 0 28 0 28 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core Rim	0 37.72 0.013 38.24 0.074 39.5 0.086 39.65	0 0.039 0 0.037 0 0.011 0 0.01	31.13 31.04 26.93 28.49	0.02 0 0.028 0.029	21.97 22.4 22.31 22.42	0.993 0.998 6.39 6.15	1.77 1.76 6.6 5.58	9.1 9 0.816 0.983	0 0 0.026 0.01	0 0.011 0 0	0 0 0.021 0.019	102.742 Spessartine 103.498 Spessartine 102.708 Spessartine 103.427 Spessartine	Almandine Almandine Almandine Almandine	885 884 982 975	20.5 20.4 1.7 2.1	69.4 69.5 56.4 60.2	0.0 0.0 0.2 0.0	0.0 0.0 0.2 0.2	0.1 0.0 0.1 0.1	0.0 0.0 0.0 0.0	3.0 3.0 16.8 16.4	7.0 7.0 24.7 21.0
REBG-GB-011 GB3 32 0.25-0.5 Core 0.061 37.57 0 0.032 20.03 0 21.69 0.69 0.04 0.01	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	29 0 30 0 30 0 31 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim Core	0.013 37.57 0.204 39.84 0.221 40.06 0.034 38.98	0 0.019 0 0.036 0 0.025 0 0.019	26.54 24.5 24.42 16.76	0 0.01 0 0.043	21.72 22.54 22.79 21.83	1.129 5.77 5.68 4.23	0.536 9.03 8.78 4.35	15.33 0.623 0.645 16.77	0 0.017 0.013 0.025	0 0 0	0.017 0.035 0.032 0.009	102.874 Spessartine 102.605 Spessartine 102.667 Spessartine 103.05 Spessartine	Almandine-Spessartine-series Almandine Almandine Almandine-Spessartine-series	897 975 975 996	34.9 1.3 1.4 36.4	59.6 50.3 50.8 35.4	0.0 0.1 0.0 0.8	0.0 0.6 0.6 0.1	0.0 0.0 0.0 0.1	0.0 0.0 0.0 0.0	3.3 14.6 14.6 10.7	2.1 33.1 32.6 16.6
REDG-GB-011 GB3 34 0.5-1.0 Rim 0.137 37.75 0 0.174 20.34 0.2 2.34 0.2 2.34 0.2 2.34 0.2 2.34 0.2 2.34 0.2 2.34 0.2 2.34 0.35 2.34	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	32 0 32 0 33 0 33 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core Rim	0.061 37.57 0.113 38.39 0.05 38.86 0.046 38.96	0 0.032 0 0.034 0 0 0 0.014	20.03 19.85 32.33 32.27	0 0 0.019 0.027	21.15 21.69 21.75 21.78	0.691 0.718 5.78 5.73	1.042 1.005 3.27 3.08	22.13 22.14 1.04 1.059	0.029 0.01 0.021 0	0 0.01 0.014 0	0 0 0.025 0.024	102.735 Spessartine 103.96 Spessartine 103.16 Spessartine 102.99 Spessartine	Almandine-Spessartine-series Almandine-Spessartine-series Almandine Almandine	934 931 931 929	49.7 49.8 2.3 2.3	44.1 44.0 69.2 69.7	0.4 0.0 0.7 0.5	0.2 0.3 0.1 0.1	0.0 0.0 0.1 0.1	0.0 0.0 0.0 0.0	1.5 1.9 15.0 15.3	4.1 4.0 12.6 11.9
REDG-GB-011 GB3 37 0.25-0.5 Rim 0.498 39.66 0 0.011 6.76 0 19.56 32.36 0.12 0.382 0.01 0 0.011 99.162 Gressular Gres	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3	34 (36 0 36 0 37 0	0.5-1.0 1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim	0.137 37.75 0.135 40.06 0.157 40.38 0.494 39.34	0 0.174 0 0 0 0 0 0.01	20.34 2.84 2.86	0 0.013 0 0	21.34 21.71 21.81	0.212 34.02 33.83	0.457 0.127 0.126	22.82 0.242 0.241	0.03 0.01 0	0	0 0.01 0.024	103.26 Spessartine 99.177 Grossular 99.427 Grossular 98.548 Grossular	Almandine-Spessartine-series Grossular Grossular	908 960 959 990	51.4 0.5 0.5 0.9	45.3 4.5 4.6 8.1	0.0 2.4 2.3 10.0	0.4 0.4	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.1 91.6 91.6 79.1	1.8 0.5
REGG-GB-011 GB3 40 0,25-0.5 Rim 0.12 40.51 0,000 0.01 6.42 0 20.19 32.27 0.107 0.195 0 0.008 0.038 99.264 Grossular	RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	37 0 38 0 38 0 39 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim Core	0.498 39.66 0.256 39.45 0.215 40.04 0.474 40.02	0 0.011 0 0.032 0 0.01 0 0.012	6.76 6.76 6.99 4.81	0 0 0	19.35 19.92 20.05 21.07	32.36 31.86 31.7 31.61	0.12 0.137 0.139 0.138	0.382 0.578 0.621 0.857	0.01 0 0 0.05	0.022 0 0	0.011 0.013 0.023 0.016	99.162 Grossular 99.027 Grossular 99.788 Grossular 99.058 Grossular	Grossular Grossular Grossular Grossular	990 990 990 982	0.8 1.3 1.4 1.9	7.8 9.1 9.3 8.1	10.3 8.4 8.7 3.6	0.7 0.6 1.4	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	79.1 80.0 79.4 84.4	0.5 0.5 0.5
REGG-GB-011 GB3 42 0,25-0.5 Rim 0.289 39.93 0 0.011 5.36 0 20.39 32.74 0.142 0.294 0 0.007 0.036 99.79 Grossular Gro	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	40 0 40 0 41 0 41 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core Rim	0.326 39.7 0.355 40.17 0.063 40.22 0.12 40.51	0 0.01 0 0.014 0 0.013 0 0.01	6.42 5.71 3.92 4	0 0.02 0 0	20.19 20.6 20.91 20.97	32.27 32.36 33.83 33.8	0.107 0.123 0.136 0.126	0.195 0.202 0.162 0.209	0 0 0	0.008 0 0 0.013	0.038 0.041 0.009 0.024	99.264 Grossular 99.595 Grossular 99.262 Grossular 99.783 Grossular	Grossular Grossular Grossular Grossular	988 985 970 969	0.4 0.4 0.4 0.5	8.9 8.2 4.5 4.6	7.5 6.2 5.9 5.9	0.9 1.0 0.2 0.3	0.0 0.1 0.0 0.0	0.0 0.0 0.0 0.0	81.8 83.5 88.5 88.1	0.4 0.5 0.5 0.5
REDG-GB-011 GB3 45 0.25-0.5 Core 0.162 39.78 0 0.016 8.01 0 20.36 30.06 0.094 0.839 0.023 0 0.084 99.429 Grossular G	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	42 0 43 0 43 0 44 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Rim Core Rim Core	0.269 39.93 0.49 39.86 0.521 40.14 0.389 39.02	0 0.011 0 0.013 0 0.019 0 0.025	5.36 5.21 5.12 8.7	0 0.013 0.016 0.105	20.39 20.12 20.56 17.22	32.74 33.06 32.7 31.76	0.142 0.074 0.084 0.322	0.294 0.28 0.272 0.355	0 0 0	0.007 0 0 0	0.036 0.066 0.089 0.108	99.179 Grossular 99.185 Grossular 99.52 Grossular 98.005 Grossular	Grossular Grossular Grossular Grossular	984 983 982 991	0.7 0.6 0.6 0.8	7.0 6.3 7.2 7.3	7.0 7.4 5.9 18.0	0.8 1.4 1.5 1.2	0.0 0.0 0.0 0.3	0.0 0.0 0.0 0.0	84.1 83.9 84.4 71.1	0.6 0.3 0.3 1.3
1 NEW COLOTT COM COM CO. COM CO. COM CO. COM CO. COM CO. COM	RE06-GB-011 RE06-GB-011 RE06-GB-011 RE06-GB-011	GB3 GB3 GB3 GB3	45 0 45 0 35a 0 35b 0	1.25-0.5 1.25-0.5 1.25-0.5 1.25-0.5	Core Rim Core Core	0.162 39.78 0.234 39.91 0.145 37.6 0.154 37.51	0 0.016 0 0.014 0 0.04 0 0.039	8.01 5.9 14.98 15.58	0 0 0 0	20.36 21.33 21.17 21.07	30.06 31.78 0.478 0.456	0.094 0.162 0.912 0.742	0.839 0.199 26.9 26.56	0.023 0.01 0 0	0 0.016 0 0	0.084 0.083 0 0.009	99.429 Grossular 99.638 Grossular 102.225 Spessartine 102.12 Spessartine	Grossular Grossular Spessartine Spessartine	989 984 925 916	1.9 0.4 61.1 60.5	12.9 10.5 33.6 35.0	7.0 3.4 0.0 0.0	0.5 0.7 0.4 0.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	77.4 84.4 1.1 1.1	0.4 0.6 3.6 3.0

¹ Physical grain types identified during heavy-mineral indicator processing, some of which were identified by semi-quantive EDS analysis.

² Geochemical grain types identified by entering EMPA data from this study into the program Minldent-Win (Smith and Higgins, 2001). The score is a "matching index" calculation of mineral identification probability where a score of 1000 represents a perfect match.

³ Stoichiometric garnet end member calculations based on EMPA data from this study. Values are in per cent and total 100%.

Table 7. Electron microprobe analytical results for non-garnet kimberlite-indicator minerals.

Sample ID	Probe	Grain	Grain	Probe	TiO₂	SiO ₂	K ₂ O	Na ₂ O	FeO	Cr ₂ O ₃	Al ₂ O ₃	CaO	MgO	MnO	P ₂ O ₅	NiO	V ₂ O ₃	Total	Grain type	Grain type (geochemical ID)	2				
Sample ID	mount	ID	size (mm)	spot	1102	0102	1120	14020	reo	01203	A12O3	CaO	WIGO	WITIO	1 206	NIO	V2O3	Total	(physical ID) 1		Score				
RE06-GB-001	GB3	1	0.25-0.5	Core	0.398	0.042	0	0	33.08	59.03	5.92	0.014	3.49	0.521	0	0	0.179	102.673	Chromite	TO 140 TO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
RE06-GB-001	GB3	1	0.25-0.5	Core	0.069	54.98	0	0.623	3.49	0.567	1.005	21.83	16.46	0.12	0	0.047	0.01	99.2	Clinopyroxene	Diopside	954				
RE06-GB-003	GB3	1	0.25-0.5	Core	55	0.054	0	0.046	28.88	1.053	0.637	0.028	15.29	0.289	0.01	0.118	0.517	101.922	Ilmenite	Armalcolite	841				
RE06-GB-003	GB3	1	0.25-0.5	Core	0.21	0.031	0	0	20.88	32.79	34.9	0.01	13.72	0.29	0	0.129	0.134	103.094	Chromite	MagnesioChromite-spinel-series	905				
RE06-GB-003	GB3	2	0.25-0.5	Core	0.157	0.033	0	0	23.61	33.7	32.32	0.015	12.27	0.338	0.027	0.191	0.113		Chromite	MagnesioChromite-spinel-series	833				
RE06-GB-004	GB3	1	0.25-0.5	Core	0.299	55.02	0.04	1.59	3.6	0.737	1.95	18.8	17.19	0.099	0.01	0	0.052	99.387	Clinopyroxene	Diopside	947				
RE06-GB-004	GB3	2	0.25-0.5	Core	0.111	51.65	0	0.553	3.56	1.112	2.59	20.98	16.65	0.133	0.019	0.07	0.027	97.454	Clinopyroxene	Diopside	974				
RE06-GB-004	GB3	1	0.25-0.5	Core	0.822	0.056	0.01	0.021	34.59	46.98	12.88	0.017	4.79	0.568	0.022	0.059	0.138	100.953	Chromite	Chromite-hercynite-series	965				
RE06-GB-004	GB3	1	0.25-0.5	Core	52.48	0.062	0	0.034	33.47	0.355	0.656	0.04	12.61	0.278	0	0.057	0.526	100.568	Ilmenite	Pseudobrookite	898				
RE06-GB-005	GB3	1	0.25-0.5	Core	0.017	53.46	0	0.459	4.13	0.425	1.095	22.19	16.47	0.142	0	0.031	0.013	98.431	Clinopyroxene	Diopside	961				
RE06-GB-005	GB3	2	0.25-0.5	Core	0.074	52.73	0	0.46	3.14	1.115	1.489	21.69	16.57	0.174	0	0.145	0	97.587	Clinopyroxene	Diopside	965				
RE06-GB-005	GB3	1	0.25-0.5	Core	7.9	31.26	0	0.148	22.64	0	1.98	30.61	0.688	0.262	0	0	0.137	95.625	Chromite	Andradite-schorlomite-series	968				
RE06-GB-005	GB3	1	0.25-0.5	Core	49.39	0.022	0	0.01	47.32	0.019	0.017	0	0.269	2.43	0	0.01	0.262	99.749	Ilmenite	Ilmenite	983				
RE06-GB-005	GB3	2	0.25-0.5	Core	51.58	0.062	0	0.009	35.44	0.235	0.64	0.025	11.92	0.245	0	0.057	0.518	100.73	Ilmenite	Pseudobrookite	910				
RE06-GB-005	GB3	3	0.25-0.5	Core	47.92	0.028	0	0.044	39.84	0.219	0.419	0.014	10.32	0.268	0	0.027	0.558	99.656	Ilmenite	Pseudobrookite	910				
RE06-GB-005	GB3	4	0.25-0.5	Core	54.43	0.052	0	0.042	29.55	1.143	0.486	0.02	14.76	0.306	0	0.097	0.483	101.369	Ilmenite	Pseudobrookite	842				
RE06-GB-008	GB3	1	0.25-0.5	Core	0.025	53.72	0	0.466	3.07	0.982	1.268	22.55	16.42	0.129	0.012	0.06	0.018	98.719	Clinopyroxene	Diopside	961				
RE06-GB-008	GB3	1	0.25-0.5	Core	0.031	0.035	0	0	17.77	15.09	49.82	0.01	17.11	0.186	0.026	0.279	0.046	100.404	Chromite	MagnesioChromite-spinel-series	910				
RE06-GB-008	GB3	2	0.25-0.5	Core	0.278	0.045	0	0	29.55	34.56	27.79	0.01	9.06	0.372	0	0.175	0.16	102	Chromite	hercynite	811				
RE06-GB-008	GB3	1	0.25-0.5	Core	51.15	0.023	0	0.01	36.58	0.419	0.196	0.021	11.02	0.309	0	0.032	0.518	100.278	Ilmenite	Pseudobrookite	917				
RE06-GB-008	GB3	2	0.25-0.5	Core	52.26	0.042	0	0.032	30.77	2.14	0.301	0.025	13.88	0.305	0.01	0.15	0.524	100.44	Ilmenite	Pseudobrookite	849				
RE06-GB-008	GB3	3	0.25-0.5	Core	52.55	0.015	0	0.033	45.62	0.055	0.011	0.012	1.236	0.524	0	0	0.587	100.643	Ilmenite	Ilmenite	986				
RE06-GB-008	GB3	4	0.25-0.5	Core	53.01	0.05	0	0.043	31.35	1.22	0.749	0.029	13.75	0.257	0.01	0.098	0.521	101.087	Ilmenite	Pseudobrookite	869				
RE06-GB-009	GB3	1	0.25-0.5	Core	0.233	50.87	0	1.044	2.49	1.216	5	20.66	15.74	0.084	0.01	0.041	0.037	97.424	Clinopyroxene	Diopside	985				
RE06-GB-010	GB3	1	0.25-0.5	Core	0.235	51.61	0	1.67	2.48	1.16	5.81	20.23	15.12	0.079	0.012	0.029	0.047	98.483	Clinopyroxene	Diopside	986				
RE06-GB-010	GB3	2	0.25-0.5	Core	0.198	53.62	0	2.06	5.05	0.905	1.847	19.86	14.89	0.139	0.019	0.041	0.009	98.638	Clinopyroxene	Diopside	971				
RE06-GB-010	GB3	3	0.25-0.5	Core	0.053	53.13	0	0.571	4.46	0.706	1.021	22.5	15.68	0.2	0.029	0.089	0.014	98.452	Clinopyroxene	Diopside	968				
RE06-GB-010	GB3	4	0.25-0.5	Core	0.086	52.88	0	0.695	3.17	0.704	1.612	22.51	16.07	0.142	0.017	0.088	0.013	97.987	Clinopyroxene	Diopside	970				
RE06-GB-010	GB3	5	0.25-0.5	Core	0.083	51.68	0	1.238	2.38	1.167	4.71	21.09	15.52	0.081	0.01	0.023	0.034	98.016	Clinopyroxene	Diopside	985				
RE06-GB-011	GB3	1	0.25-0.5	Core	0.218	52.36	0	1.261	4.09	1.208	2.54	21.23	14.82	0.111	0.038	0.047	0.027	97.951	Clinopyroxene	Diopside	985				
RE06-GB-011	GB3	2	0.25-0.5	Core	0.257	51.25	0	0.684	4.08	0.821	4.11	21.66	14.84	0.146	0.014	0	0.02	97.882	Clinopyroxene	Diopside	993				
RE06-GB-011	GB3	3	0.25-0.5	Core	0.178	52.23	0	0.929	3.12	0.841	1.808	21.88	16.19	0.11	0.018	0.052	0.044	97.4	Clinopyroxene	Diopside	972				
RE06-GB-011	GB3	4	0.25-0.5	Core	0.094	55.03	0	0.646	8.64	0.377	0.673	7.99	25.43	0.217	0	0.062	0.01	99.169	Clinopyroxene	Magnocummingtonite	987				
RE06-GB-011	GB3	5	0.25-0.5	Core	0.045	51.75	0	0.798	4.87	0.822	1.27	21.48	15.46	0.163	0	0.077	0.008	96.743	Clinopyroxene	Diopside	973				
RE06-GB-011	GB3	6	0.25-0.5	Core	0.3	53.26	0	0.722	3.99	0.859	2.07	20.4	17.07	0.113	0.01	0.079	0.018	98.891	Clinopyroxene	Diopside	963				
RE06-GB-011	GB3	1	0.25-0.5	Core	0.055	0.049	0	0	28.55	42.15	23.46	0	6.81	0.48	0.01	0.099	0.267	101.93	Chromite	Chromite-hercynite-series	833				
RE06-GB-011	GB3	2	0.25-0.5	Core	0.212	0.052	0	0.024	25.67	52.51	13.77	0	8.7	0.626	0	0.082	0.102	101.747	Chromite	Chromite-MagnesioChromite-series					
RE06-GB-011	GB3	1	0.25-0.5	Core	47.95	0.049	0	0.032	36.73	3.41	0.373	0.02	10.75	0.306	0	0.12	0.517	100.256	Ilmenite	Pseudobrookite	993 865				
RE06-GB-006	GB2	1	0.25-0.5	Core	0.094	0.046	0	0.019	4.3	0.131	68.28	0.01	24.33	0.045	0.01	0.008	0.143	97.417	Uvarovite	Spinel	978				
RE06-GB-006	GB2	1	0.25-0.5	Rim	0.098	0.024	0.007	0.011	4.24	0.115	67.03	0.014	24.57	0.039	0.01	0.01	0.137	96.305	Uvarovite	Spinel					

Physical grain types identified by entering EMPA data from this study into the program MinIdent-Win (Smith and Higgins, 2001). The score is a "matching index" calculation of mineral identification probability where a score of 1000 represents a perfect match.

Table 8. Electron microprobe analytical results for garnet from the garnetiferous pelitic gneiss erratic.

Sample ID	Probe	Grain	Grain	Probe	TIO ₂	SIO ₂	K ₂ O Na ₂ O FeO Cr ₂ O ₃ Al ₂ O ₃ CaO MgO MnO P ₂ O ₅ NIO V ₂ O ₃ Total Grain type Grain type (geochemical ID) ²											Stoichiometric garnet end member calculations (%)											
Sample ID	mount	ID	size (mm)	spot	1102	3102	N ₂ O	Nago	reu	C12O3	Al ₂ O ₃	Cau	IVIGO	IVIIO	F205	NIO	V2 U3	Total	(physical ID) 1		Score	Spess	Almand	Andr	Ti-Andr	Uvar	Knorr	Gross	Pyrope
Pelitic gneiss	Rock slab	1	>5	Core to rim	0.023	38.765	0	0	33.49	0.015	21.672	1.539	6.051	0.522	0.037	0	0.009	102.123		Almandine	975	1.1	71.4	1.0	0.1	0.0	0.0	3.1	23.2
Pelitic gneiss	Rock slab	1	>5	Core to rim	0.009	38.337	0	0	33.456	0	21.585	1.533	6.008	0.535	0.028	0.006	0.002	101.499		Almandine	976	1.2	71.5	0.8	0.0	0.0	0.0	3.4	23.1
Pelitic gneiss	Rock slab	1	>5	Core to rim	0.024	38.39	0.002	0	33.457	0.005	21.768	1.545	6.045	0.527	0.047	0	0.001	101.811		Almandine	976	1.1	71.5	0.2	0.1	0.0	0.0	3.9	23.1
Pelitic gneiss	Rock slab	1	>5	Core to rim	0.024	38.544	0	0	33,488	0	21.61	1.537	6.151	0.544	0.05	0	0	101.948		Almandine	976	1.2	71.1	1.1	0.1	0.0	0.0	3.1	23.5
Pelitic gneiss	Rock slab	1	>5	Core to rim	0.016	38.46	0	0	33.656	0.021	21.778	1.509	6.035	0.555	0.061	0.003	0.015	102.109		Almandine	975	1.2	71.7	0.3	0.0	0.1	0.0	3.7	23.0
Pelitic gneiss	Rock slab	1	>5	Core to rim	0.008	38.688	0.001	0.019	33.641	0.006	21.747	1.447	6.004	0.527	0.07	0.007	0.007	102.172		Almandine	975	1.1	71.8	0.7	0.0	0.0	0.0	3.3	23.0
Pelitic gneiss	Rock slab	1	>5	Core to rim	0.024	38.469	0	0.026	33.815	0	21.738	1.386	6.03	0.569	0.092	0	0.014	102.163		Almandine	974	1.2	71.9	0.5	0.1	0.0	0.0	3.3	23.0
Pelitic gneiss	Rock slab	1	>5	Core to rim	0	38.578	0	0.11	33.912	0.008	21.766	1.323	5.98	0.545	0.045	0	0.015	102.282		Almandine	973	1.2	71.9	0.6	0.0	0.0	0.0	3.5	22.7
Pelitic gneiss	Rock slab	1	>5	Core to rim	0.02	38.44	0	0.016	34.273	0.005	21.586	1.2	5.926	0.546	0.021	0.013	0.003	102.049		Almandine	972	1.2	72.8	1.0	0.1	0.0	0.0	2.3	22.6
Pelitic gneiss	Rock slab	1	>5	Core to rim	0.031	38.509	0.004	0.05	34.316	0	21.732	1.087	5.709	0.554	0.063	0	0	102.055		Almandine	971	1.2	73.6	0.4	0.1	0.0	0.0	2.8	21.9
Pelitic gneiss	Rock slab	2	>5	Core to rim	0	38.648	0	0	32.435	0.007	21.804	2.832	5.668	0.687	0.007	0.004	0.019	102.111	These grains	Almandine	982	1.5	69.1	0.5	0.0	0.0	0.0	7.2	21.6
Pelitic gneiss	Rock slab	2	>5	Core to rim	0.033	38.678	0	0.011	32.49	0.02	21.726	2.712	5.652	0.673	0.022	0	0.012	102.029	were not picked	d Almandine	982	1.5	69.4	0.7	0.1	0.1	0.0	6.7	21.6
Pelitic gneiss	Rock slab	2	>5	Core to rim	0.013	38.509	0	0	32.767	0.022	21.522	2.198	5.833	0.695	0	0	0.027	101.586	via heavy	Almandine	980	1.5	70.0	1.2	0.0	0.1	0.0	4.8	22.4
Pelitic gneiss	Rock slab	2	>5	Core to rim	0.002	38.107	0	0.006	33.139	0.006	22.585	1.81	5.982	0.688	0.004	0.007	0.025	102.361	mineral	Almandine	977	1.5	70.8	0.0	0.0	0.0	0.0	5.0	22.8
Pelitic gneiss	Rock slab	2	>5	Core to rim	0.017	38.063	0.007	0.001	33.34	0	22.632	1.724	6.074	0.665	0.056	0	0	102.579	processing, but	t Almandine	976	1.4	70.9	0.0	0.0	0.0	0.0	4.7	23.0
Pelitic gneiss	Rock slab	2	>5	Core to rim	0.012	38.015	0	0.088	33.387	0	22.506	1.572	5.977	0.686	0.009	0.005	800.0	102.265	analyzed in situ	Almandine	976	1.5	71.1	0.0	0.0	0.0	0.0	4.7	22.7
Pelitic gneiss	Rock slab	2	>5	Core to rim	0.023	37.909	0	0.033	33.549	0.009	22.511	1.52	5.934	0.687	0	0.013	0.016	102.204	by EMPA on thi	n Almandine	975	1.5	71.6	0.0	0.1	0.0	0.0	4.2	22.6
Pelitic gneiss	Rock slab	2	>5	Core to rim	0.023	38.161	0	0.028	33.674	0.028	22.518	1.427	5.959	0.652	0.043	0.01	0.013	102.536	sections. Thus	, Almandine	974	1.4	71.9	0.0	0.1	0.1	0.0	3.9	22.7
Pelitic gneiss	Rock slab	2	>5	Core to rim	0.019	37.722	0	0	34.152	0.01	22.365	1.128	5.769	0.678	0.055	0	0.015	101.913	this column is	Almandine	971	1.5	73.3	0.0	0.1	0.0	0.0	3.0	22.1
Pelitic gneiss	Rock slab	2	>5	Core to rim	0.023	37.957	0	0.002	34.511	0.035	22.3	1.093	5.633	0.693	0.032	0.022	0.012	102.313	blank.	Almandine	970	1.5	74.0	0.0	0.1	0.1	0.0	2.8	21.5
Pelitic gneiss	Rock slab	3	>5	Core to rim	0.007	38.147	0.004	0.032	32.632	0.023	22.46	1.944	5.646	1.387	0.004	0	0.015	102.301		Almandine	981	3.0	69.9	0.0	0.0	0.1	0.0	5.4	21.6
Pelitic gneiss	Rock slab	3	>5	Core to rim	0.018	38.268	0.001	0.177	32.938	0	22.583	1.773	5.624	1.319	0	0	0.026	102.727		Almandine	978	2.8	70.1	0.0	0.1	0.0	0.0	5.7	21.3
Pelitic gneiss	Rock slab	3	>5	Core to rim	0.03	38.023	0	0.054	33.028	0.02	22.538	1.765	5.599	1.189	0.036	0	0.007	102.289		Almandine	978	2.6	70.9	0.0	0.1	0.1	0.0	5.0	21.4
Pelitic gneiss	Rock slab	3	>5	Core to rim	0.028	37.993	0	0.029	33.366	0.003	22.473	1.596	5.757	1.134	0.029	0.008	0.008	102.424		Almandine	977	2.4	71.2	0.0	0.1	0.0	0.0	4.4	21.9
Pelitic gneiss	Rock slab	3	>5	Core to rim	0.035	38.201	0	0.01	33.447	0	22.531	1.558	5.806	1.063	0.034	0.001	0.007	102.693		Almandine	976	2.3	71.3	0.0	0.1	0.0	0.0	4.2	22.1
Pelitic gneiss	Rock slab	3	>5	Core to rim	0.009	38.252	0	0.023	33.593	0.004	22.445	1.509	5.721	0.98	0.036	0.006	0.017	102.595		Almandine	975	2.1	71.8	0.0	0.0	0.0	0.0	4.2	21.8
Pelitic gneiss	Rock slab	3	>5	Core to rim	0.015	37.946	0	0	33.737	0	22.524	1.43	5.664	0.907	0.03	0.015	0.023	102.291		Almandine	974	2.0	72.4	0.0	0.0	0.0	0.0	3.9	21.7
Pelitic gneiss	Rock slab	3	>5	Core to rim	0.01	38.07	0.003	0.052	33.848	0.002	22.407	1.366	5.568	0.845	0.043	0.003	0.031	102.248		Almandine	974	1.8	72.8	0.0	0.0	0.0	0.0	4.0	21.3
Pelitic gneiss	Rock slab	3	>5	Core to rim		37.899	0	0.039	34.258	0.019	22.609	1.183	5.643	0.812	0.021	0	0.014	102.5		Almandine	971	1.8	73.3	0.0	0.0	0.1	0.0	3.4	21.5
Pelitic gneiss	Rock slab	3	>5	Core to rim	0.015	37.943	0	0.015	34.526	0.03	22.37	1.08	5.494	0.814	0.041	0	0.022	102.35		Almandine	970	1.8	74.2	0.0	0.0	0.1	0.0	2.9	21.0

Pelluic griefs workstad 3 >5 Cure form: 0.016 37.943 0 0.016 34.926 0.03 22.57 1.08 54.94 0.614 0.021 0 0.022 102.35 Affiriationine 9/0 1.8 74.2 1 1.08 54.94 0.614 0.0041 0 0.022 102.35 Affiriationine 9/0 1.8 74.2 1 1.08 54.94 0.614 0.0041 0 0.022 102.35 Affiriationine 9/0 1.8 74.2 1 1.08 54.94 0.614 0.0041 0 0.022 102.35 Affiriationine 9/0 1.8 74.2 1 1.08 54.94 0.614 0.0041 0 0.022 102.35 Affiriationine 9/0 1.8 74.2 1 1.08 54.94 0.614 0.0041 0 0.002 102.35 Affiriationine 9/0 1.8 74.2 1 1.08 54.94 0.614 0.0041 0 0.002 102.35 Affiriationine 9/0 1.8 74.2 1 1.08 54.94 0.614 0.0041 0 0.002 102.35 Affiriationine 9/0 1.8 74.2 1 1.08 54.94 0.614 0.0041 0 0.002 102.35 Affiriationine 9/0 1.8 74.2 1 1.08 1 1.0

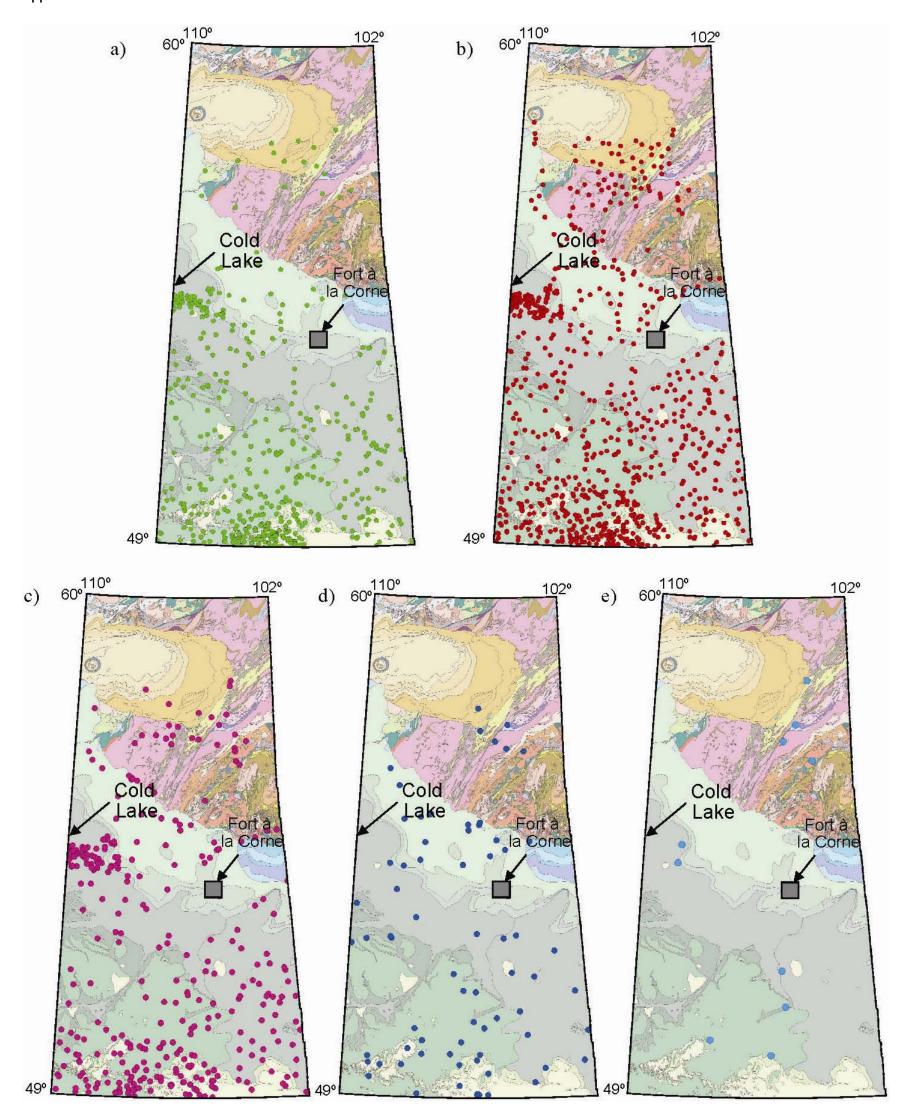


Figure 25. Distribution of garnet species in Saskatchewan: a) pyrope, b) almandine, c) grossular, d) spessartine and e) andradite. Compilation from the Web-based database of Saskatchewan kimberlite-indicator minerals (Swanson et al., 2007).