THE MINERAL DEPOSITS POTENTIAL OF THE MARGUERITE RIVER AND FORT McKAY AREAS, NORTHEAST ALBERTA (NTS 74E)

MDA PROJECT M93-04-038

PREPARED BY

M.B. DUFRESNE and B.A. HENDERSON

APEX Geoscience Ltd.

M.M. FENTON, J.G. PAWLOWICZ

and

R.J.H. RICHARDSON

Alberta Geological Survey

THE MINERAL DEPOSITS POTENTIAL OF THE MARGUERITE RIVER AND FORT McKAY AREAS, NORTHEAST ALBERTA (NTS 74E)

CONTENTS

	<u>Page</u>
Summary	1
Introduction	3
Location Access and Infrastructure Regional Physiography Previous Mineral Exploration	4 4 6 6
Regional Geology	10
Bedrock Geology in the Bitumount Area Surficial Geology in the Bitumount Area Structural Geology of the Bitumount Area	11 17 20
Project Results	23
Methodology Marguerite River Area Fort McKay Area ERCB Core Firebag River Surficial Geology Along the Firebag River and Sampling Results	23 24 28 31 34
Discussion	50
Potential Mineral Deposit Types in the Bitumount Area The Sub-Cretaceous Unconformity	50 53
Conclusions	56
References	57

TABLES

<u>Table</u>		Page
1	Metallic Mineral Anomalies in Oil Sands and Coal Drilling	9
2	Generalized Stratigraphy for the Bitumount Area	15
3	Highlights of ICP and INAA Analyses for Marguerite River Area Samples	27
4	Highlights of ICP and INAA Analyses for Fort McKay Area Samples	29
5	Assays and Calculated Gold Content for ERCB Core Samples	33
6	Preliminary Surficial Stratigraphy Firebag River	36
7	Results of SRC Processing of Till and Fluvial Samples from the Bitumount Map Area	45
	<u>FIGURES</u>	
<u>Figure</u>		
1	Location	5
2	Bedrock Geology of the Bitumount Map Area	12
3	Location of Drillholes and Previous Quaternary Studies	18
4	Surficial Geology	19
5	Sample Locations in the Bitumount Map Area	At End
6	Sample Locations in the Marguerite River Map Area	At End
7	Sample Locations in the Fort McKay Map Area	At End
8	Anomalous Samples in the Bitumount Map Area	At End
9	Anomalous Samples in the Marguerite River Map Area	26
10	Anomalous Samples in the Fort McKay Map Area	30
11	Schematic Cross Section Along the Firebag River	37

		<u>Page</u>
12	Scatter Plots of the Mean Values for Each TIII at Each Site for Tills T2, T4, T5 and Unknowns (T?)	38
13	Histograms Showing Variation in Properties of All Samples from Till Units T2, T4 and T5	39
14	Bedrock Topography	42
15	Drift Thickness Map of the Study Area	43
16	MgO vs FeO for Eclogitic Garnets	47
17	CaO vs TiO ₂ for Eclogitic Garnets	48
18	Na ₂ O vs TiO ₂ for Eclogitic Garnets	49
19	Structural Contour Map for the Top of the Devonian	54
20	Isopach of Surface to the Sub-Cretaceous Unconformity	55
<u>Appendix</u>	<u>APPENDICES</u>	
1	Sample Locations, Description and Types of Analyses	At End
2	Highlights of Geochemical Analyses for Rock, Core and Till Samples	At End
3	Certificates of Analyses	At End
4	Microprobe Analyses and MIN-ID.ASC Results for Surficial Samples	At End
5	Petrographic Descriptions and Summary	At End

THE MINERAL DEPOSITS POTENTIAL OF THE MARGUERITE RIVER AND FORT McKAY AREAS. NORTHEAST ALBERTA (NTS 74E)

SUMMARY

This report provides a preliminary assessment of the potential for metallic mineral deposits in the Precambrian, Devonian and Cretaceous rocks in the Marguerite River and Fort McKay areas of northeastern Alberta. The field portion of this study focused on the geological examination and geochemical sampling of selected bedrock exposures. However, in order to supplement the poor bedrock exposure and to test for a possible relationship between gold and discharging brines in the Bitumount map area, selected core from coal exploration drillholes was also examined and sampled. As well, nine till and three fluvial sediment samples were collected for geochemical analysis and diamond indicator mineral analysis in order to assess the viability of sampling surficial materials to aid exploration. Lastly, a study of the till stratigraphy in the Bitumount area was undertaken. This till study incorporates unpublished field data obtained by the Alberta Geological Survey during the middle 1980's along the Firebag River.

Several new sulphide and radioactive occurrences were discovered in the Marguerite River area. Elevated concentrations of up to 191 parts per million (ppm) copper, 343 ppm zinc, 44 ppm cobalt, 210 ppm nickel, 500 ppm chromium and 163 ppm vanadium were obtained from samples that were collected from pyrite and pyrrhotite occurrences in a 2 to 4 km wide mylonite zone in Precambrian rocks. Radioactive occurrences in peraluminous megacrystic syenites to granitoids yield up to 3,000 counts per second with a SRAT SPP2N scintillometer, and assays of up to 350 ppm uranium, 1,900 ppm thorium, 3,300 ppm cerium, 1,900 ppm lanthanum and 1,200 ppm neodymium, along with elevated contents of other rare earth elements and base metals such as lead, zinc, bismuth and molybdenum.

Samples collected from recent carbonate material associated with a springwater discharge site in the Fort McKay area yielded 0.5 ppm silver, 54 ppm lead, 16 ppm arsenic, 120 ppm chromium, 1.2 ppm antimony, 9 ppm vanadium, 39 ppm boron, 18 ppm bromine, and 472 ppm strontium. A sample of Devonian Waterways Formation carbonate yielded 118 ppm lead and 32 ppm antimony. Anomalous concentrations of gold up to 837 parts per billion (ppb) were detected in oil stained or impregnated Cretaceous coal, shale and sandstone in core from five coal exploration drillholes in the Firebag River area. A positive correlation exists between elevated concentrations of gold and elevated values for chromium (up to 553 ppm) and, to a lesser extent, silver (up to 1.1 ppm) and vanadium (up to 39 ppm). Other anomalous elements associated with elevated concentrations of gold include up to 61 ppm copper, 97 ppm lead, 211 ppm zinc, 58 ppm nickel, 35 ppm cobalt, 14 ppm arsenic, 951 ppm strontium, 4 ppm antimony, 6 ppm bismuth and 257 ppm boron.

Geochemical results for the till samples include up to 9 ppb gold, 0.7 ppm silver, 14 ppm arsenic, 97 ppm zinc, 32 ppm copper, 12 ppm bromine and 570 ppm fluorine. Based on the microprobe results of potential diamond indicator minerals, there are no grains indicative of either kimberlite, lamproite or peridotitic source rocks, with the possible exception of four chrome diopsides. However, five G3 and twenty-two G5 eclogitic garnets were identified by microprobe analysis, several of which have favourable chemistry plotting within the diamond inclusion field for eclogitic garnets on scatter plots of total iron versus magnesium and titanium versus calcium. In addition, several of the eclogitic garnets contain sufficiently high amounts of sodium and titanium such that they border on the diamond inclusion field for eclogitic garnets on a plot of titanium versus sodium.

The results from the 1993 fieldwork at the Marguerite River to Fort McKay area, plus the ongoing work by the Geological Survey of Canada and recent exploration results announced by industry, indicate that the potential for the discovery of metallic mineral deposits in the Bitumount map area north of Fort McMurray is much higher than previously believed. Potential deposit types to explore for include: (a) brine- and/or hydrocarbon-related gold deposits, (b) Archean shear zone hosted gold deposits; (c) Mississippi Valley type lead-zinc deposits; (d) sediment hosted base metal deposits with one or more of zinc, lead, copper, nickel, silver and gold; (e) granitoid-related uranium and/or rare earth element, precious metal or base metal deposits; (f) unconformity-related, sandstone-hosted or vein-type uranium deposits, (g) diamondiferous kimberlite or lamproite diatremes; and (h) various types of placer or paleoplacer deposits, with the important metals/minerals being gold, diamonds, titanium or other 'heavy minerals'.

INTRODUCTION

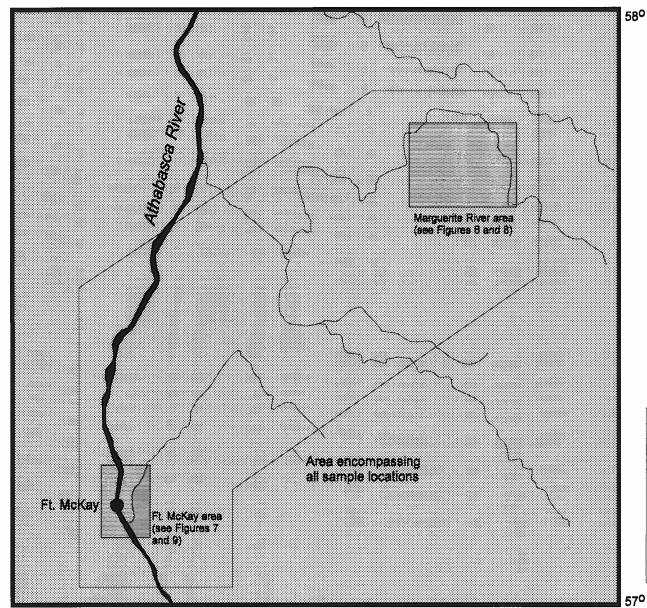
This report documents the results of project M93-04-038, which was funded under the Canada-Alberta Partnership Agreement On Mineral Development (MDA) and represents a preliminary assessment of the potential for metallic mineral deposits in the Marguerite River and Fort McKay areas, of northeastern Alberta. The need for this and other continuing geological studies in the area is based on: (a) the presence of favourable host rocks for several different types of mineral deposits, (b) the many past and recent reports of gold bearing zones, and (c) prior geological examinations and exploration focused towards metallic minerals has been insignificant in comparison to the extensive geological and geotechnical work that has been focused on the Athabasca Oil Sands in the vicinity of Fort McKay. The primary objectives of this study were to provide preliminary data on the geology and geochemistry of the Precambrian and Phanerozoic rocks, and the surficial deposits in National Topographic System (NTS) 74E, Bitumount map area, in order to provide geological information to assist industry in their future mineral exploration endeavours in this area.

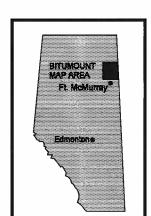
The Marguerite River area is a potentially important focus for mineral deposits because it contains the largest exposure of Precambrian Shield rocks south of Lake Athabasca. These ancient rocks host a multitude of metallic mineral occurrences north of Lake Athabasca in Alberta, and large number of diverse metallic mineral deposits where they are exposed elsewhere in Canada. Therefore, potential exists for important metallic mineral deposits to be present in the Marguerite River area. Prior geological mapping by Godfrey (1970) documented the existence of gossans, radioactivity and bedrock alteration associated with shear zones, brecciation and mylonites in the Marguerite River area. These features are all indicators of potential metallic mineral deposits.

Phanerozoic rocks in the study area are primarily exposed in the Athabasca River valley and in some tributary rivers, such as the Muskeg and Firebag Rivers. Several accounts have been documented, between the early 1900's and today, of significant gold anomalies in subsurface and, more recently, surface rocks from the Fort McKay area. Initially, it was reported that Precambrian granite underlying the Phanerozoic succession contains anomalous gold values (Allan 1920), but more recently exploration and geological investigations have been focused on the precious metal potential of the Upper Devonian carbonates. Several junior mining companies, as well as government scientists, have reported significant gold concentrations in the carbonates.

The Alberta Geological Survey (AGS) contracted with APEX Geoscience Ltd. (formerly R.A. Olson Consulting Ltd.) and the Environmental Research and Engineering Division of the Alberta Research Council (ARC) in order to complete the required fiscal 1993-1994 field and office geological studies. Fieldwork for the project took place between August 23 and September 11, 1993 with approximately 12 days spent at the Marguerite River area and 8 days spent at the Fort McKay area. The field portion of the study

comprised geological mapping, prospecting and sampling of rocks in the Marguerite River and Fort McKay areas and was conducted by Mr. M.B. Dufresne of APEX Geoscience Ltd. and Mr. A. Turner, then of the Alberta Research Council. In addition, Mr. J.G. Pawlowicz of the Alberta Research Council assisted in conducting a till and fluvial sediment sampling survey in the Marguerite River and Fort McKay areas, and along the Firebag River. With respect to prior work on the surficial geology, a team led by Dr. M.M. Fenton of the Alberta Research Council had conducted geological examinations during the mid 1980's along the Firebag River. The unpublished results of this work have been interpreted and incorporated into this report. The office portion of this study consisted of petrographic and laboratory analyses, examination of an extensive coal database donated by Shell Canada Ltd., and examination and sampling of coal exploration core at the Energy Resources Conservation Board (ERCB) in Calgary.


Location


The area encompassed by this study comprises most of the 1:250,000 scale Bitumount map sheet (NTS 74E), in northeastern Alberta, with the fieldwork focused in the vicinity of Marguerite River and Fort McKay (Figure 1). This area is bordered by latitudes 57° and 58°, longitudes 110° and 112°, and extends from the north half of Township 92 to the south edge of Township 104 and from the east edge of Range 1 to the east edge of Range 13 west of the 4th Meridian. Geologically, the study area is south of the mid-Proterozoic Athabasca Basin, but includes the northern part of the Athabasca Oil Sands.

Access and Infrastructure

The study area encompasses the village of Fort McKay, which has a population of less than 300. Fort McMurray, with a population of about 35,000, lies approximately 50 kilometres to the south and is 375 km northeast of Edmonton. Fort McMurray is served by regularly scheduled airline flights from Edmonton and is the northeastern terminus of the Canadian National Railway. Access to the area is by Highway 63 to Fort McMurray and Provincial Trunk Road 963 to Fort McKay. The Fort McKay bridge provides easy access to both sides of the Athabasca River in the vicinity of Fort McKay. A winter road exists on the east side of the Athabasca River and connects the McKay bridge to Fort Chipewyan on the north shore of Lake Athabasca. Several all-weather gravel roads allow access to the McMurray Oil Sands area in the vicinity of Fort McKay. There are many unpaved truck trails and seismic lines that transect most parts of the study area, but these trails and seismic lines are mostly impassable during the summer months. Therefore access to off road portions of the study area during the summer months is mostly restricted to helicopter, or locally by boat from Fort McMurray.

Most services, including accommodation, expediting, and air support can be obtained in Fort McMurray, with only minor services available in Fort McKay.

Scale approximately 1:750,000

Figure 1

LOCATION OF THE BITUMOUNT MAP AREA WITH THE MARGUERITE RIVER AND FT. McKAY STUDY AREAS **HIGHLIGHTED**

Final report on The mineral deposits potential of the Marguerite River and Ft. McKay areas, northeast Alberta (NTS 74E)

Project No. M93-04-038

Regional Physiography

The Marguerite River to Fort McKay region consists of a north- to northeasterly-trending low-lying area, formed by the Athabasca River. This low-lying area, with an average elevation of approximately 320 m above sea level, is flanked by the Birch Mountains to the northwest, with an elevation of approximately 900 m above sea level, and Muskeg Mountain to the southeast, with an elevation of approximately 700 m above sea level. The region is drained by the Athabasca River, and by several smaller rivers and streams (Figure 1). Boreal forest, consisting of aspen, pine and spruce trees, covers most of the study area, although bogs are common in low-lying areas.

Outcrop exposure in the study area is poor, with most outcrop consisting of Precambrian basement exposures in the Marguerite River area, and carbonates and oil sands in and near the Athabasca River and other tributary rivers. Most of the area is covered by surficial deposits of preglacial, glacial and postglacial sediments that range in thickness from less than 1 m locally, to over 180 m at Muskeg Mountain (McPherson and Kathol 1977).

Previous Mineral Exploration

Previous mineral exploration within the Bitumount map area (NTS 74E) has largely focused on two commodities: uranium and gold. Exploration for these metals was most active during the 1960's and 1970's, although there has been a recent resurgence in exploration for gold and diamonds in the area. Olson *et al.* (*In Press*) have summarized the history of mineral exploration for northeast Alberta north and south of Lake Athabasca, based on a detailed review of all the assessment reports presently on file and publically available at the AGS.

Exploration Prior to the Early 1990's

Previous gold exploration within the Bitumount map area has been primarily confined to the Fort McKay area. Gold exploration was initially sparked by a report by Allan (1920) in which a drill hole, known as Athabasca Oils Ltd. No. 1, was drilled to a depth of 344.4 m between 1911 and 1912, approximately 8 m into the Precambrian basement. Allan (1920) reported that a sample of this basement granite carried \$13.00 per ton gold, equivalent to 0.63 ounces per ton (opT) based on the price of gold at that time, or 21.6 grams gold per tonne (g Au/t). Halferdahl (1986), however, after reviewing the data in Allan (1920), Ells (1926) and a sworn statement provided by one of the drillers of the Athabasca Oils Ltd. No. 1 well, concluded that the reported two auriferous quartz veins were intersected at a depth of 276.5 m in limestone of the Devonian Methy Formation rather than in the underlying Precambrian basement. In the 1962 to 1963 period, four holes were drilled by Scurry-Rainbow Oil Ltd. near the approximate location of the Athabasca Oils Ltd. No. 1 hole (Elstone 1963). Three of the four drillholes reached

the Precambrian basement, but only trace amounts of gold were found in the samples collected. However, comments by Elstone (1963) give the first hint at the potential for gold in the limestones of the area; "The possibility of finding gold in the limestones above the Precambrian surface has been an unexplainable enigma to the writer since the first examination of the property. This is not considered any unsurmountable obstacle from finding ore, however, for ore has been found many times in places that have been "firsts" either in types or localities."

During 1986, Halferdahl and Associates Ltd. (Halferdahl 1986) drilled two holes on behalf of Kenneth Richardson, on the east side of the Athabasca River south of the Fort McKay bridge, approximately 35 km south of the reported location for the Athabasca Oils Ltd. No. 1 well. A sample assaying 0.063 opT gold (2.16 g Au/t) was obtained from Methy Formation carbonates at a depth of 241 m (Ibid.). Pyrite with a few specks of chalcopyrite and malachite were noted in argillaceous dolomite immediately above the interval with anomalous gold. Chalcopyrite and malachite were also noted in the Precambrian basement in one of the two drillholes, with assays of up to 60 ppb gold and 2.6 g/t silver in the granitic rocks (Ibid.). Also in 1986, Tanner Arctic Oil Ltd. drilled one hole approximately 1.3 km south of the site of the Athabasca Oils Ltd. No. 1 well, but all five of the samples that were collected from this drillhole returned low gold results. Lastly, records on file at the Alberta Geological Survey indicate that a drillhole, Ells Gold 1, was drilled during 1988 by a numbered Alberta company, near the site of the Athabasca Oils Ltd. No. 1 well. A brief log indicates that the Ells Gold 1 drillhole penetrated the Precambrian at about 272.8 m and ended in quartz with abundant pyrite at about 280 m. Assay certificates from Loring Laboratories Ltd. indicate that nine samples were assayed for gold and silver. One sample assayed 0.032 opT gold (1.10 g Au/t) and 0.22 opT silver (7.54 g Ag/t), two other samples assayed 0.006 opT gold (0.21 g Au/t). The downhole locations of these samples is not provided. However, other than the sample with 1.10 g Au/t, the remaining eight samples were likely collected from Devonian dolomitic carbonates based on the high concentrations of calcium (15.94 to 23.63 wt%) and magnesium (up to 9.75 wt%) that are given in the accompanying geochemical results from Induction Coupled Plasma (ICP) analysis for all eight samples. The sample with 1.10 g Au/t also contains 2,677 ppm As, 215 ppm Cu, 8 ppm Sb and 5.64 wt% Fe with low values for calcium and magnesium. Although silica is not reported, the low calcium and magnesium values may indicate that this sample was collected from the quartz-rich zone at the bottom of the drillhole or perhaps a quartz-sulphide rich zone within the carbonates. Two of the eight carbonate samples also contain other elevated metals, including up to 56 ppm As, 72 ppm Cu, 406 ppm Pb, 142 ppm Zn, 52 ppm Ni, 17 ppm Co, 12 ppm V, 54 ppm B and 131 ppm W, which are all associated with elevated iron (up to 3.38 wt%).

Numerous unconformity-related uranium deposits have been discovered within and near the Athabasca Basin in Saskatchewan. The Bitumount map area, which is just south of the Alberta portion of the Athabasca Basin, and which contains, in places, sub-surface drillhole intersections of Athabasca Group sandstones that are known to host

uranium deposits in Saskatchewan, has been the focus of uranium exploration by several companies. The economic geology of the Athabasca Group and the underlying basement rocks south of Lake Athabasca is well summarized by Wilson (1985a,b, 1986, 1987a,b). In the northeast part of the Bitumount map area, Eldorado Nuclear Ltd. drilled 16 holes during 1976, 15 holes during 1978 and 1979, and conducted a lake water and sediment sampling survey to test for geochemical anomalies possibly related to buried uranium mineralization (Laanela 1977; Mitchell and Fortuna 1978; Fortuna 1979). geochemical survey outlined several areas with anomalous concentrations of Ni, Co and Cu near the north boundary of the Bitumount map sheet in the vicinity of the Richardson River, and up to 123 ppm U in lake sediment samples and up to 0.9 ppm U in lake water samples (Laanela 1977). Eldorado Nuclear Ltd. also reported the intersection of a deep east-west trending alteration zone during the 1976 drilling program, in which a small stringer of pitchblende was intersected (Mitchell and Fortuna 1978). Follow-up drilling, in combination with magnetometer and resistivity surveys, confirmed that the alteration zone is of considerable width and that it is likely related to a prominent magnetic low that is interpreted to be a fault zone. No other significant mineralized zones were intersected in the 1978 or 1979 drilling programs (Mitchell and Fortuna 1978; Fortuna 1979). Carl et al. (1992) show the existence of an "epigenetic uranium deposit" at the Maybelle River area. which may be the same uranium occurrence reported by Eldorado Nuclear Ltd. No other important radioactive anomalies were discovered by Eldorado Nuclear Ltd. Norcen Energy Resources Ltd. conducted airborne and ground geophysical surveys in conjunction with small drilling programs from 1977 to 1979 along the Maybelle and Richardson Rivers in order to follow-up a reconnaissance boulder and lake sediment sampling survey that they had conducted during 1976 (McWilliams 1977; McWilliams and Sawyer 1977; McWilliams and Cool 1979; McWilliams et al. 1979). In total, Norcen drilled twenty holes south of Lake Athabasca, with hole #3 drilled during 1977 in the Bitumount map area (McWilliams 1977). Athabasca Sandstone was not intersected in hole #3, but, 32.3 m of Devonian carbonates and mudstones were intersected above Precambrian granite. No important anomalous results were reported from any of the Norcen drillholes, although lake sediment sampling yielded assays of up to 18.8 ppm U within NTS 74 L/1 and up to 7.2 ppm U from a sample collected within NTS 74 E/16 (McWilliams and Sawyer 1976).

A few other small uranium or base metal exploration projects have been conducted within the Bitumount map area. These include: (1) a 1967 to 1968 IP survey by C.C. Huston and Associates as well as a muskeg and soil sampling survey in an area that is approximately 8 km north of the Firebag River near the Athabasca River. This work identified a weakly anomalous zone with soil samples that assayed up to 10 ppm Pb, 150 ppm Zn and 22 ppm Hg, but these results were interpreted as being due to overburden variations (Sproule and Stuart-Smith 1966; Goettler 1969); (2) a 1969 airborne radiometric survey by Radex Minerals Ltd. which identified two weak radiometric anomalies north of Johnson Lake (Paterson 1969); and (3) a 1977 lake sediment geochemical survey combined with a review of previously drilled oil sands drillholes conducted by Taiga Consultants Ltd. on behalf of E. & B. Explorations Ltd. The Taiga program identified a

radioactivity anomaly in oil-stained McMurray sandstone unconformably overlying Precambrian basement, and a few lake sediment samples with up to 200 ppm zinc and up to 17 ppm lead (Allan 1977). A few other anomalies have been reported in oils sands drilling, including reports of chalcopyrite in the McMurray Formation in three separate drillholes in the vicinity of Fort McKay (Table 1). Metallic mineral occurrences have also been noted south of the Bitumount map area along the Clearwater River east of Fort McMurray. Carrigy (1959), for example, reported the presence of galena associated with a dolomitized zone in the Methy Formation at Whitemud Falls near the Saskatchewan border, and La Casse and Roebuck (1978) reported the presence of enargite and malachite at one location and enargite at two other locations west of Whitemud Falls and east of Fort McMurray.

Table 1. Metallic Mineral Anomalies In Oil Sands And Coal Drilling

Hole Name	Location (Lsd/S/T/R&Mer)	TD ¹ (m)	Depth To Dev. ² (m)	Remarks	
Shell 406	5/31/95/9W4	88.4	Not Given	Cpy ³ in McMurray Fm. 74.7 to 82.3 m	
Shell 408	11/31/95/9W4	83.8	78.6	Minor Cpy ³ in McMurray Fm. at 71.6 n	
Shell 472	1/36/95/10W4	94.5	86	Cpy³ in McMurray Fm. at 70.1 m	
Unnamed	11/36/97/11W4	?	?	"Mineralization is prominent" (Devonian)	
Unnamed	13/16/86/25W3	328. 9	208.5	Fluorite in Oil Sand (In Saskatchewan)	

TD¹ is total hole depth. Dev² is Devonian. Cpy³ is chalcopyrite.

Recent Exploration

Intensive gold exploration has recently been renewed in the Bitumount map area due to the reported discovery of gold, silver and platinum group elements (PGE's) in surface carbonates in the vicinity of Fort McKay. During 1993, Focal Resources Ltd. (1993) reportedly drilled 14 holes, most of which were less than 30 m in length, and collected surface samples from Devonian Waterways Formation limestone on their Bradley property near Fort McKay. They reported up to 68.6 g Au/t, 40.8 g Pt/t and 44.6 g Rh/t from surface samples, and 13.7 g Au/t, 78.5 g Pt/t and 18.5 g Rh/t from drill core samples (Northern Miner 1993a). These results were obtained using 'non-traditional' assaying techniques (Northern Miner 1993b), although they report that standard fire assaying

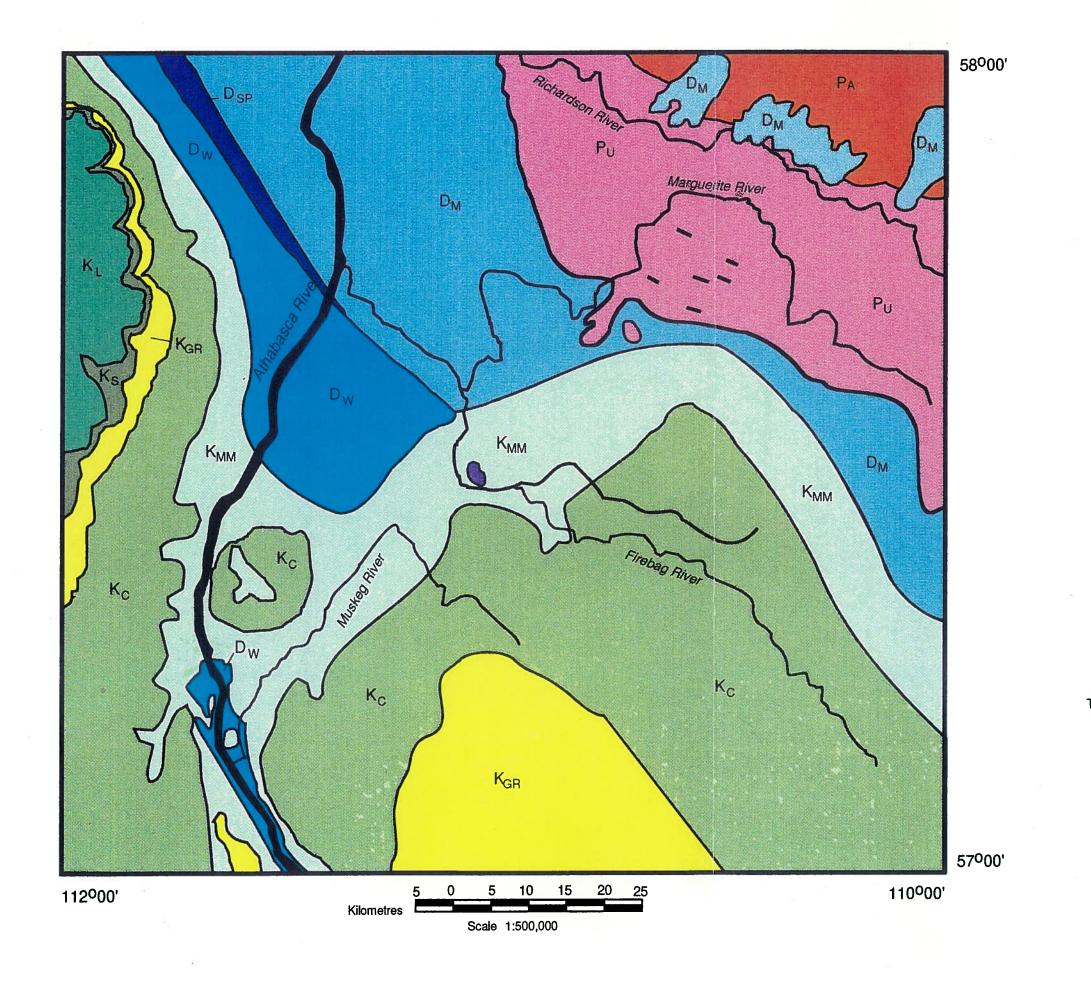
techniques "provided by a Certified Canadian Laboratory" were used to obtain values of up to 45.1 g Au/t, 180.3 g Ag/t and 2.5 g Pt/t in surface samples from their South Bradley property (Focal Resources Ltd. 1993). In addition, they report that fire assays provided by Asarco Inc. yielded up to 46.3 g Au/t across 1.5 m in drill core samples (Focal Resources Ltd. 1993). The high values for gold, silver and PGE's reportedly came from "Devonian limestone with high silica and commercial values of gold and platinum group metals in salt form" (Northern Miner 1993a).

In addition to the exploration conducted by Focal Resources, gold exploration was also carried out in the Fort McKay area by a joint venture between Tintina Mines Ltd. and NSR Resources Inc. during 1993. Tintina collected 85 surface samples from Devonian Waterways Formation carbonates and an overlying, well-indurated, siliceous, sandstone named the Beaver River sandstone (Fenton and Ives 1990) along the east bank of the Athabasca River (Tintina Mines Ltd. 1993). Twenty-two of the samples were submitted for gold, silver and PGE analysis. Values of up to 19.38 g Au/t and 18.97 g Ag/t were reported for these samples (Tintina Mines Ltd. 1993). The company also drilled four holes totalling approximately 600 m on their Fort McKay property. Two of these holes were abandoned in major fault zones, and two holes encountered disseminated sulphides. sulphide pods, spheroids and sulphide-healed fractures in collapse breccia zones. Gold exploration is continuing presently in the Fort McKay area. The GSC reports values of up to 3.71 g Au/t in Waterways Formation carbonates and up to 1.08 g Au/t in the Beaver River sandstone using laser ablation coupled with ICP and mass spectrometry (Abercrombie pers comm. 1994; Abercrombie and Feng 1994). Surface and core samples for the analyses were provided to the GSC by HMS Properties, Focal Resources Ltd. and the Tintina Mines Ltd./NSR Resources Inc. joint venture.

REGIONAL GEOLOGY

The Bitumount map area contains the Athabasca North Tar Sands area, and the only significant exposure of Precambrian basement south of Lake Athabasca, and has been mapped in whole or in part by numerous workers since the late 1800's. The earliest geologic reports on the area were by Bell (1884) and McConnell (1893), who published comprehensive documents on the geology of the area. Since that time, government agencies, including the Alberta Research Council and the Geological Survey of Canada, and private companies, have contributed, through published and unpublished data, to the geological knowledge of the Bitumount map area. These include reports on various aspects of the bedrock geology by Carrigy (1959, 1966, 1973), Norris (1963, 1973), Langenberg and Nielsen (1982) and Wilson (1985a,b, 1986); reports on the surficial geology by McPherson and Kathol (1977), and Horne and Seve (1991); bedrock geology maps of the Marguerite River area by Tremblay (1961) and Godfrey (1970); and a surficial geology map of the Bitumount map area by Bayrock (1971). Numerous unpublished geological reports, primarily based on well log information, have been provided by oil, coal and uranium exploration companies and have greatly enhanced the knowledge of the

subsurface of the Bitumount area. This well log information is on file with various government agencies, such as the ERCB and the AGS. For this project, extensive use was made of a large unpublished geological database that was the result of coal exploration in the vicinity of the Firebag River by Shell Canada Ltd. during the 1970's. This database was recently donated to the AGS by Shell.


Bedrock Geology Of The Bitumount Map Area

Outcrop in the Bitumount map area is generally poor, and is limited to the main river valleys and an isolated outlier of Precambrian Shield in the vicinity of the Marguerite River. A simplified compilation of the published bedrock geology maps is presented in Figure 2. A brief descriptive summary of the exposed bedrock and of information obtained from drill holes for the Bitumount area follows.

Precambrian

The Precambrian Shield which is exposed in the northeast corner of the Bitumount map area in the vicinity of the Marguerite River, is considered to be part of the Churchill Province (Rae Sub-province) of Hoffman (1988), an Archean micro-continent that was welded to the Superior Province during the Early Proterozoic. As a result of this collision, the Churchill Province has recorded a strong Proterozoic orogenic event that has thermally reset most isotope systems used for dating of the basement rocks. Bitumount map area can be divided into two distinct magnetic terranes based on government aeromagnetic data (Geological Survey of Canada 1983; Sprenke et al. 1986; Wilson 1986). Ross and Stephenson (1989), Ross et al. (1989, 1991, 1993), Ross (1991, 1992) and Villeneuve et al. (1993) have suggested that the eastern half of the Bitumount map area, with a relatively low background magnetic signature, is probably part of the Archean Rae subprovince, and the western half of the area, with a strong background magnetic signature, is part of the Proterozoic Taltson Arc. The Taltson Arc, which has been dated between 1,932 Ma and 1,975 Ma from outcrops north of Lake Athabasca and from oil well drill core to the south (Ross et al. 1989; McNicholl et al. 1993; Villeneuve et al. 1993), is a north-south trending magmatic belt that originates near Great Slave Lake, as part of Thelon Tectonic Zone, and is truncated in east-central Alberta by the Snowbird Tectonic Zone. Precambrian rocks in the Marguerite River area have not been dated as of yet.

The Shield exposure in the Marguerite River area is the largest Precambrian basement exposure that exists south of Lake Athabasca in Alberta. In addition, since the Marguerite River area includes relatively abundant outcrop exposures, in contrast to the paucity of outcrop in most of the Bitumount map area, it has perhaps received more geological attention than most other parts of the map area (Tremblay 1961; Godfrey 1970). The Precambrian rocks in the Marguerite River area comprise Archean granite, gneiss,

LEGEND

CRETACEOUS

Labiche Fm.

Shaftesbury Fm.

Grand Rapids Fm.

Clearwater Fm.

McMurray Fm.

DEVONIAN

Waterways Fm.

Slave Point Fm.

Methy Fm.

PRECAMBRIAN

Athabasca Fm.

Mafic dykes/amphibolite

Undivided granite, gneiss and mylonitic rocks

Geology compiled from Godfrey (1970), Bayrock (1971), Tremblay (1961), Green et al. (1970), Wilson (1985a,b) and McPherson and Kathol (1977)

Figure 2 BEDROCK GEOLOGY OF THE BITUMOUNT MAP AREA

Final report on the mineral deposits potential of the Marguerite River and Ft. McKay areas, northeast Alberta (NTS 74E)

Project No. M93-04-038

mafic igneous rocks, mylonite and Proterozoic Athabasca Group, which is known from uranium exploration drilling only. Carrigy (1959) describes the Marguerite River area as consisting of northwesterly-striking metasedimentary rocks intruded by granite and granite gneiss, and later by pegmatite, aplite and diabase dykes. Tremblay (1961) does not unequivocally document metasedimentary rocks in the area, but did suggest that the granite and gneiss were likely of a sedimentary origin. That is, possibly greywackes and quartzites were metamorphosed and partially melted to form granite and granite gneiss. Such metasedimentary rocks and paragneiss have been documented within similar granite-gneiss complexes north of Lake Athabasca (Green et al. 1970; Nielson et al. 1981; Langenberg and Nielsen 1982; McDonough et al. 1993a,b). The various granites and gneisses of the Marguerite River area are shown as undivided on Figure 2, although some workers have proposed varying degrees of subdivision. Tremblay (1961), for example, suggested two subdivisions for the granitoids at Marguerite River: an older granitoid gneiss and a younger garnetiferous granite. Green et al. (1970) suggested four subdivisions: an older porphyroblastic granite, followed by undivided granitoids, granite and granite gneiss. Godfrey (1970) mapped 10 different granite, granitoid and gneissic varieties in the Marguerite River area. Therefore, it seems that the following subdivisions at least are warranted: (a) a porphyroblastic granitoid phase, (b) a granitoid phase and (c) a gneissic phase. These rocks are weakly to strongly foliated (Godfrey 1970; Tremblay 1961), and in the southern part of the exposed area, mylonitic rocks predominate (Godfrey 1970; Langenberg and Nielsen 1982).

In addition to the Precambrian basement granite-gneiss complex which is preserved in the Marguerite River area, numerous workers report the presence of mafic dykes, although the true nature of these rocks is as yet undetermined. Tremblay (1961) reported basaltic dykes and sills which cut the granitoids, and are generally less than 2 metres wide and 300 metres or less in strike length. Godfrey (1970) mapped these mafic rocks as amphibolite. The age and origin of these mafic rocks is not well constrained and they may be either Archean or Proterozoic.

Proterozoic rocks occur northeast of the Richardson River in the northeast corner of the Bitumount map area. Their presence is known only from drilling associated with uranium exploration during the 1970's, and their geology is well summarized by Wilson (1985a, 1987a,b). Tremblay (1961) visited one outcrop just outside the Bitumount map area in Saskatchewan and described the rock as a fine-grained white, faintly bedded and crossbedded clastic sediment, with minor colour-banding. Green *et al.* (1970) and Wilson (1985a, 1986, 1987a,b) have attempted to define the extent of Athabasca Group rocks in the northeast corner of the Bitumount map area on their regional maps.

Phanerozoic

The majority of the Bitumount map area is underlain by rocks of Devonian and Cretaceous ages. However, these units are poorly exposed except in the valley of the

Athabasca River and along a few other rivers such as the Firebag, Muskeg and McKay Rivers. Most of the information about the distribution and character of these units was obtained from well log data and the work of other people. Brief descriptions of the Phanerozoic units which underlie the Bitumount map area, as shown in Figure 2, follow.

Based on drilling, the Devonian succession in the Bitumount map area overlies the Precambrian basement by an erosional unconformity. Above the unconformity, there is a thin veneer of about 2 m (up to 6 m in places) of basal sandstone or conglomerate of the LaLoche Formation, which is commonly referred to as 'arkosic sandstone', 'basal red beds' or 'granite wash' (Table 2, modified after Carrigy 1959, 1973; Norris 1963, 1973; Hamilton 1971). For the most part, the LaLoche Formation is overlain by Middle Devonian Elk Point Group rocks consisting of McLean River Formation shale. siltstone and dolomite, Methy Formation dolomites with minor reefal units, and Prairie Evaporite Formation comprised of salt and anhydrite beds, with minor shale and dolomite (Norris 1963, 1973). Middle Devonian Methy Formation crops out along the Firebag and Marguerite Rivers in the Bitumount map area. Salt beds within the Prairie Evaporite Formation occur only in the subsurface and mostly west of the Athabasca River because they have been predominantly removed by groundwater dissolution east of the Athabasca River. Subsurface salt beds do exist east of the Athabasca River in the northwest portion of the Bitumount map area in the vicinity of Bitumount, but they are part of the Cold Lake and Lotsberg Formations (Table 2). Dissolution of these Lower Elk Point salt units is likely responsible for the karsting and related collapse structures that presently exist in the overlying Cretaceous and surficial deposits in the vicinity of the Athabasca River north of Fort McKay (Hamilton pers comm. 1994).

The Slave Point Formation consists of limestone, siltstone and dolomitic limestone. This unit does not crop out in the Bitumount map area, but has been noted in the subsurface, although it is relatively thin (approximately 3 m thick) in the area of the Birch Mountains. The age of this unit is debatable; Carrigy (1973) placed the unit in the Upper Devonian, whereas Norris (1973) placed it at the end of the Middle Devonian. The unit is bounded on its lower and upper contacts by paraconformities (Carrigy 1973).

The Waterways Formation consists of calcareous shale and argillaceous limestone alternating with clastic limestone, and is between 200 m and 230 m thick (Green et al. 1970). This unit underlies a large part of the Bitumount map area, and is exposed locally near McClelland Lake, along the Athabasca River from Fort McKay to the southern boundary of the map area, and along the lower portions of the McKay, Muskeg and Steepbank Rivers. The Waterways Formation is the uppermost Devonian unit exposed in the Bitumount map area.

The Devonian units are separated from the overlying Lower Cretaceous units by an erosional unconformity (Carrigy 1959, 1973). This unconformity represents a marked change in lithology and a fairly long interval of time. It has been postulated that

Table 2. Generalized Stratigraphy For The Bitumount Area ¹

SYSTEM	GROUP	FORMATION	MEMBER	DOMINANT LITHOLOGY
Upper	La Biche	La Biche		Shale
Cretaceous		Dunvegan		Sandstone & siltstone
		Shaftesbury		Shale, bentonites, fish-scale horizon
Lower		Pelican		Sands
Cretaceous		Joli Fou		Shale
	Mannville	Grand Rapids		Lithic sands
		Clearwater		Shale & glauconitic sands
		McMurray		Quartzose sands, heavy oil
Jurassic?		Beaver River		Quartzose sandstone
Upper	Beaverhill Lk.	Waterways	Mildred	Argillaceous limestone
Devonian			Moberly	Limestone & shale
			Christina	Shale & limestone
			Calumet	Limestone & shale
			Firebag	Shale, minor limestone
Middle		Slave Point		Limestone, local breccia
Devonian	Upper Elk Point	Prairie Evapoite		Salt, anhydrite (gypsum), shale & dolomite
		Methy		Dolomite, minor reefs
	Lower Elk Point			Shale, siltstone & dolomite
		Cold Lake		Salt, minor shale
	Ernestina Lotsberg			Shale, limestone & Anhydrite
				Salt, minor shale
		LaLoche		Arkosic sand & conglomerate
Precambrian				Granitic basement

¹Modified after Carrigy (1959, 1973), Norris (1963, 1973) and Hamilton (1971).

the pre-Cretaceous units underwent several periods of subaerial erosion and karsting, and that the erosional surfaces resulting from these processes greatly affected the sedimentation of the lowermost Mesozoic units to be deposited (Carrigy 1973). A coarse grained and well indurated quartzose sandstone exists east of Fort McKay between the Athabasca and Muskeg Rivers (Carrigy 1973). This silica- and goethite-cemented sandstone appears to unconformably underlie the McMurray Formation, and as such, likely represents a remnant of a once more regionally continuous early Cretaceous (or possibly Jurassic) sandstone (Carrigy 1973). More recent work by Fenton and Ives (1982, 1990) and Ives and Fenton (1983), who have named the unit the Beaver River sandstone (Table 2), has shown it to have a lateral extent of at least 13 km. Fenton and Ives (1990) also suggested that the Beaver River sandstone exists near the top of the lower member of the McMurray Formation based on the work of Flach (1984).

The McMurray Formation is the oldest Lower Cretaceous unit to be preserved in the Bitumount map area. This unit consists mainly of deltaic sediments that include thick crossbedded oil-impregnated quartz sands, with interbeds of silt and shale. McMurray Formation constitutes the famous Athabasca Tar Sands deposits and is exposed within the Athabasca River valley, although it underlies a considerable portion of the Bitumount map area (Green et al. 1970). Carrigy (1966; 1973) subdivided the McMurray Formation into (a) pre-McMurray, (b) lower, (c) middle and (d) upper units. The pre-McMurray unit is equivalent to the Beaver River sandstone. Carrigy (1973) suggested that the lower McMurray Formation was predominantly of fluviatile origin, the middle McMurray of fluviatile to deltaic origin, and the upper McMurray of delta platform to brackish water origin. Extensive geological studies related to heavy oil have since been conducted on the McMurray Formation by numerous authors including Stewart (1963, 1981), Mossop (1980), Mossop and Flach (1983), Flach (1984), Flach and Mossop (1985), and Anderson et al. (1993).

The McMurray Formation oil sands are conformably overlain by marine shale, laminated siltstone and cherty sandstone of the Clearwater Formation. This unit is exposed locally along the Athabasca River and its tributaries, although it underlies much of the southern part of the map area, and is approximately 100 m thick (Green *et al.* 1970). The age of this unit has been established as Early Cretaceous (Carrigy 1973).

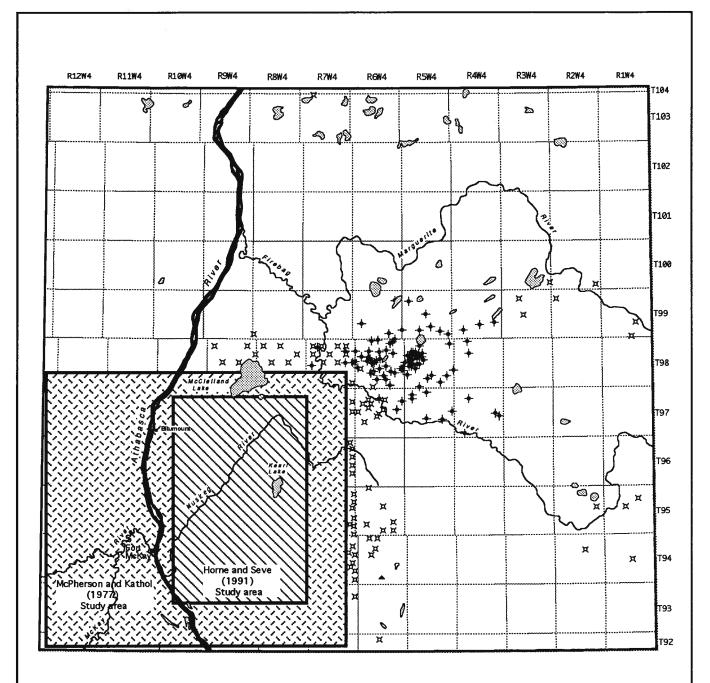
The Grand Rapids Formation underlies much of the thick drift covered region in the southeast corner of the map area in the vicinity of Muskeg Mountain. This unit is approximately 100 m thick, and is exposed northwest of Fort McKay on the eastern flank of the Birch Mountains. The Grand Rapids Formation consists of salt and pepper sandstone, laminated siltstone and shale with thin coal beds (Green *et al.* 1970). The overlying Joli Fou and Pelican Formations are present southwest of Fort McMurray (Carrigy 1973), but have not been mapped in the Bitumount map area. It is possible that these formations or their stratigraphic equivalents exist northwest of Fort McKay, as the geology is not well constrained for the Birch Mountains.

Shaftesbury Formation shales overlie the Grand Rapids Formation on the eastern flank of the Birch Mountains in the northwest corner of the Bitumount map area (Green *et al.* 1970). These shales are 250 m to 300 m thick and consist of dark marine, highly fissile shales with thin bentonite beds and abundant concretionary ironstone. The Shaftesbury also contains the well known Fish Scale marker horizon estimated to be about 96 Ma (Bloch *et al.* 1993).

The youngest bedrock stratum present in the Bitumount map area is that of the La Biche Formation, which is poorly exposed, but does crop out on the eastern edge and top of the Birch Mountains. This unit consists of dark shale with ironstone partings and concretions, and thin fish scale bearing silty beds (Green *et al.* 1970).

Surficial Geology Of The Bitumount Area

Existing Quaternary Information


The data on surficial geology (Figure 3) comes from mapping done by Bayrock (1971) on the Bitumount Map Sheet, Bayrock and Reimchen (1974) on the Waterways map sheet just to the south, and from more detailed investigations in the western portion of the area by McPherson and Kathol (1977). Fenton, one of the co-authors of this report, participated in the McPherson and Kathol (1977) study and led a team that did reconnaissance stratigraphy along the lower two-thirds of the Firebag River. Horne and Seve (1991) described a buried channel east of the Athabasca River, and Smith and Fisher (1993) discussed the development of the Athabasca River during the Late Wisconsin deglaciation.

Additional information on the bedrock topography and drift thickness in the Bitumount area comes from the logs of holes drilled for petroleum, coal or groundwater exploration (Figure 3).

Surficial Geology

The surficial geology, east of the Athabasca River, consists primarily of till and outwash, with less extensive outcrops of lacustrine and eolian sediment (Figure 4). Bedrock exists only in the northeast quadrant. The small scale map included as Figure 4 has simplified the units defined by Bayrock (1971), and the reader is directed to the 1:250,000 scale surficial geology map of the Bitumount map area for more detailed geologic information such as the distribution of the bedrock outcrops.

The till east of the Athabasca River was divided by Bayrock and Reimchen (1974) into the "Kinosis Till" and the "Gypsy Till" during their mapping of the Waterways map sheet, which adjoins the south margin of the Bitumount sheet. The Kinosis Till was correlated by Bayrock and Reimchen (1974) with Bayrock's (1971) unit 2 "ground moraine"

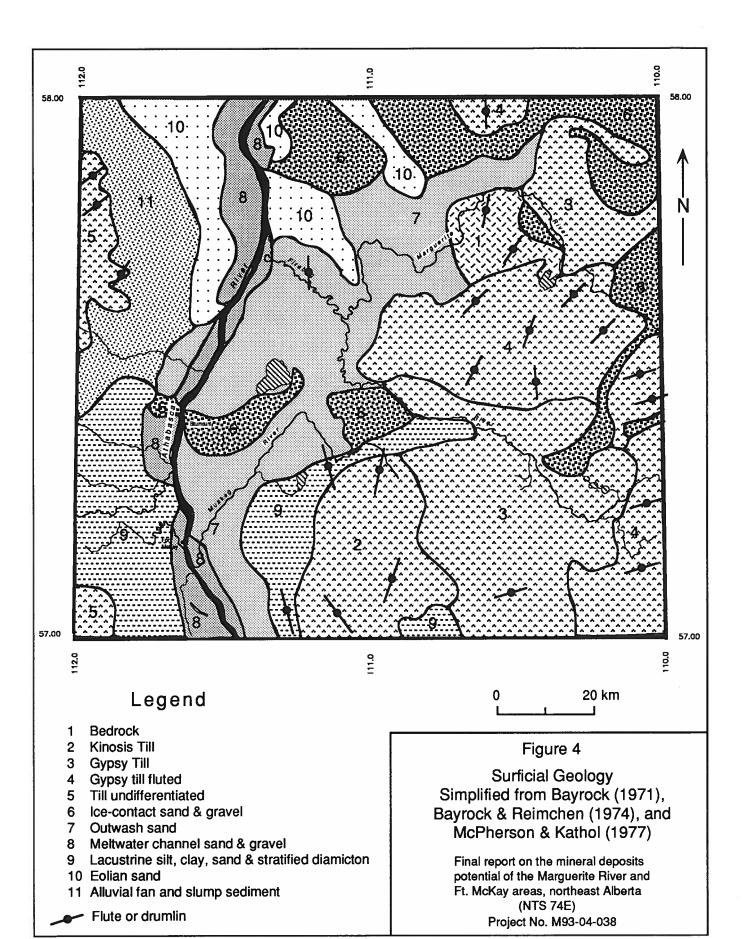

- x Oil well
- + Coal drillhole
- Water well

Figure 3

Location of Drillholes and Previous Quaternary Studies

Final report on the mineral deposits potential of the Marguerite River and Ft. McKay areas, northeast Alberta (NTS 74E)

Project No. M93-04-038

on the Bitumount map sheet. The Kinosis Till has a loamy texture with equal amounts of sand, silt and clay.

The Gypsy Till was correlated by Bayrock and Reimchen (1974) with Unit 7, outwash, and Unit 6, overridden and fluted outwash, on the Bitumount map area. Bayrock and Reimchen (1974) stated that the Gypsy Till was interpreted as outwash on the earlier mapped Bitumount map area because this unit consists of sand and gravel with essentially no fines; that is till "in which the grain size composition approximates outwash". The Gypsy Till is composed of material eroded from the Athabasca Formation. The sand content exceeds 90% with the remainder being silt, pebbles and boulders.

Flutings on the Kinosis Till indicate ice flow from the north-northeast, and the north-northwest (Figure 4; and the larger scale map of Bayrock (1971) which is able to show many more fluting and drumlins). The eastern portion of the Gypsy Till has been strongly fluted and drumlinized by glacial flow from the northeast (Figure 4; unit 4). The only exception to this flow direction is in the northwestern part of the Gypsy Till (Figure 4; unit 3) where flow is from the north-northwest. This north-northwest flow is also evident from striations on the northern half of the large area of bedrock outcrop in the vicinity of the Marguerite River (Figure 4; unit 1). Striations on the southern portion of this outcrop record flow from the northeast.

Glaciofluvial sediment includes the ice contact sand and gravel (unit 6) and outwash sand (Unit 7). The ice contact sediment has a rolling topography with individual hills exceeding 30 m (Bayrock 1971). The ice contact sediment forming the Fort Hills immediately east of Bitumount is also known to include finer grained sediment at depth.

The lacustrine sediment is predominantly silt and clay with minor sand and stratified diamicton. Pink fragments and laminae are present in some areas. The eolian deposits consist of medium to coarse grained sand sheets and dunes (Bayrock 1971). The alluvial fan and slump sediment is located on the lower slopes of the Birch Mountains, west of the Athabasca River, and consists of sediment eroded from that highland.

Structural Geology of the Bitumount area

Little is known about the structural geology in the Bitumount map area; mainly because of the poor outcrop exposure. Most of the work on the structural geology has come from interpretations of the aeromagnetic data, lineament analysis and structure contour surfaces created from drillhole information by such workers as Sproule (1938), Hume (1949), Kidd (1951), Carrigy (1959), Garland and Bower (1959), Martin and Jamin (1963), Norris (1963, 1973), Stewart (1963), Martin (1966), Godfrey (1970), Babcock and Sheldon (1976), Langenberg and Nielson (1982), Wilson (1985b) and Sprenke *et al.* (1986).

In general, the Precambrian and the Devonian erosional surfaces slope gently to the southwest in the Bitumount map area (Carrigy 1959). However, the topography of the Precambrian surface is poorly constrained due to the limited number of drillholes that have penetrated to the basement. The Marguerite River area is the main, possibly only, Precambrian basement exposure south of Lake Athabasca in Alberta. Wilson (1985a) and Ramaekers (1979) suggested that the Marguerite River basement exposures are remnants of a once active basement high, the Paterson High, that controlled sedimentation at the southwest end of the Athabasca Basin during the Proterozoic. Perhaps this paleohigh was related to Proterozoic uplift associated with the Peace River Arch. Stelck et al. (1978). O'Connell et al. (1990) and Ross (1990), for example, have suggested that the Peace River Arch exhibited uplift during Late Proterozoic. Past uranium exploration has identified northwest trending fault structures in the basement rocks below the Athabasca succession of sediments in the vicinity of the Richardson and Maybelle Rivers (Mitchell and Fortuna 1978; McWilliams et al. 1979). Wilson (1985b) identified several prominent northwest and northeast trending structures, one of which is the Richardson River Fault, in the northeast corner of the Bitumount map area. Based on the aeromagnetic data, a prominent northeast trending fault, herein named the Johnson Lake Fault, exists from the centre of Tp. 100, R. 2W4 to at least as far southwest as the northwest corner of Tp. 98, R. 4W4 (Geological Survey of Canada 1983; Wilson 1985b; Sprenke et al. 1986). The Johnson Lake Fault appears to offset the magnetic high in the Marguerite River area that corresponds to the 2 to 4 km wide north-northwest trending mylonitic zone (Godfrey 1970; Wilson 1985b) a minimum of 5 km and perhaps as far as 13 km. Based on structure contours for the top of the Devonian from unpublished data provided by Shell Canada Ltd., and the work of Martin and Jamin (1963), the Johnson Lake Fault probably exists as far southwest as the Muskeg River as a prominent northeast trending scarp on the Devonian surface between the Firebag and Muskeg Rivers.

Carbonates along the Athabasca and Clearwater Rivers exhibit noticeable flexures with dips up to about 15°. This gentle warping has usually been attributed to gradual removal of Elk Point Group salts. Martin and Jamin (1963) describe a "major Devonian fault zone" that extends from as far south as the Athabasca River south of Pelican Mountain (northeast corner Tp. 70, R.27W4) and trends northeasterly through the Fort McKay area. This fault lines up fairly well with the southwest extension of the Deranger Creek Fault that is extrapolated as far southwest as the Richardson River (Wilson 1985b). Hackbarth and Nastasa (1979) described a major northwest to north trending basement fault, the Sewetakun Fault, that generally has a similar trace to that of the present day salt dissolution edge of the Prairie Evaporite. Hackbarth and Nastasa (1979) give evidence for its reactivation during the Devonian. Structure contour maps on the Devonian surface by Martin and Jamin (1963), and Hackbarth and Nastasa (1979) show that the Devonian erosional surface in the vicinity of Fort McKay is extremely complex with substantive relief and, in fact, has the appearance of being a highly dissected paleo-landscape, particularly in the area of Tps. 94 to 97 and Rs. 9 to 11 west of the 4th Meridian. Martin and Jamin (1963) have suggested that this landscape is due to faulting. Perhaps the north,

northeasterly and northwesterly trending paleo-valleys and paleo-ridges are a product of reactivation of basement faults, such as the Sewetakun, Deranger Creek and Johnson Lake Faults described above, associated with uplift of the east-trending Peace River Arch. Other evidence of the periodic uplift of the Peace River Arch in the Fort McKay area is the non-deposition of the Middle Devonian Lower Elk Point salt and associated units (Hamilton 1971, pers comm. 1994). The area of non-deposition is east-trending and is on strike with the Peace River Arch to the west as defined by the margin of the Elk Point Basin. The Peace River Arch was a positive feature from Late Proterozoic to Late Devonian, and from Late Cretaceous to Early Tertiary (O'Connell et al. 1990; Hart and Plint 1990; Leckie 1989). Burwash (1990) suggested that the effects of the Peace River Arch can be seen as far east as the Marguerite River area, and that its persistence to the present is evidenced by present day positive relief and high heat generation in the basement rocks underlying the Arch (Burwash and Burwash 1989; Bachu and Burwash 1991). If the dissected erosional Devonian surface described above was a result of uplift related to the Peace River Arch, it is likely to have happened during the Late Devonian because the Peace River Arch was in fact a negative feature (a graben) in the Peace River area from Mississippian to Late Cretaceous (O'Connell et al. 1990; Cant 1988).

Exploration by Shell Canada Ltd. in the Bitumount map area identified five partially linked basins, each containing coal and developed on the Devonian erosional surface. Each basin is 2 to 3 km in diameter and tends to be elongated to the northwest. The five basins line up along a northwest lineament that is more or less parallel to and near the trend of the Firebag River. Unidentified coal geologists from Shell Canada Ltd. interpreted this structure as a fault, herein named the Firebag River Fault.

The Pre-Cretaceous topography, which developed on a highly dissected Devonian erosional surface (Martin and Jamin 1963; Hackbarth and Nastasa 1979), played a major role in controlling the thickness and extent of the McMurray Formation (Stewart 1963). Evidence of tectonic deformation affecting the post-Devonian units is limited, and is difficult to distinguish from deformation brought about by collapse due to salt dissolution. Stewart (1963) suggested that the McMurray and Clearwater Formations are anomalously topographically high in the vicinity of Telegraph Creek (Tp. 84, R. 12W4) due to reactivation of an underlying Precambrian fault. Kidd (1951) presented evidence that movement took place during the Lower Cretaceous along a northwesterly trending fault that cuts across the Clearwater River east of Fort McMurray, and suggested that the western block was downthrown. Hume (1949) suggested that post-Cretaceous folding. possibly unrelated to salt dissolution, affected Lower Cretaceous units in the Mildred-Ruth Lakes area. Babcock and Sheldon (1976) documented the existence of many lineaments in the Bitumount map area. They suggested that the vast majority of these lineaments are related to the dominant trend of joints and fracture sets in the McMurray and Waterways Formation. However, they also stated that fault related lineaments cannot be ruled out.

PROJECT RESULTS

The objectives of the project were (a) to supplement the existing data on the bedrock geology, surficial geology and the geochemistry of Precambrian to Phanerozoic rocks and the surficial materials in the Marguerite River and Fort McKay areas within the Bitumount map area (NTS 74E), and (b) to provide a preliminary assessment of the economic mineral potential of these areas. Implementation of these objectives involved five basic aspects: (1) geological examination and sampling in the Marguerite River area to assess the Precambrian rocks exposed there, (2) geological examination and sampling in the Fort McKay area to assess the Phanerozoic rocks exposed there, (3) examination of a coal database donated by Shell Canada Ltd. and available core from the Energy Resources Conservation Board (ERCB), (4) a study of the till stratigraphy in the Bitumount map area incorporating unpublished field data obtained during the middle 1980's along the Firebag River, and (5) providing results from sampling of tills and fluvial sediments which was done during 1992 and 1993, for trace element geochemistry and diamond indicator minerals.

Methodology

Fieldwork during 1993 was conducted in both the Marguerite River and Fort McKay areas with the use of a helicopter, and by foot traverse. Results from fieldwork along the Firebag River were supplemented by unpublished data obtained during the middle 1980's by Fenton from a study which was conducted by boat. A total of 71 surface rock samples were collected for geochemical analysis, fire assay and/or thin section: 43 are from the Marguerite River area and 28 are from the Fort McKay area. In addition, five drill holes from a 1970's coal exploration program, which are stored at the ERCB facility in Calgary, were sampled for geochemical analysis and fire assay for gold. All traverse routes, bedrock outcrops and the core examined at the ERCB facility were tested for anomalous radioactivity using a SPP2N SRAT scintillometer. Due to the extensive drift cover in the Bitumount area, nine till and three fluvial sediment samples were collected for geochemical analysis and diamond indicator mineral analysis in order to assess the viability of using the sampling of surficial materials to aid exploration. Two of the nine till samples were collected by Fenton and Pawlowicz during 1992, the remaining seven samples were collected during the field portion of the 1993 program. Brief sample descriptions along with the location and analytical techniques employed for all the samples are in Appendix 1. Sample location maps for the Bitumount, Marguerite River and Fort McKay areas are at the end of the report (Figures 5 to 7, respectively).

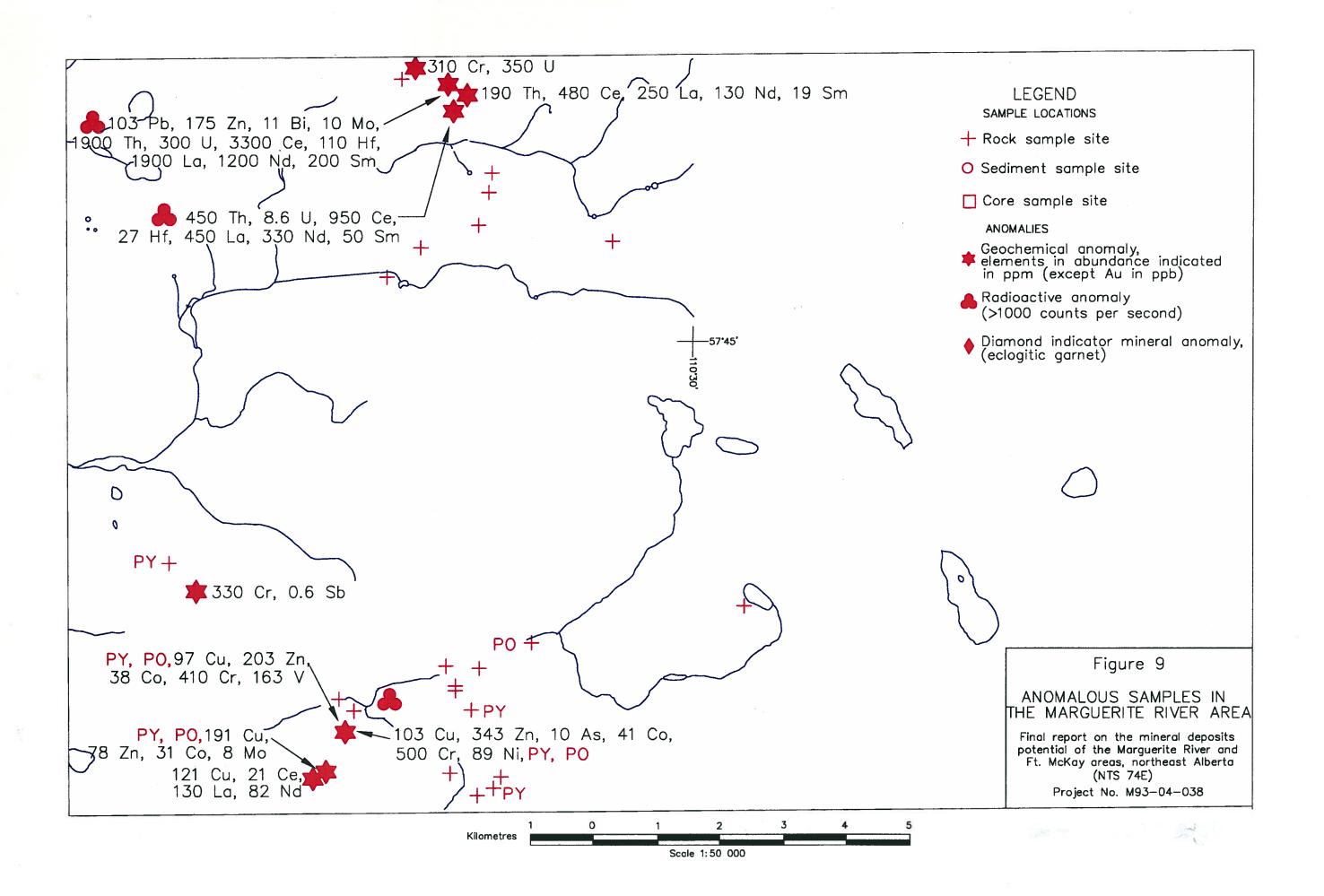
The geochemical analyses and fire assaying was completed by Loring Laboratories Ltd. of Calgary, Alberta. Geochemical analysis, using standard '30element Induction Coupled Plasma spectrometry (ICP)' analysis with an aqua regia digestion, and 'gold+34 element Instrumental Neutron Activation Analysis (INAA)' using a 30 gram aliquot, were conducted on all 71 surface rock samples. Fire assay for gold, using a 30 gram aliquot

with standard fusion techniques coupled with Atomic Absorption Spectrophotometry (AAS) with a 5 ppb detection limit, was conducted on 24 selected surface samples of Phanerozoic carbonate and clastic rocks, and 23 selected samples from the ERCB drill core. Standard ICP analysis was also conducted on the ERCB drill core samples. Geochemical analysis of the till sample clay fraction was completed using INAA, coupled with AAS analysis utilizing the same sample preparation and techniques as those reported in the Prairie till sampling program of Thorliefson and Garrett (1993). A summary of the geochemical and fire assay results for all the samples is in Appendix 2. The geochemical results for the rock and core samples are summarized geographically on Figure 8 at the end of the report, and Figures 9 and 10 within the body of the report. In addition, sulphide and radioactive occurrences are identified on Figures 8 to 10. The assay certificates for the 71 surface rock samples and the 23 drill core samples are attached as Appendix 3.

Grain size distribution and carbonate content was estimated for all tills encountered along the Firebag River. The two till samples collected during 1992, NAT92-24 and NAT92-25, were processed for diamond indicator minerals at the Saskatchewan Research Council (SRC). Microprobe analysis of potential indicator minerals from these two samples was completed at Canmet during 1993 (Appendix 4; Fenton and Pawlowicz 1993). Three of the seven till samples and the three river sediment samples that were collected during 1993, were processed at the SRC for potential diamond indicator minerals. Selected grains from these six samples were subsequently submitted for microprobe analysis at the University of Saskatchewan during 1994 (Appendix 4). As well, additional potential diamond indicator minerals from samples NAT92-24 and NAT92-25 were submitted for microprobe analysis during 1994 (Appendix 4). The diamond indicator results are presented on X-Y scatter plots and are summarized geographically on Figure 8. The remaining four till samples will be processed along with other samples from northern Alberta during 1994-95 under ongoing MDA project M92-04-006.

A total of 33 surface rock samples were cut into 15 standard and 21 polished thin sections, and were examined under polarized and reflected light on a Zeiss microscope at the Alberta Research Council. Sample mineralogy and descriptions are included as Appendix 5. The results of the fieldwork and geochemical/mineralogical analyses for the Marguerite River area, Fort McKay area and along the Firebag River are presented below.

Marguerite River Area


Fieldwork in the Marguerite River area consisted primarily of foot traverses to examine and sample gossans, radioactivity and bedrock alteration associated with shear zones, brecciation and mylonites in weakly foliated to mylonitic granitoids, and mafic igneous rocks identified by Godfrey (1970). Figures 5 and 6 show sample locations for the Marguerite River area. Brief sample descriptions, including details with respect to sulphides, radioactivity and alteration, are given in Appendix 1. Although the area was not mapped, geological notes were taken at each outcrop examined along traverses during

the course of the fieldwork, and selected samples were collected for thin section study. As a result, a better understanding of the geology of the area was obtained, which builds upon previous geological reports for the area.

Compositionally, the Marguerite River area mainly comprises: (a) three types of granitoid rocks, (b) a mafic meta-igneous rock of unknown origin and (c) strongly mylonitic rocks. The granitoids include: (1) a granite to granite gneiss unit, which is generally leucocratic and quartz- and plagioclase-rich, (2) a megacrystic alkali feldspar granite to syenite unit, with abundant K-feldspar, from <20% to often <10% guartz, 15 to 30% mafic minerals and minor amounts of corundum. The presence of primary corundum is indicative of the peraluminous nature of this unit and indicates that it is likely derived from a sedimentary protolith, (3) an alkali feldspar granite to alkali feldspar granite gneiss unit, which is similar to the peraluminous megacrystic unit, but is less coarse grained, is more quartz- and plagioclase-rich, and locally contains garnet and pyrophyllite. This unit may be compositionally related to the megacrystic unit in light of its peraluminous nature and relative abundance of potassium. Foliation in these granitoid units tends to be variable. grading from unfoliated to mylonitic, but in the northern part of the area the foliation generally trends north to northwest, is weak to gneissic, with rare discrete mylonite to ultramylonite zones up to 10 m wide. In the southern part of the area, foliation predominantly trends easterly and is moderate to strong, with mylonite predominating in a 2 to 4 km wide belt. This is in keeping with observations of Tremblay (1961), Godfrey (1970), Langenberg and Nielsen (1982) and Wilson (1985b, 1986).

In addition to the granitoid units, a mafic meta-igneous unit exists in places. This unit is generally 3 to 10 m wide and is weakly to strongly foliated. The unit consists of abundant clinopyroxene that has readily altered to uralitic hornblende, plus or minus chlorite, quartz and plagioclase. The mafic unit crops out on the limb and nose of a regional west plunging antiform which was defined by Godfrey (1970), and acts as a marker horizon defining the fold. As this unit generally is foliated, it is herein named a mafic meta-igneous augite-bearing schist. The protolith of this unit is unknown, but it probably is either a mafic volcanic or a mafic dyke. In general, the mafic unit corresponds to the amphibolite cited by Godfrey (1970), and the basaltic dykes and sills of Tremblay (1961).

Eight sulphide and four radioactive occurrences were found during the course of the fieldwork in the Marguerite River area, and these anomalies are shown on Figures 8 and 9. The sulphide occurrences consist of areas with greater than 2 volume % total sulphides with locally up to 10% pyrite with or without pyrrhotite. The vast majority of the sulphide occurrences exist in the southern half of the Marguerite River area in the 2 to 4 km wide mylonite-dominated region. In addition, a number of sulphide occurrences, particularly those with high sulphide content, occur in the mafic schist or are spatially near the mafic schist in the surrounding mylonitic granitoids and are locally associated with quartz-rich gneisses. This assemblage of mafic schists, quartz-rich gneisses and increased sulphides

within the 2 to 4 km east-west trending mylonite zone might be indicative of remnant supracrustal rocks within the mylonite belt. This belt is also associated with a strong east trending linear aeromagnetic high that further west becomes more northerly trending (Geological Survey of Canada 1983; Sprenke *et al.* 1986). The four radioactive occurrences range from spot highs of 1,000 counts per second (cps) up to 3,000 cps, as measured with a SPP2N SRAT scintillometer, and are mostly associated with the megacrystic peraluminous syenite (Figures 8 and 9). Secondary yellow uranium oxide stain or hematitization or both exist at a few of these radioactive occurrences.

Highlights of the results from ICP and INAA analyses of rock samples from the Marguerite River area are presented in Table 3, and on Figure 9. The complete table of ICP and INAA results is given in Appendix 2. In total, 37 samples of Precambrian granitoids, and 6 samples of the mafic schist were submitted for analysis. In general, low gold and silver values were obtained from all the samples of the granitoids and the mafic schist, with the highest value being 14 ppb Au. The most anomalous results are from samples that were collected from the radioactive occurrences in the granitoids (Figure 9). In these samples, up to 350 ppm U, 1,900 ppm Th, 3,300 ppm Ce, 1,900 ppm La and

Table 3. Highlights Of ICP And INAA Analyses For Marguerite River Area Samples

Sample #	Lithology	Anomalous Trace Elements (ppm)		
Marguerite R.	(Granitoids)			
MD93082701	Hematite-stained (675 cps)	190 Th, 480 Ce, 250 La, 130 Nd, 19 Sm		
MD93082703	Megacrystic (1,500 cps)	450 Th, 8.6 U, 950 Ce, 27 Hf, 450 La, 330 Nd, 50 Sm		
MD93082704	Megacrystic (3,000 cps)	103 Pb, 175 Zn, 11 Bi, 10 Mo, 1900 Th, 300 U, 3300 Ce, 4.5 Eu, 110 Hf, 1900 La, 1200 Nd, 200 Sm, 15 Tb		
MD93083002B	Rusty with yellow stain	310 Cr, 350 U		
MD93090306B	Garnet bearing quartzose gneiss (1-2% Po+Py)	191 Cu, 78 Zn, 31 Co, 210 Cr, 58 Ni, 8 Mo		
MD93090601A	Quartzose gneiss (up to 10% Py)	108 Cu, 2200 Ba		
MD93090801	Mylonitic	330 Cr, 0.6 Sb		
Marguerite R.	(Mafic Schists)			
MD93090303A	Foliated (1% Py+Po)	97 Cu, 203 Zn, 38 Co, 410 Cr, 163 V		
MD93090303B	Foliated (1-2% Py+Po)	103 Cu, 343 Zn, 10 As, 41 Co, 500 Cr, 89 Ni		
MD93090307	Rusty	121 Cu, 210 Ce, 130 La, 82 Nd		

1,200 ppm Nd were obtained, along with elevated values of other rare earth elements (REE's) in a few samples. Sample MD93082704, which yielded the highest REE values for all the rock samples also contains 300 ppm U and anomalous base metal elements such as Pb, Zn, Bi and Mo (Table 3). Base metal elements were locally anomalous in samples from the 2 to 4 km wide mylonite zone, with results of up to 191 ppm Cu, 78 ppm Zn and 330 ppm Cr associated with pyrite and pyrrhotite in quartz-rich gneiss. Mafic schist within the 2 to 4 km wide mylonite zone also yielded anomalous base metal concentrations, with up to 121 ppm Cu, 343 ppm Zn, 41 ppm Co, 500 pm Cr, 89 ppm Ni and 163 ppm V (Table 3 and Appendix 2).

Fort McKay Area

The Fort McKay area was included in this study because there has been a high level of exploration interest in the area, both historically and recently. As mentioned previously, surface sampling and drilling during 1992 and 1993 along the east side of the Athabasca River by the Tintina Mines Ltd./NSR Resources Inc. joint venture, and by Focal Resources Ltd. has indicated the presence of anomalous concentrations of gold, silver and PGE's in Upper Devonian Waterways Formation carbonates. During 1993, MDA-related fieldwork in the Fort McKay area consisted primarily of sampling those outcrops that are readily accessible by road or boat, and reconnaissance prospecting for mineral occurrences and indications of alteration. Sample locations in the vicinity of the Fort McKay area are shown on Figures 5 and 7.

The following units were examined and sampled for gold and other selected metals in the Fort McKay area: (a) Upper Devonian carbonates, (b) well-indurated pre-Cretaceous (?) Beaver River sandstone, (c) McMurray Formation oil sands, and (d) a presently forming salt mound at the southeast corner of Saline Lake. Four sulphide occurrences were discovered as a result of the fieldwork in the Fort McKay area and along the Athabasca River (Figures 8 and 10). Two of the sulphide occurrences consist of fracture-controlled pyrite concentrations in limestone of the Moberly Member along the west shore of the Athabasca River at the townsite of Fort McKay (MD93090503B), and in the Calumet Member along the west shore of the Athabasca River immediately down river from Pierre Creek (MD93090901A). Both units are limestone-rich members of the Upper Devonian Waterways Formation (Table 2) as illustrated on Figure 2 and in Norris (1963). The other two sulphide occurrences consist of pyrite associated with nodules or concretions in the McMurray Formation oil sands in borrow pits along the main north-trending gravel road north of Fort McKay. The Beaver River sandstone differs from the McMurray Formation sandstones in that it is quartz-rich and appears to be well cemented by quartz and minor carbonate, hence it is well indurated. Only trace amounts of pyrite were observed within the Beaver River sandstone, even though outcrops of the unit are guite rusty in places. Petrographic descriptions of selected Phanerozoic rocks are included in Appendix 5.

A total of 15 rock samples from Waterways Formation carbonates, 4 rock samples of carbonate or salt crusts from a salt mound associated with springwater discharge at Saline Lake, which is probably underlain by Waterways Formation carbonate, and 9 rock samples of either Beaver River sandstone or McMurray Formation sandstone/siltstone were collected and submitted for ICP and INAA analysis. In addition, the 24 rock samples from Waterways Formation carbonates and Beaver River sandstone, were all reanalysed for gold by fire assay with an AAS finish. Highlights of the results of these analyses are presented in Table 4, and complete results for all samples are given in Appendices 2 and 3.

Table 4. Highlights Of ICP And INAA Analyses For Fort McKay Area Samples

Sample #	Lithology	Anomalous Trace Elements (ppm)			
Fort McKay	(Clastic Rocks)				
MD93082401B	Hematitic siliceous sandstone	0.6 Cd, 220 Cr, 460 Ba			
MD93090503C	Rusty McMurray Fm. sandstone	144 Zn, 42 V			
MD93090707	McMurray Fm. sandstone (15% Py)	82 Zn, 0.5 Sb			
Fort McKay	(Carbonates)				
MD93091001B	Limonitic carbonate crust near salt mound at Saline Lake	0.5 Ag, 54 Pb, 16 As, 120 Cr, 1.2 Sb, 9 V, 39 B, 18 Br, 472 Sr			
MD93091102A	Rubbly limestone	118 Pb, 32 Sb			

Low gold values (up to 9 ppb) were obtained by both INAA and fire assay methods for all the Phanerozoic rock samples submitted for geochemical analysis. However, sample MD93091102A (Table 4; Figures 8 and 10), which is from nodular to brecciated argillaceous limestone from the Moberly Member of the Waterways Formation, yielded anomalous concentrations of 32 ppm Sb and 118 ppm Pb. In addition, one sample of material from a salt mound at an active spring water discharge site at Saline Lake (MD93091001B) yielded anomalous concentrations of Ag, Pb, As, Cr, Sb, V, B, Br and Sr (Table 4; Figures 8 and 10). It is not clear whether these anomalous metal concentrations are derived directly from the saline spring waters or are related to possible Waterways Formation carbonates that underlie the salt mound. Geochemical analyses of the five samples from the Beaver River sandstone yielded no geochemically anomalous elements other than chromium in four of the samples (260 to 340 ppm; Appendix 2). The fifth sample, which is from a boulder of possible hematite-stained Beaver River sandstone. yielded 0.6 ppm Cd, 220 ppm Cr and 460 ppm Ba (Table 4 and Appendix 2). Recently, mineral exploration companies have reported that they have found high gold and silver concentrations in Waterways Formation carbonates in the vicinity of Fort McKay (Focal Resources Ltd. 1993; Northern Miner 1993a). Some controversy has arisen over these

reported results due to the use of non-traditional methods of gold assaying because the more traditional methods such as fire assay have been reported to be ineffective in evaluating the gold content in comparison to the non-traditional methods (Northern Miner 1993a,b). However, both Focal Resources Ltd. (1993) and Tintina Mines Ltd. (1993) have since reported anomalous gold values using traditional fire assay methods. As well, Dr. H. Abercrombie (pers comm. 1994) of the GSC has reported some difficulties in obtaining gold values by traditional assaying methods on surface and core samples from Waterways Formation carbonates and the Beaver River sandstone that were supplied to him by HMS Properties, Focal Resources Ltd. and the Tintina Mines Ltd./NSR Resources Inc. joint venture. Abercrombie and Feng (1994) reported analytical results of up to 3.71 g Au/t in Waterways Formation carbonates and up to 1.08 g Au/t in the Beaver River sandstone using laser ablation coupled with ICP and mass spectrometry.

ERCB Core Firebag River

Although the gold assays obtained from surface rock samples in this study were low, others, including industry (Focal Resources Ltd, 1993; Tintina Mines Ltd. 1993) and the GSC (Abercrombie and Feng 1994), have reported anomalous gold results for samples of Devonian carbonates as well as the overlying pre-McMurray Formation Beaver River sandstone. Some of these reports by others have alluded to the possibility of the gold being in "salt form" (Focal Resources Ltd. 1993) or possibly being halogen associated (Abercrombie and Feng 1994). If these forms of gold exist, it might indicate a possible relationship between elevated gold, along with other metals, in subsurface brines (Barnes 1979) that are discharging in the Bitumount map area or have discharged in the past. Therefore, if such auriferous brines exist or existed, then it is possible that other rock units or lithologies may have been mineralized in addition to the Devonian carbonates. It was decided to test this possible relationship by examining core from the Cretaceous units in the Firebag coal basins. The Firebag coal basins were chosen as they represent five partially connected Cretaceous depositional basins that line up along a possible northwest trending fault, the Firebag River Fault, that affects Devonian carbonates (Unpublished Shell Canada Ltd. data donated to the AGS). This Firebag River Fault could have provided the necessary conduit to focus fluid flow. In addition, the oil saturated coal and carbonaceous shales which are on top of the Devonian unconformity, as well as the underlying carbonates, might have served to reduce any gold-bearing brines that may have infiltrated the basins, a process which would result in gold deposition. For this reason, during January 1994, core from five drillholes stored at the ERCB facility in Calgary, were examined and sampled. These five drillholes are representative of the many holes that were drilled by Shell Canada Ltd. during their coal exploration program in the Firebag River area during the mid 1970's. The location of the drillholes is shown on Figure 5.

A total of 23 core samples from the five drillholes were selected and submitted for standard fire assay for gold and for ICP analysis. Brief descriptions along with assay

results and the calculated gold content of the samples are given in Table 5. A complete list of the samples submitted for analysis and their respective gold assay values and ICP results, are presented in Appendix 2. All the intersections examined were in Tp. 98, R. 5 and consist of post-Devonian coal, shale, siltstone and sandstone, most of which was oil stained or oil impregnated. Logs for most of the drillholes indicate that intercepts into the Devonian carbonates were common, but little if any core was recovered below the targeted coal horizons. No visible signs of alteration were visually observed in the core, but pyrite or marcasite is present in a few places. Eleven of the 23 samples are anomalously auriferous, assaying >100 ppb gold, with four samples containing >500 ppb gold. The highest assay obtained was 1,040 ppb gold (Table 5). However, several of the reported assays are for samples in which bitumen and/or coal were present and these constituents had to be burned off prior to fire assaying. As a result, sample weight loss ranges from 4.3% to as high as 63.3%, but for most of the samples the weight loss was less than 20%. Using the original core weights, the calculated gold content of the burned samples ranges from 55 ppb to 837 ppb, with 8 samples yielding gold values >100 ppb (Table 5). Interestingly, those samples with bitumen and/or coal consistently yielded the highest gold values, especially those samples which also contained pyrite (or marcasite). Samples from all five drillholes yielded anomalous concentrations of gold. The ICP results indicate there are other anomalous trace elements present and that there is a positive correlation between elevated Au and elevated values for Cr (up to 553 ppm) and, to a lesser extent. Ag (up to 1.1 ppm) and V (up to 39 ppm). Other elements that are also anomalous in several samples in various cores include up to 61 ppm Cu, 97 ppm Pb, 211 ppm Zn, 58 ppm Ni, 35 ppm Co, 14 ppm As, 951 ppm Sr, 4 ppm Sb, 6 ppm Bi and 257 ppm B (Appendix 2). The concentration of these elements is elevated in comparison to the oil sands analyzed by Gulf Canada Resources Ltd. for co-product metals, except for a few bitumen poor horizons below the oil sands where elevated concentrations of Au and high levels of W were encountered (Gulf Canada Resources Ltd. 1993). Of particular interest is the high levels of B, as seven samples yielded concentrations between 96 ppm and 257 ppm. In most cases, high levels of B are accompanied by increased Sr and Na. In some samples, such as B+148C-3, high B is associated with elevated Au, Ag, Cu, Pb, V and Cr (Table 5, Appendix 2). In other samples, high B is occasionally associated with elevated As, Sb and Bi. The presence of elevated concentrations of B, Sr and Na in these samples may possibly support the premise that brine solutions have carried and deposited a diverse suite of trace metals, and that these processes may still be operating today in the Bitumount area. As well, a genetic relationship between the bitumen and these trace elements cannot be ruled out, nor can the possibility of paleoplacer concentrations. However, work by Trevoy et al. (1978) indicates that the McMurray Formation oil sands carry a limited suite of elevated trace metals, such as Ti and Zr, which are mainly related to original heavy mineral concentrations rather than the bitumen content. concentrations are considered only a remote possibility due to the fact that anomalous gold concentrations were found in each hole across a wide variety of lithologies including coal and shale. Recent work by Gulf Canada Resources Ltd. (1993) indicate that Ni and V (and other associated trace metals) increase in concentration in the fine-grained to clayrich sediments, which they suggest raises questions about theories that link Ni, V and other trace metal concentrations to the contained bitumen.

Table 5. Assays And Calculated Gold Content For ERCB Core Samples

Sample #	Description	Weight (gm)	Weight After LOI (gm)	Weight Loss (%)	Gold Assay (ppb)	Calculated Gold (ppb) Content
SL27C-1	Grey mottled shale secondary fibrous mineral present	NA	NA	NA	24	24
SL27C-2	Dull coal with trace py	NA	NA	NA	14	14
SL27C1-1	Grey to black oil sands	113	101.86	9.9	677	610
SL27C1-2	Pebbly sand & oil sand contact	168.67	161.44	4.3	168	161
SL27C1-3	Maroon shale, minor white crust	NA	NA	NA	<5	<5
SL27C2-1	Dull coal with secondary fibrous alteration of py or cbnt	NA	NA	NA	13	13
SL27C2-2	Typical coal	NA	NA	NA	<5	<5
SL27C2-3	Sandy unit with minor white- yellow crust	NA	NA	NA	11	11
SL27C2-4	Mssv py & qtz nodule in oil sand	130.58	105.03	19.6	1040	837
SL27C2-5	Shaley lens in oil sand	49.96	44.23	11.5	647	573
SL27C2-6	Tan to maroon shale	NA	NA	NA	<5	<5
SL27C2-7	Shale with cbnt clasts, regolith?	NA	NA	NA	16	16
B+148C-1	Oil sand with thin shale lenses	81.94	69.87	14.7	109	93
B+148C-2	Mssv py & qtz nodule in oil sand	73.22	58.5	20.1	69	55
B+148C-3	Typical coal chips	57.44	21.06	63.3	218	78
B+148C-4	Maroon shale and sand contact	101.6	95.21	6.3	297	278
E+8C-1	Grey silt clasts at top of silt interval in oil sand	42.13	36.1	14.3	455	390
E+8C-2	Oil sand with secondary white fibrous crust	96.22	77.47	19.5	717	577
E+8C-3	Py nodule in oil sand	71.62	57.56	19.6	107	86
E+8C-4	White fibrous mineral & sulphur clots in coal	NA	NA	NA	17	17
E+8C-5	Dull coal chips	NA	NA	NA	5	5
E+8C-6	White-yellow crust on coal	NA	NA	NA	17	17
E+8C-7	Sulphur stain in coal chips in oil sand	122.95	105.85	13.9	277	238

NA = Samples that were not ashed

The results from the 1993 work have important implications for gold exploration in the Bitumount map area, because the drillhole locations of the core used in this study are about 60 km northeast of Fort McKay. In addition, all five drillholes exhibited some anomalous concentrations of gold from what was essentially a random sampling of the available core. Two of the drillholes are more than 4 km apart. This study has demonstrated that gold, possibly in subsurface brines, was mobile throughout the area, and was probably deposited under reducing conditions associated with the oil sands or carbonaceous units such as coal.

Surficial Geology Along The Firebag River And Sampling Results

The only reasonable exposures of the Quaternary sediments within the map area are along the Firebag River. A reconnaissance survey was made during the mid 1980's by Fenton as part of a project on the Quaternary stratigraphy of the Athabasca surface mineable oil sands area. At that time, about 8 days were spent examining 34 poor to medium quality sections along the Firebag River or adjacent areas. The project was suspended after preliminary lab analyses due to a change in research direction. These data were retrieved and used in conjunction with data from 1993 fieldwork in the preparation of this report.

Physiography

The Firebag River lies within the boundaries of the Bitumount map area, Alberta and the Lloyd Lake map area, Saskatchewan (NTS 74E and 74F; Figure 1), and flows northwest to join the Athabasca River. The eastern quarter of the river flows through locally high relief, rolling, drumlinized terrain (Figure 4; Bayrock, 1971). The central portion flows through low relief, gently undulating terrain, originally called outwash (Bayrock 1971), but later reclassified as moraine (Bayrock and Reimchen 1974). The western quarter is situated in low relief, gently undulating glaciofluvial sand and gravel. The vegetation consists of a narrow band of 25 to 30 m tall spruce adjacent to the river beyond which are highlands covered by predominantly jackpine and minor poplar alternating with muskeg filled lowlands. Much of the terrain has been repeatedly burned by forest fires.

Bedrock Observations

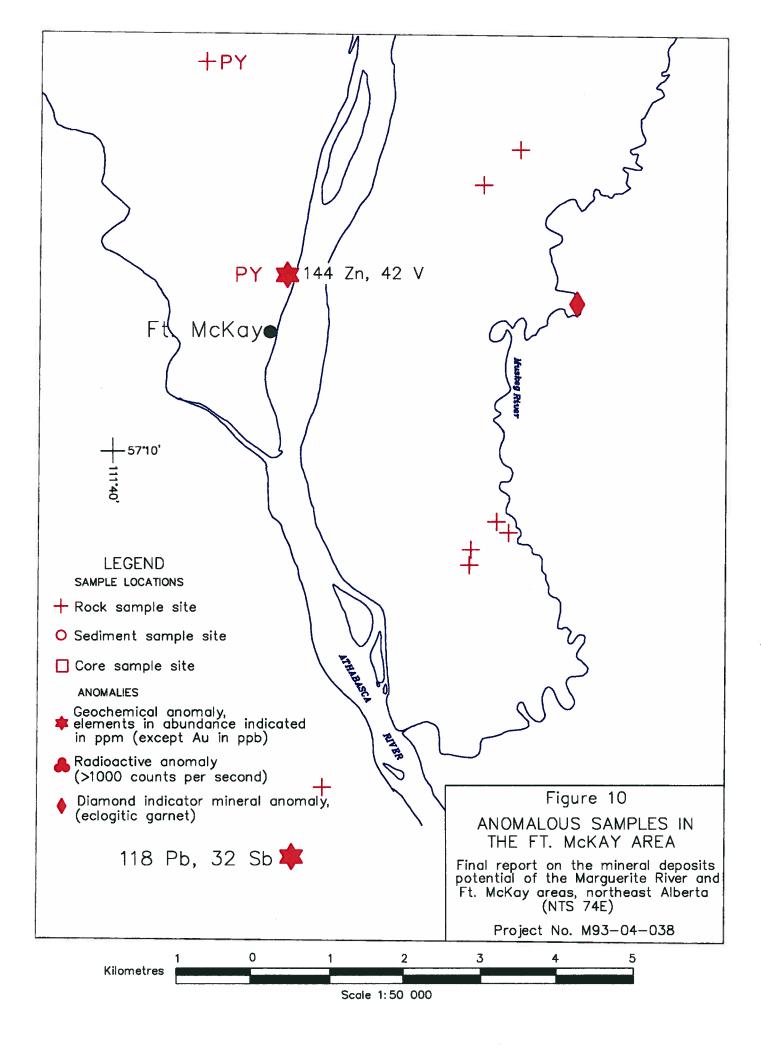
Within Alberta, the Firebag River flows first over subcrops of the Clearwater Formation and, downstream, over subcrops of the McMurray and Methy Formations (Figure 2). The easternmost outcrop of the McMurray Formation is at section MF82-11 in NE LSD. 9, S. 34, Tp. 97, R. 7W4.

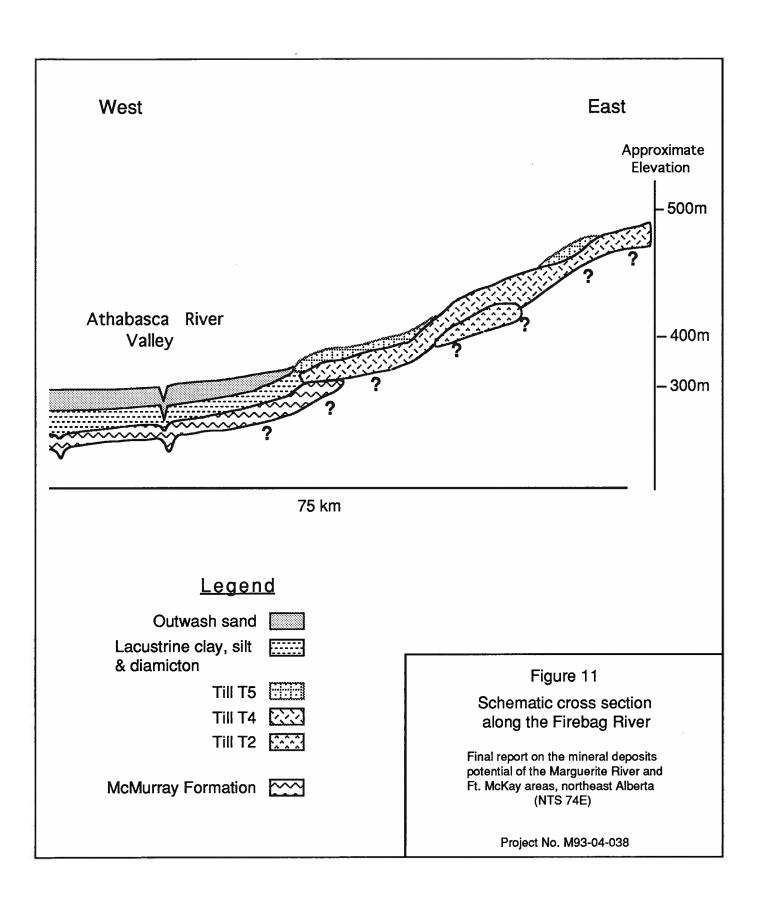
The present day surface of the Methy Formation is cut by a number of sinkholes throughout the Waterways and Bitumount map areas. These have been noted

by a number of researchers, including Hume (1947), Bayrock (1971), Norris (1973), McPherson and Kathol (1977), Hackbarth and Nastasa (1979), and Ozoray et al. (1978). The author (Fenton) examined a number of these sinkholes at sections on the Firebag River (center of Tp. 99, R. 7) and is impressed by the frequency and the amount of relief of these features. At site MFFB83-2 (LSD. 4, S. 10, Tp. 99, R. 7W4), for example, a 3 m high outcrop of the Methy Formation contains at least three sinkholes in a distance of about 100 metres. The sinkholes are three to five metres across and filled to a depth of at least 3 metres by rubble consisting of about 60% oil sand and 40% limestone. A few of the blocks of the McMurray Formation exceed 2m in height and width. The bedding in the Methy Formation dips toward the margin of the sinkhole but appears to have been truncated by collapse at the edge of the depression. There was no clear evidence whether Quaternary sediment had been included in the collapse of the sinkholes because they are situated at the base of the Quaternary section where there is an abundance of colluvium. However, at section MFFB83-2 there is some evidence that till may be included in the collapse rubble. The sinkholes shown on the Bitumount surficial map (Bayrock 1971) also indicate postglacial collapse occurred in some areas, particularly in the northwest quarter of the Bitumount map area. One sinkhole at the Muskeg River (about S. 8, Tp. 94, R. 10W4) is about 7 m across and 10 m deep, and is filled with limestone and oil sand debris. The dimensions of the area in which these closely spaced sinkholes exist is uncertain, but within that area the topography on the Devonian erosional surface must be highly irregular. and porosity and permeability is likely high.

Quaternary Stratigraphy

The stratigraphy of the Quaternary sequence is exposed in a number of geologic sections as far upstream as Tp. 96 R. 3W4. Samples were analysed for matrix texture in the field by hand (% 1-2 mm fraction, sand, silt and clay), and for total carbonate and the calcite to dolomite ratio using hydrochloric acid. The analyses were difficult to perform on some of the till samples because of their high bitumen content. This may have affected the analyses for clay and carbonate content.


The field data, together with the geochemical data (Appendix 2), indicate a preliminary stratigraphy consisting of seven units (Table 6, Figure 11). Four diamicton units are interpreted to be till. The lowest unit is a black, silty-sand till, that is exposed at only two locations along the central portion of the Firebag river and is not illustrated on the schematic cross section (Figure 11). Little is known about this unit because it is inaccessible at the first geologic section due to its exposure occurring in a near vertical face, and it is almost inaccessible in the second section because of a thick cover of colluvium. In the first section, where this unit is well exposed, albeit inaccessible, the contacts with the underlying McMurray Formation and with the overlying bituminous till (T4) are both sharp. The Unit 1 "Black Till" is less than 1.5 m thick.


Table 6. Preliminary Surficial Stratigraphy Firebag River

Unit	Lithology	Lithological Description	Thickness & Distribution
Unit 7	Uppermost sand unit	Sand with minor gravelly sand layers and reworked oil sand fragments.	Unit is < 2 m thick in its upstream half; 10 to 15 m thick in the downstream third of the river
Unit 6	Clay unit	Gray sediment with pink layers: Pink layers are confined to the upper 5% of the sequence Generally clay to silty clay.	Thick, along the lower third of the Firebag River
Unit 5	Medium to fine grained sand unit	The sand is clean (free of silt and clay), well sorted, and clast free except for a boulder lag at the base. The upper contact, with the overlying sediment of Unit 6, is sharp.	Unit thickness varies from 0 to 2 m
Unit 4	Till T5	Sandy till; dark grayish brown to grayish brown on a fresh surface. Slightly less sand than till T4.	
Unit 3	Till T4	Sandy till; dark grayish brown to olive brown. This till is characterized by a high proportion of total sand and very coarse sand, and total matrix carbonate.	This is the most widespread till
Unit 2	Till T2	Silty sand till; grayish brown to olive brown on a fresh surface. This till is characterized by a relatively low proportion of sand, very coarse sand and carbonate.	A discontinuous stratified layer that overlies the till is included in this unit
Unit 1	'Black Till'	Silty sand till; black. Little is known about this unit because the only two exposures are inaccessible.	Crops out only in the central portion of the river

The grain size and carbonate content analyses (Figures 12 and 13) indicate the presence of three till units that overlie the Black Till along the central portion of the Firebag River. These units are informally called tills T5, T4 and T2, from the uppermost to the lowermost till (Figure 11). The analyses are from till units that are thick enough that there are no signs of contamination from the sediment above or below the till and the till was not strongly weathered. The means and standard deviations were determined for the sections with two or more samples within each unit. Most of the stratigraphic sections are comparatively short, with only five sections containing two of the three till units. Till T2 contains less sand, less of the 1-2 mm fraction, and less carbonate than tills T4 and T5 (Figures 12 and 13). Till T4 generally contains more 1-2 mm sediment, more sand, and slightly less clay than till T5.

Till T2 was recognized in three sections and in one was overlain by till T4.

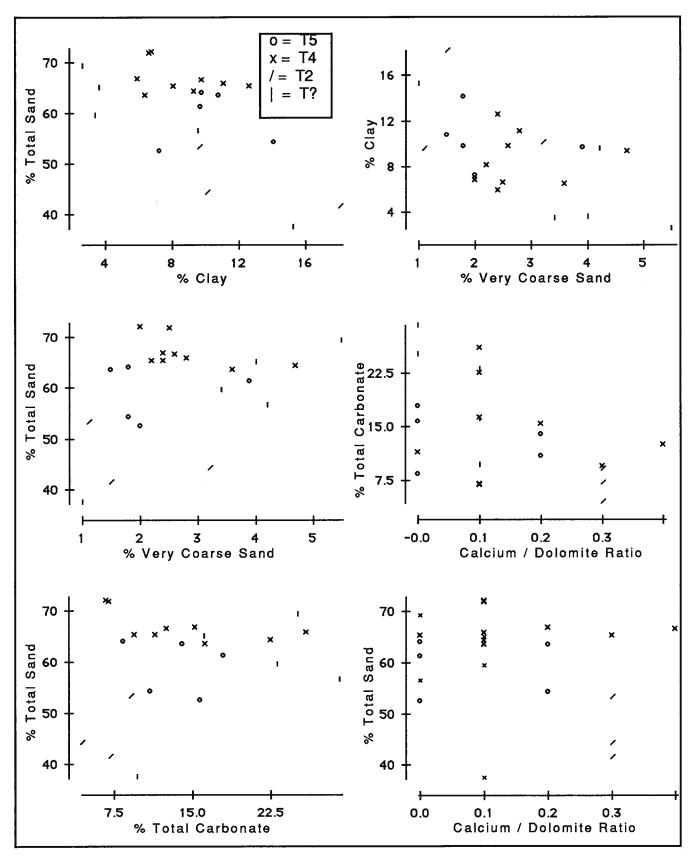


Figure 12. Scatter plots of the mean values for each till at each site for tills T2, T4, T5, and unknowns (T?).

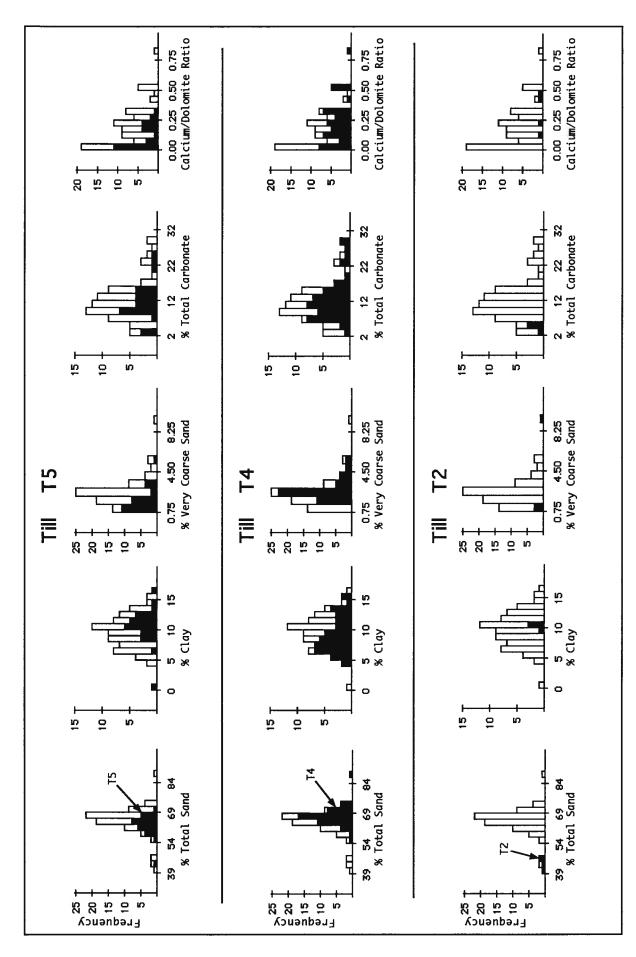


Figure 13. Histograms showing variation in properties of all samples from till units T2, T4 and T5. Black bars in each plot represents the designated till. (Note: these plots are disproportionately influenced by the multiple samples from the few thick geologic sections).

Till T5 was recognized in five sections and overlies till T4 in four of these sections. There were five sections in which the till could not be identified as one of the above and these samples are shown as "T?" in Figure 12. The reason for this may be that in four of the sections the till was so thin that only one sample was obtained and that the composition was not typical of tills T2, T4 or T5. Alternatively, one or more of these sites may contain an entirely different till.

When sampling the sections, some of the till units emitted a distinctive bitumen odour. This was originally considered to be indicative of a particular till layer. However, the subdivisions of the tills into T2, T4 and T5 based on the texture and matrix carbonate does not support this hypothesis. Within each till type there are sections with and without the bitumen odor. The presence of the bitumen is probably the result of local incorporation of oil sands.

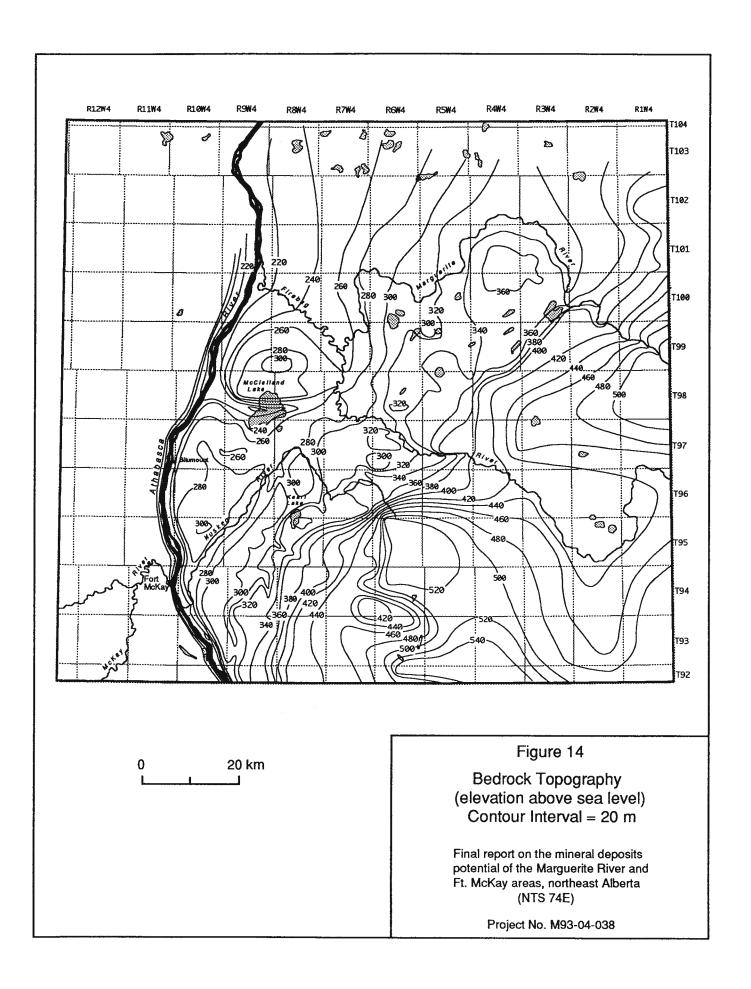
There is a greater difference between till T2 and the two tills T4 and T5, than between T4 and T5. Tills T4 and T5 are much sandier and have a higher carbonate content than T2. This may indicate that tills T4 and T5 are similar and perhaps genetically related to the sandy Gypsy Till recognized by Bayrock and Reimchen (1974), and that the less sandy till, T2, is related to the Kinosis Till. In addition, till T2 was recognized in the central portion of the Firebag River (Figure 11), which is spatially near the outcropping Kinosis Till (Unit 2 on Figure 4). However, the spatial relationship may just be coincidental. The stratigraphy of the buried channel described by Horne and Seve (1991) was examined by Fenton during a groundwater investigation by excavating with a backhoe at a number of sites. The channel contained a till composed almost entirely of sand, overlying a till with more silt and clay. These two tills may correspond to till T2 overlain by till T4.

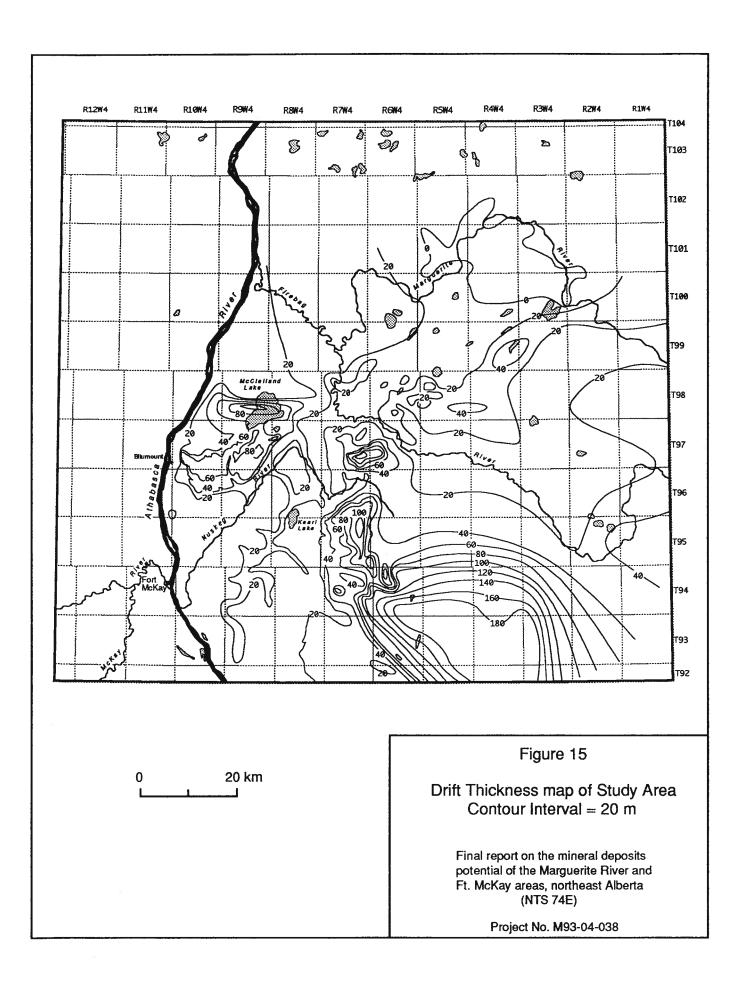
Unit 6 is a gray clay to silty clay unit with pink layers confined to the upper 5% of the unit. The unit is 5 to 10 m thick along the lower third of the river and decreases to less than 2 m thick along the upstream half of the river, where pink sediment predominates. In many sections the gray sediment is a massive diamicton with a few small fragments of pink sediment. At some sites the pink sediment appears to fill fractures in the gray sediment.

Unit 7, the uppermost unit, consists of sand with minor gravelly sand layers. The sand is generally medium grained and clean. In downstream sections, cross beds of reworked oil sand fragments are present. These fragments could make this unit difficult to distinguish from relatively bitumen free portions of the McMurray Formation when looking at well cuttings. This unit is less than 2 m thick in the upstream half of the area and 10 to 15 m thick in the downstream one third of the river. This unit has been mapped as outwash sands (Bayrock 1971, and Unit 7 on Figure 4).

Units 6 and 7 are associated with the deglaciation of the region. They were

effected by the paleoflood described by Smith and Fisher (1993). The bitumen fragments included in Unit 7 may be rip-up clasts eroded during the flood.


Bedrock Topography and Drift Thickness


The data used to construct the bedrock topography and drift thickness maps comes from existing holes that were drilled for coal, petroleum, and groundwater. The maps produced by McPherson and Kathol (1977) together with a local investigation by Horne and Seve (1991) were used to provide the contours in the southwestern quadrant of the Bitumount map area (Figure 3). The data are very sparse throughout much of the area, with the exception of the central portion where Shell Canada Ltd. drilled a number of holes for coal, and the southwest quadrant where hundreds of holes have been drilled as part of the mining of the Athabasca North Tar Sands Deposit.

The regional bedrock surface slopes toward the Athabasca River from highs in the Birch Mountains to the west and the Muskeg Mountain to the southeast. The bedrock surface east of the Athabasca River slopes to the northwest toward the river valley and ranges from about 525 m above sea level (asl) in the vicinity of Tp. 95, Rg. 6, to 205 m asl along the northern portion of the Athabasca River (Figure 14). There is a broad southwesterly trending low that extends from the Marguerite River area to the southwest corner of Bitumount map area in the vicinity of the Athabasca River. The highland to the east rises to about 505 m asl in Tp. 98 Rg. 1. A narrow north-northeast trending buried channel which extends from at least Tp. 93 Rg. 9 to Tp. 96 Rg. 8, has been documented by Horne and Seve (1991).

McPherson and Kathol (1977) defined a narrow channel that underlies McClelland Lake and slopes westward to the Athabasca River. This channel may connect with that described by Horne and Seve (1991) but the data are insufficient to be certain. Based on the known geological setting in other areas of northern Alberta, it is probable that similar channels can be expected elsewhere in the Bitumount map area, particularly in the eastern half of the area, although the existing poor well control has precluded their recognition.

The drift thickness ranges from 0 m in the Marguerite River area where the Precambrian crops out, to about 185 m in the south central portion of the area (Figure 15). Thick drift is present east to southeast and south of McClelland Lake and this is likely due to the presence of thick ice contact sediment as has been mapped by Bayrock (1971). The thick drift which underlies McClelland Lake is the infilling of the buried channel in that area. There is no surface expression (eg. a topographic high) of this thick drift. The large area of thick drift in the vicinity of Tp. 93, R. 4 and 5 in part corresponds to the same location as a bedrock high (Figures 14 and 15). This shows that Muskeg Mountain, which is the topographic high in this region, is a composite feature formed by the deposition of thick drift on a bedrock high.

In general, the present day surface topography reflects the topography of the bedrock surface, that is, the broad north-south low along the Athabasca River and the highlands to the southeast (Muskeg Mountain) and east of the Firebag River, are both bedrock and topographic lows and highs. This also is likely the case for the Birch Mountains, which are northwest of the Athabasca River, but there is little data available to confirm this.

Till and Fluvial Sediment Sampling

A total of nine till samples and three fluvial sediment samples were collected during 1992 and 1993, and comprise the diamond indicator mineral and till geochemistry data included in this report. The locations of these samples are shown on Figure 5. All the till samples have been geochemically analyzed for selected elements and the results are in Appendix 2. The fluvial samples were not geochemically analyzed. However, three of the fluvial samples and five of the till samples have been analysed for diamond indicator minerals. The remaining four till samples will be processed for diamond indicator minerals during 1994-95 under ongoing MDA project M92-04-006.

The results of the till geochemistry were interpreted by comparing the values obtained for this study versus the 95th percentile values reported by Thorliefson and Garrett (1993) for their Prairie till survey. Potentially anomalous tills include NAT92-24 with up to 0.7 ppm Ag, 97 ppm Zn, 32 ppm Cu and 570 ppm F, and NAT93-88 with 9 ppb Au, 14 ppm As and 12 ppm Br (Appendix 2). Interestingly, sample NAT93-88 is from till situated close to the salt mound at the southeast end of Saline Lake (Figures 5 and 8), where a rock sample is anomalous in Ag, Pb, As, Cr, Sb, V, B and Br.

In an attempt to evaluate the diamond indicator mineral content of the tills and fluvial sediments, the samples were first processed into certain magnetic, size and specific gravity fractions by the Saskatchewan Research Council (SRC), and were then hand-picked by the SRC for potential diamond indicator minerals, including garnets, pyroxenes, chromites and ilmenites (Table 7). Swanson and Gent (1993) have summarized the processing and microprobe procedures at the SRC and the University of Saskatchewan, respectively. These potential diamond indicator grains were then sent for microprobe analysis. Hand-picking of the eight samples by the SRC yielded no 'probable' pyrope garnets or chrome diopsides. However, a number of 'possible' indicator minerals were identified by the SRC, including 5 possible pyropic garnets, 37 possible eclogitic garnets and 7 possible Cr-diopsides. The complete results of the processing and hand-picking are given in Table 7. The grains picked by the SRC were supplemented by additional hand-picking for some of the samples prior to sending the selected grains off for microprobe analysis.

The results of the microprobe analysis for all eight samples are in Appendix 4. All of the microprobe data in Appendix 4 was processed using mineral identification

Table 7. Results Of SRC Processing Of Till And Fluvial Samples From The Bitumount Map Area

Sample Number	Type*	Sample Weight (kg)	+1.7 mm Weight (kg)	Mid Fraction (g)	Heavy Fraction (g)	Probable Pyrope Garnets	Probable Chrome Diopsides	Possible Pyrope Garnets	Possible Chrome Diopsides	Possible Eclogitic Garnets	Opaques
NAT92-24	(T?)	26.85	09:0	2.89	2.03	0	0	2 (2)**	0	7 (7)	26 (8)
NAT92-25	(T?)	27.35	0.53	2.13	2.08	0	0	2(2)	1 (1)	12 (12)	25 (16)
NAT93-80	Ē	11.45	0.05	6.62	27.17	0	0	1 (E)	0	1 (E)	2 (2)
NAT93-81	_	Not analysed until 1994	1 until 1994							,	
NAT93-82		30.75	1.85	2.06	7.10	0	0	0	3 (3)	0	4 (4)
NAT93-83	(T4)	25.65	2.65	1.05	3.69	0	0	0	1(1)	1 (1)	2 (2)
NAT93-84	(T?)	Not analysed until 1994	d until 1994						,	•	
NAT93-85	Œ)	14.00	0.05	11.57	15.67	0	0	0	1 (1)	4 (4)	15+ (15)
NAT93-86	(T?)	Not analysed until 1994	d until 1994						,	•	
NAT93-87	E)	11.95	0.05	11.74	36.47	0	0	0	1 (1)	12 (12)	2 (2)
NAT93-88	(L	Not analysed until 1994	d until 1994						•	•	•
NAT93-89	(T?)	30.85	3.35	8.26	5.96	0	0	0	0 (3)	0 (16)	0
*Sample types = Tills T? (Unknown Till), T2, T4	= Tills T	? (Unknown		and T5, or Fluvial Sands (FI)	Tuvial Sands	3 (FI)					
**(2) Number of selected grains sent for micropr	f selecte	ed grains sen	t for micropro	obe analysis	(oxides fror	n 1993 sam	oles were scre	ened for M	obe analysis (oxides from 1993 samples were screened for MgO and Cr2O3)	3)	

programs written in QBASIC and provided by the SRC (Quirt 1992a,b; Gent 1993). The results were evaluated using major and minor element X-Y scatter plots of the sample data versus those for known diamond inclusion compositions given in Fipke (1990), and the diamond inclusion fields illustrated by numerous authors including McCandless and Gurney (1989), Fipke (1990) and Gurney and Moore (1993) (Figures 16 to 18). Because diamonds are regarded as fragments of disaggregated upper mantle peridotite or eclogite incorporated into kimberlite or lamproite magmas as xenocrysts, there are essentially three types of indicator minerals that may have meaning in low density regional surveys: (1) those that are indicative of kimberlites or lamproites, (2) those that are indicative of peridotite or eclogite, and (3) those that are indicative of diamondiferous peridotite or eclogite source rocks. Indicator minerals that are probably indicative of kimberlites or lamproites include: (a) high titanium G1 or G2 pyrope garnets and high magnesium ilmenites (picroilmenites) for kimberlites, and (b) high magnesium (variable chromium) P3 and P4 chromites for lamproites. Indicator minerals indicative of peridotite include G7, G9, G10 and G11 pyrope garnets, chrome diopsides (>0.5 wt% Cr₂O₃) and P1 chromites. Indicator minerals indicative of eclogite include: (a) low iron (<25 wt% total Fe as FeO), high magnesium (>6 wt% MgO) G3, G4, G5 and G6 almandine garnets (referred to as eclogitic garnets), (b) low chromium, high sodium and high aluminum diopsides, and (c) jadeite, corundum and kyanite. Indicator minerals indicative of diamondiferous peridotite include: (a) subcalcic, high chromium, G10 pyrope garnets, and (b) high magnesium, high chromium (>61 wt% Cr₂O₃) P1 chromites. Indicator minerals used to identify diamondiferous eclogite include: (a) high sodium (>0.07 wt% Na₂O) and high titanium in low iron, high magnesium G3, G4, G5 and G6 eclogitic garnets, and (b) high potassium (>0.1 wt% K₂O) clinopyroxenes.

Based on the results of the grains probed to date, there are no grains indicative of either kimberlite, lamproite or peridotitic source rocks, with the possible exception of four chrome diopsides in samples NAT93-82, -83 and -87. However, five G3 and twenty-two G5 eclogitic garnets were identified by microprobe analysis using the computer program MIN-ID.ASC (Gent 1993), several of which have favourable chemistry because they plot within the diamond inclusion field (DIF) for eclogitic garnets on X-Y scatter plots of FeO (total Fe) versus MgO (Figure 16) and TiO₂ versus CaO (Figure 17). Several of the ecologitic garnets have sufficient amounts of Na and Ti, such that they border on the diamond inclusion field for eclogitic garnets on a plot of TiO₂ versus Na₂O (Figure 18). The lack of kimberlitic indicators in the samples which contain the eclogitic garnets indicates that they are not likely derived from kimberlites. The lack of lamproitic indicators, such as chromite, does not preclude the possibility for eclogite-bearing lamproites because lamproites tend to yield few diagnostic indicator minerals (Fipke 1990). The most interesting grain is grain 55 from till sample NAT93-83 along the Firebag River, which plots well within the DIF for FeO versus MgO, TiO2 versus CaO and borders on the DIF for TiO₂ versus Na₂O with 0.05 wt% Na₂O (Figures 8, 16 to 18 and Appendix 4). Indicators of paleo-ice flow direction suggest that the last glacial event had a southwesterly trend, hence the eclogitic garnet and associated chrome diopside may have been derived

 Eclogitic Garnets in ARC Till Samples □ Diamond Inclusion Eclogitic Garnets △ Almandines in ARC Fluvial Samples ® Almandines in ARC Till Samples Eclogitic Garnets in ARC Fluvial Samples MgO (wt%) S 900 900 S Total Fe as FeO (wt%)

Figure 16. MgO vs FeO For Eclogitic Garnets

Figure 17. CaO vs TiO2 For Eclogitic Garnets

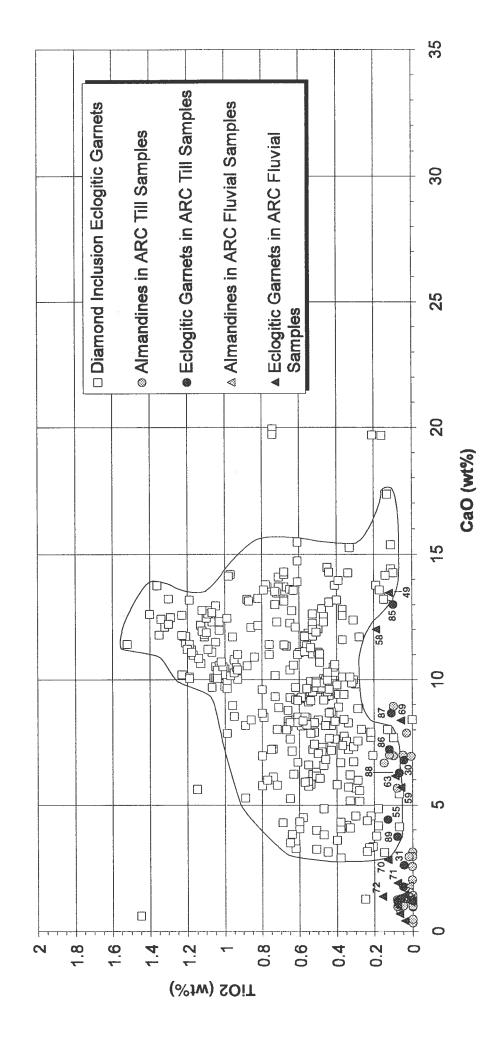
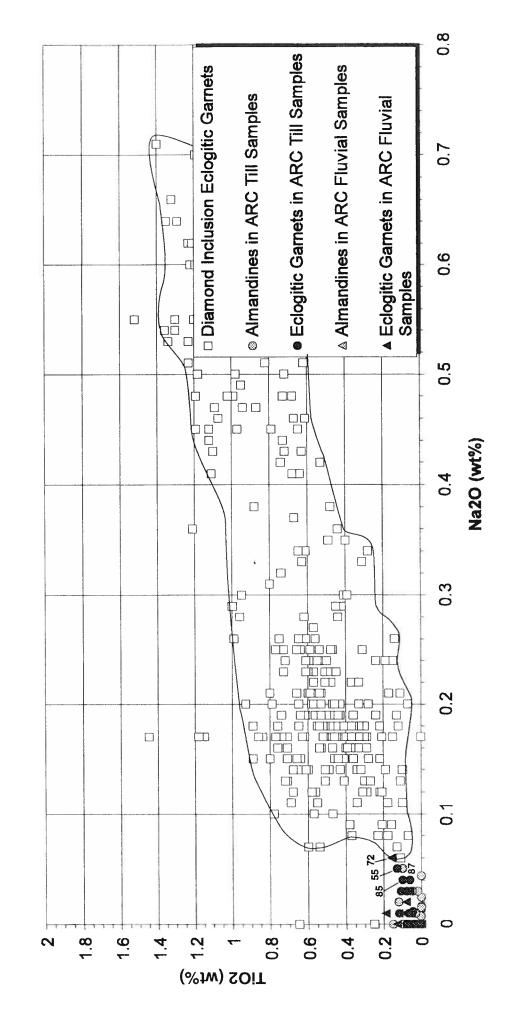



Figure 18. Na2O vs TiO2 For Eclogitic Garnets

from the northeast. Other eclogitic garnets of interest include: (a) grain 87 from till sample NAT93-89 and grains 57 and 59 from fluvial sediment sample NAT93-85, both of which were collected along the Marguerite River, (b) grain 31 from till sample NAT92-25 east of the Muskeg River, and (c) eleven G5 eclogitic garnets with high MgO and, in particular, grain 72 with 0.06 wt% Na₂O, in fluvial sediment sample NAT93-87 from the Muskeg River (Figures 8, 16 to 18 and Appendix 4). For those grains derived from tills, the interpretation of the point of origin is somewhat straight forward, but is dependant on which till was sampled. For those grains derived from the fluvial samples, however, the interpretation is much more complicated because the indicator minerals could be derived from tills, glaciofluvial sediments or Cretaceous sedimentary strata in subcrop. Determining the point of origin for these grains is beyond the scope of this study, but, several of the eclogitic garnets have encouraging chemistry and should be followed up by industry.

DISCUSSION

Potential Mineral Deposit Types in the Bitumount Area

Based on the geology of the Bitumount map area, and the geochemical results obtained for samples from Marguerite River, Fort McKay and from drill core in the vicinity of the Firebag River, there is definite potential for: (a) precious and base metal deposits in both the Precambrian basement and overlying Phanerozoic strata, (b) uranium deposits associated with the Precambrian Athabasca Group, and possibly for (c) rare earth element deposits in some Precambrian basement rocks. In addition, there is potential for diamond-bearing kimberlite or lamproite pipes to exist, based on the presence of several eclogitic garnets with chemistry comparable to diamond inclusion eclogitic garnets.

The most encouraging results obtained in this study involve rock samples from the Phanerozoic succession, including Devonian carbonates and Cretaceous sands, shales and coal, in the vicinity of the sub-Cretaceous unconformity. Potential deposit types in the Phanerozoic stata are discussed below, as well as an evaluation of the sub-Cretaceous unconformity as an exploration target. The two most prospective types of deposits in the Phanerozoic strata are epithermal (or brine related) gold deposits and Mississippi Valley-type Pb-Zn deposits.

Brine Related and Carlin-type Epithermal Gold Deposits

Epithermal, disseminated gold-silver deposits are large producers of gold and, in places, silver throughout California, Nevada and Utah. Characteristics of epithermal Au-Ag deposits include the following: (a) they occur in a variety of host rocks, but 'dirty' or 'carbonaceous' silty carbonates are a common host, (b) typically the deposits are low-grade, but with large tonnages, and (c) they generally display near-surface enrichments of Sb, Hg, As, Tl, B, F, and Ba. Epithermal Au-Ag deposits are commonly referred to as "No-see-um gold deposits" because of their fine-grained, disseminated

nature, or "Carlin type" after the Carlin trend in northeast Nevada. The formation of Carlin type deposits has usually been attributed to epithermal hydrothermal processes associated with the emplacement of high-level felsic intrusions and rhyolitic volcanism (Bagby and Berger 1985; Romberger 1986; Berger and Henley 1989). Because such felsic igneous activity is largely lacking in the Alberta Plains, the potential for Carlin type deposits in Alberta has long been regarded as significantly lower than that for British Columbia or the Yukon Territory. However, recent work on Carlin type deposits has indicated that the assumed genetic relationship to felsic igneous activity may not be universally valid. For example, at the Carlin type Mercur gold district in north-central Utah, the gold deposits are hosted by the Mississippian Great Blue Limestone below the Long Trail Shale. The Mercur deposits are characterized by replacement of carbonate and silty carbonate by silica, phyllosilicates, pyrite, barite, various arsenic, mercury, antimony and thallium minerals, and by disseminated micrometre-sized gold (Jewell and Parry 1987, 1988). At Mercur, there are spatially-associated Tertiary felsic stocks and rhyolites. Recently, however, Wilson and Parry (1990) have dated alteration associated with the gold mineralized zones at between 122 Ma and 193 Ma, hence the Mercur gold deposits are much older than the Tertiary felsic igneous rocks. Wilson and Parry (1990) concluded that the gold-bearing hydrothermal activity is related to Rocky Mountain-style thrust faulting along the Manning Canyon detachment during the Mesozoic, because there are no igneous rocks older than 40 Ma in the Mercur gold district.

With respect to possible brine and/or hydrocarbon-related Au-Ag deposits, such deposits have been reported elsewhere (e.g. Ballantyne 1993, Green and Hulen 1993, Hulen and Nielson 1993, Pinnell 1993). Ballantyne (1993), for example, noted that "deposition of gold in sufficient quantities to produce an ore deposit requires sustained flow of hydrothermal fluid through a narrow zone that coincides with a stable physico-chemical interface. Hydrocarbon-enriched rocks provide such an interface, at which thermal cracking of hydrocarbons can generate an oxidizing environment by depleting hydrogen. Gold complexes are destabilized, depositing gold on available pyrite and other minerals surfaces". Hulen and Nielson stated that some of the hydrocarbon fields in Nevada "share a surprisingly long list of essential attributes with the Carlin-type, low-grade, sedimenthosted gold deposits". Pinnell (1983) suggested that some hydrothermal systems "given favourable host rocks, traps, seals, and migratory pathways, might well have formed not only gold deposits, but also rich, spatially coincident oil reservoirs". Bogashova (1991) described a relationship between Phanerozoic sedimentary rocks and brines; "Comparison of maps of the distribution of stratiform polymetallic ore deposits with hydrochemical and salt maps shows the almost universal confinement of such deposits both directly to saltgenerating basins and to their marginal parts, where subsurface thermal brines were discharged in zones of paleouplifts. Study of fluid inclusions in minerals from these ore deposits has shown that ore-forming solutions were brines with high contents of CI, Na. Ca and often K, and a low content of SO4" An extensive brine system has been discharging in the Bitumount area for a long period of time. In addition, the central portion of the Bitumount map area has been a paleohigh during the Proterozoic, post deposition of Devonian carbonates, and perhaps as recently as the Cretaceous. Extensive hydrocarbon and locally, coal deposits exist throughout much of the area and may have served has a depositional locus for precious metals given the right conditions.

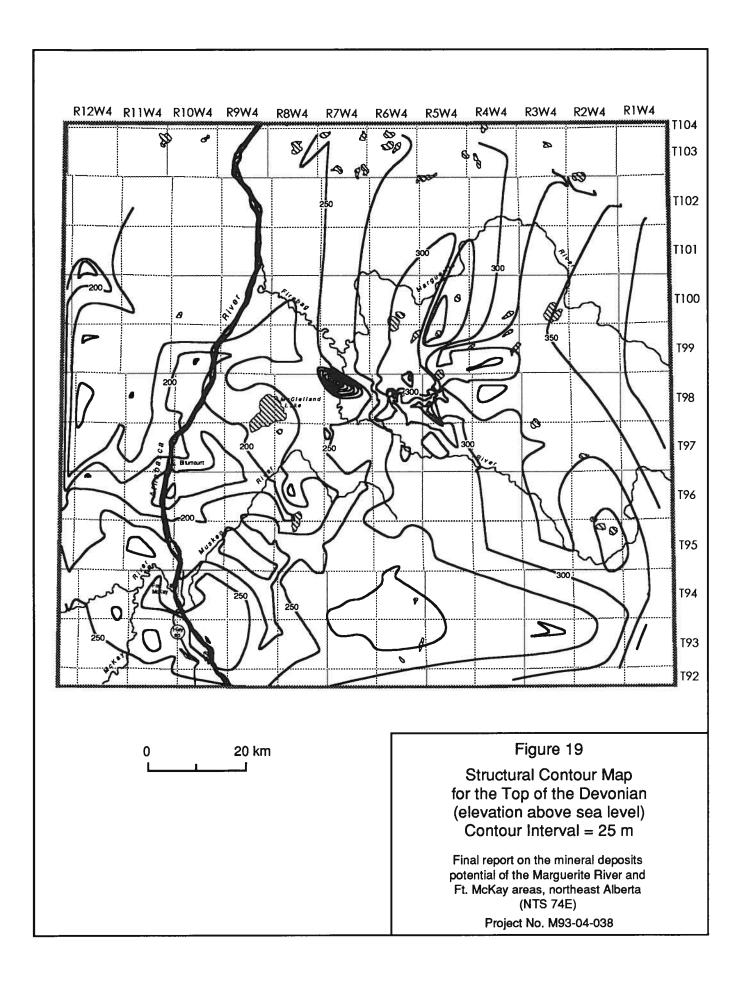
Exploration for brine related or Carlin type epithermal gold deposits is difficult because (a) gold and silver grades are generally low, (b) the deposits rarely contain visible gold, (c) even where the Au-Ag deposits are eroded they typically are not geographically associated with important placer gold accumulations, and (d) an extensive zone of associated alteration to act as a guide to ore is not always present (Bagby and Berger 1985). In general, most of the Carlin type Au-Ag deposits in Nevada and other parts of the western United States of America which have been discovered since the early 1970's, have been found by systematic geochemical rock or surficial sampling methods, followed by drilling of selected targets.

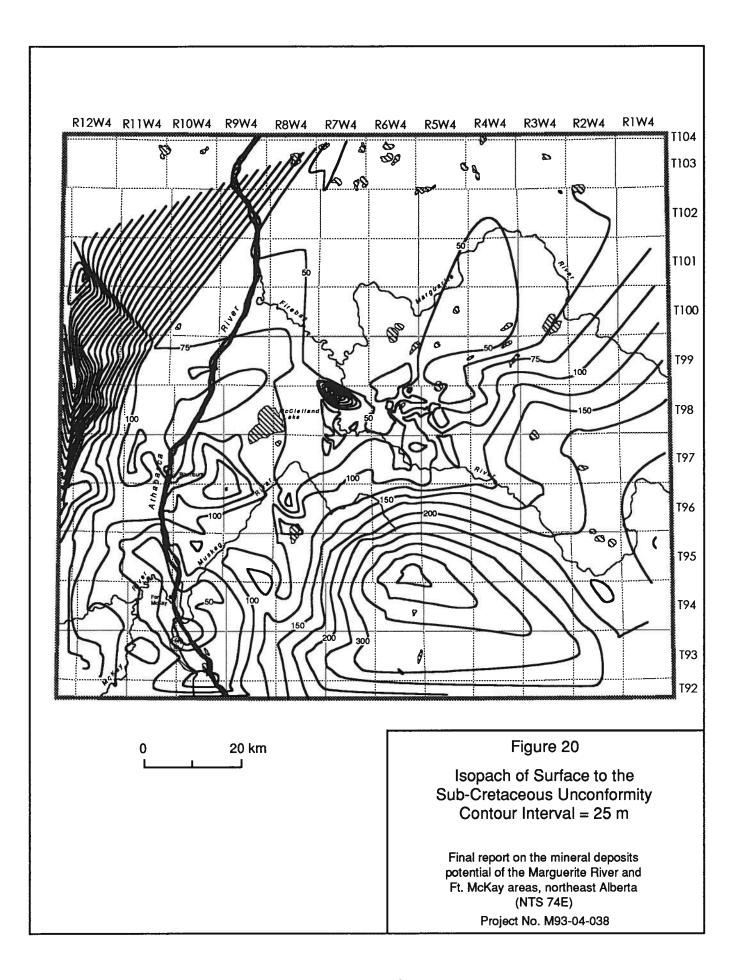
Highly anomalous gold values have been reported by Tintina Mines Ltd., Focal Resources Ltd., and by the Geological Survey of Canada from samples of Devonian carbonates and the pre-Cretaceous (?) Beaver River sandstone of the Fort McKay area. Anomalous gold values obtained in this study along with a variety of trace elements such as Ag, Cr, V, B and other metals from drill core of post Devonian carbonaceous sedimentary rocks in the vicinity of the Firebag River, point toward a possible genetic relationship between gold, brines and hydrocarbons. It is clear that large volumes of brines have moved through the Phanerozoic succession in the Bitumount area. The geochemical associations in the core samples from the Firebag River area provide preliminary evidence for deposition of gold from these brines. This hypothesis is relatively new, and has only been tested in this study by the geochemical analysis of 23 core samples. Clearly further work is required and is highly warranted given the positive results obtained to date. Perhaps a new exploration target for gold deposits in the Phanerozoic succession of northeastern Alberta has been identified.

Mississippi Valley Type Pb-Zn deposits

Worldwide, Mississippi Valley Type (MVT) Pb-Zn deposits occur in carbonate rocks of several diverse ages that range from Proterozoic to at least the Mesozoic, although most of the economically important deposits are hosted by Paleozoic strata. In North America, carbonates of either Cambrian-Ordovician or Carboniferous age host the majority of the important MVT deposits (Anderson and Macqueen 1988). However, in the Western Canada Sedimentary Basin, the most important MVT lead-zinc deposits are in Devonian strata at Pine Point, N.W.T. and at Robb Lake, British Columbia.

MVT deposits might also be found in near-surface Devonian carbonates in the Bitumount map area. Geological features that are considered favourable for the presence of MVT Pb-Zn deposits include: (a) dolomitization or silicification fronts, (b) porosity and permeability associated with karstification, (c) faulting or fracturing to channel


the large volumes of saline fluids required to deposit Pb, Zn, Ag, Fe, Mg, F and Ba, (d) the presence of reefal masses, (e) regional transitions from platformal carbonates to basinal shales, (f) several unconformities and disconformities in the stratigraphic sequence, and (g) structural complexities such as folds and faults (Anderson and Macqueen 1988). It should be noted that strong evidence exists for the movement of saline fluids through the Phanerozoic succession in the Fort McKay area, including extensive karst features and the presence of salt mounds, which currently are forming from groundwater emerging at the present day surface. In addition, many MVT deposits are associated with hydrocarbons, and are spatially related to petroleum fields. These features are all present in the Devonian rocks of the Bitumount area, and therefore, the potential for MVT deposits should not be ignored.


Other Potential Deposit Types In The Bitumount Area

The results from this study, ongoing work by the Geological Survey of Canada and the recent exploration results announced by industry, indicate that good potential exists for the discovery of metallic mineral deposits in the Bitumount map area north of Fort McMurray. In addition to the potential for brine related (or Carlin type) gold deposits and MVT lead-zinc deposits in the Bitumount area, other deposit types to explore for include: (a) Archean shear zone hosted gold deposits, (b) sediment hosted base metal deposits with one or more of zinc, lead, copper, nickel, silver and gold, (c) granitoid-related uranium and/or rare earth element, precious metal or base metal deposits, (d) unconformity-related, sandstone-hosted or vein-type uranium deposits, (e) diamondiferous kimberlite or lamproite diatremes, and (f) various types of placer or paleoplacer deposits with the important metals/minerals being gold, diamonds, titanium or other 'heavy minerals'. More details with respect to these deposit types and their potential existence in northeast Alberta are discussed in Olson et al. (In Press).

The Sub-Cretaceous Unconformity

As discussed above, Devonian carbonate strata and the overlying Cretaceous clastic units in the Bitumount map area represent a prospective target for both gold and base metal deposits. The exposure of the sub-Cretaceous unconformity, however, is apparently limited to thin strips of outcrop on the flanks of the Athabasca River in the vicinity of Fort McKay, a fact which may seem daunting to exploration in the area. Figure 19 shows a structural contour map for the top of the Devonian in the Bitumount map area. From this figure, it is clear that the Devonian surface slopes gently to the southwest. The sub-Cretaceous unconformity is well below the ground surface in the southwest corner of the map area and beneath topographic highs such as the Birch Mountains in the northwest portion of the map area and Muskeg Mountain in the south-central portion of the map area. Figure 20, an isopach map of the rock and overburden between the present ground surface and the sub-Cretaceous unconformity, shows that in approximately one-third of the map area, the Devonian is within 100 m of the ground surface, and is easily within reach

of exploration methods such as geophysics (e.g. induced polarization and some electromagnetic methods) and drilling. For this reason, the Devonian remains a prospective target horizon for base and precious metal deposits over a large part of the Bitumount map area.

CONCLUSIONS

The Bitumount map area contains a wide diversity of rock types, including exposures of Precambrian Shield, Paleozoic carbonates, and Cretaceous clastic sedimentary rocks, and is situated on the edge of a significant subsurface brine basin. To date, with the possible exception of uranium, little exploration for metals or diamondiferous deposits has been conducted in the area due to the relatively poor outcrop exposure, and the perception of a lack of favourable host rocks for mineral deposits. This study has shown that favourable host rocks for precious and base metal deposits do exist in the Bitumount area, and that although exposure is poor, the favourable horizons occur well within reach of several standard exploration techniques. Therefore, the Bitumount map area has the potential to contain significant metallic mineral and diamondiferous deposits and to date, the area has been grossly underexplored for such deposits.

REFERENCES

- Abercrombie, H.J. and Feng, R., 1994. Gold and PGE anomalies in Phanerozoic sedimentary rocks, northeastern Alberta Potential for new deposits; *In* The Calgary Mining Forum, Program and Abstracts, 10 & 11 February, 1994; published by the Calgary Mineral Exploration Group, pp. 51.
- Allan, J.A. 1920. The mineral resources of Alberta; Alberta Research Council, Report No. 1.
- Allan, J.R. 1977. An evaluation of the Johnson Lake property, Alberta, Quartz mineral exploration permit 6876090003; Report prepared by Taiga Consultants Ltd. for E. & B. Explorations Ltd., Alberta Research Council, Economic Mineral File Report U-AF-135(4).
- Anderson, M.N., Berezniuk, T., Wynne, D.A., Cotterill, D.K., Wightman, D.M. and Strobl, R.S. 1993. McMurray/Wabiskaw deposit in Athabasca North Regional maps and cross sections; Unpublished client report to Alberta Oil Sands Technology and Research Authority, Joint Oil Sands Geology Research Program.
- Anderson, G.M., and Macqueen, R.W., 1988. Mississippi Valley-type lead-zinc deposits; In R.G. Roberta and P.A. Sheahan (eds.), Ore Deposit Models, Geoscience Canada, Reprint Series 3, pp. 79-90.
- Babcock, E.A. and Sheldon, L.G. 1976. Structural significance of lineaments visible on aerial photos of the Athabasca oil sands area near Fort MacKay, Alberta; Bulletin of Canadian Petroleum Geology, vol. 24, no. 3, pp. 457-470.
- Bachu, S. and Burwash, R.A. 1991. Regional-scale analysis of the geothermal regime in the Western Canada Sedimentary Basin; Geothermics, vol. 20, no. 5/6, pp. 387-407.
- Bagby, W.C. and Berger, B.R. 1985. Geologic characteristics of sediment-hosted, disseminated precious-metal deposits in the western United States; *In* B.R. Berger and P.M. Bethke (eds.), *Geology and Geochemistry of Epithermal Systems*, Reviews in Economic Geology, vol. 2, pp. 169-202.
- Ballantyne, J.M. 1993. Hydrocarbon-associated, sediment-hosted gold deposits: A genetic model; The American Association of Petroleum Geologists Bulletin, Association Round Table Abstracts, vol. 77, no. 8, p. 1141.
- Barnes, H.L. (ed.) 1979. *Geochemistry of Hydrothermal Ore Deposits*, Second Edition; John Wiley & Sons, 798 p.

- Bayrock, L.A. 1971. Surficial geology, Bitumount, (NTS 74E); Alberta Research Council, Map 34.
- Bayrock, L.A. and Reimchen, T.M. 1974. Surficial geology of the Waterways area, NTS 74D; Alberta Research Council, Unnumbered Map.
- Bell, R. 1884. Report on part of the basin of the Athabasca River, Northwest Territory; Geological Survey of Canada, Report on Progress 1882-83-84, p. 5-35.
- Berger, B.R. and Henley, R.W. 1989. Advances in the understanding of epithermal gold-silver deposits, with special reference to the western United States; *In R.R. Keays*, W.R.H. Ramsay and D.I. Groves, (eds.), *The Geology of Gold Deposits*: The Perspective in 1988, Economic Geology Monograph 6, pp. 405-423.
- Bloch, J., Schröder-Adams, C., Leckie, D.A., McIntyre, D.J., Craig, J. and Staniland, M. 1993. Revised stratigraphy of the lower Colorado Group (Albian to Turonian), Western Canada; Bulletin of Canadain Petroleum Geology, vol. 41, no. 3, pp. 325-348.
- Bogashova, L.S. 1991. The distribution of salts, brines and ores in the sedimentary cover; Transactions (Doklady) of the USSR Academy of Sciences, Earth Sciences Section, vol. 310, no. 1, pp. 178-181.
- Burwash, R.A. 1990. The Peace River Arch: where, when, what, why?; Edmonton Geological Society, Abstract of Talk Presented November 8, 1990, Edmonton, Alberta.
- Burwash, R.A. and Burwash, R.W. 1989. A radioactive heat generation map for the subsurface Precambrian of Alberta; *In* Current Research, Part C, Geological Survey of Canada, Paper 89-1C, pp. 363-368.
- Cant, D.J. 1988. Regional stucture and development of the Peace River Arch, Alberta: A Paleozoic failed-rift system?; Bulletin of Canadian Petroleum Geology, vol. 36, no. 3, pp. 284-295.
- Carl, C., von Pechman, E., Höhndorf, A. and Ruhrman, G. 1992. Mineralogy and U/Pb, Pb/Pb and Sm/Nd geochronology of the Key Lake uranium deposit, Athabasca Basin, Saskatchewan, Canada; Canadain Journal of Earth Sciences, vol. 29, pp. 879-895.
- Carrigy, M.A. 1959. Geology of the McMurray Formation Part II: General geology of the McMurray area; Alberta Research Council, Memoir 1.

- Carrigy, M.A. 1966. Lithology of the Athabasca Oil Sands; Alberta Research Council, Bulletin 18.
- Carrigy, M.A. 1973. Mesozoic geology of the Fort McMurray area. *In* M.A. Carrigy and J.W. Kramers (eds.), *Guide to the Athabasca Oil Sands area*, Alberta Research Council Information Series No. 65, pp. 77-103.
- Ells, S.C. 1926. Bituminous sands of northern Alberta; occurrence and economic possibilities; report on investigations to the end of 1924; Canadian Mines Branch Report 632.
- Elstone, E.F. 1963. A memorandum report on the Athabasca gold project of Scurry-Rainbow Oil Ltd., Scurry Rainbow Oil Ltd. company report. 11 pp.
- Fenton, M.M. and Dreimanis, A. 1976. Methods of stratigraphic correlation of till in Central and Western Canada; *In R.F.* Legget (ed.), *Glacial Till*, Royal Society of Canada Special Publication No. 12, p. 67-82.
- Fenton, M.M. and Ives, J.W. 1982. Preliminary observations on the geological origins of the Beaver River Sandstone; Archaeological Survey of Alberta, Occasional Paper No. 19, pp. 166-189.
- Fenton, M.M. and Ives, J.W. 1990. Geoarchaeological studies of the Beaver River sandstone, northeastern Alberta; *In* N.P. Lasca and J. Donahue (eds.), *Archaeological Geology of North America*, Boulder Colorado, Geological Society of America Centennial Special Volume 4, pp. 123-135.
- Fenton, M.M. and Pawlowicz, J.G. 1993. Reconnaissance mineral and geochemical survey with emphasis on northern Alberta, report for the end fiscal year 1992-93, MDA project number: M92-04-006; Alberta Research Council, Open File Report 1993-16.
- Fipke, C.F. (ed.) 1990. The development of advanced technology to distinguish between diamondiferous and barren diatremes; Geological Survey of Canada, Open File 2124.
- Flach, P.D. 1984. Oil sands geology Athabasca deposit north; Alberta Research Council, Bulletin No. 46.
- Flach, P.D. and Mossop, G. 1985. Depositional environments of the Lower Cretaceous McMurray Formation, Athabasca Oil Sands, Alberta; American Association of Petroleum Geologists Bulletin, vol. 69, pp. 1195-1207.

- Focal Resources Limited, 1993. Various press releases issued by Focal Resources and provided by the Alberta Stock Exchange. The releases are dated: April 15, 1993; April 21, 1993; May 6, 1993; June 7, 1993; June 28, 1993; and September 15, 1993.
- Fortuna, P. 1979. Project 508 Northeastern Alberta, report on winter exploration 1979, Eldorado Nuclear Ltd.; Alberta Research Council Economic Mineral File Report U-AF-146(1).
- Garland, G.D. and Bower, M.E. 1959. Interpretation of aeromagnetic anomalies in northeastern Alberta; *In* 5th World Petroleum Congress, Section 1, Paper 42, pp. 787-800.
- Geological Survey of Canada 1983. Bitumount NTS 74E, Aeromagnetic map No. 7288G.
- Gent, M.R. 1993. Mineralogical and group classification program; Saskatchewan Energy Mines, Data file 18.
- Godfrey, J.D. 1970. Geology of the Marguerite River District, Alberta. Alberta Research Council, Unnumbered Map (scale1" = 1 mile).
- Goettler, G.W. 1969. Government of Alberta Quartz Mineral Exploration Permit Nos. 14 and 15, Field Work Report; C.C. Huston and Associates Ltd., Alberta Research Council, Economic Mineral File Report PB-AF-002(1-3).
- Green, D.J. and Hulen, J.B., 1993. Hydrothermal speleogenesis in the Eastern Basin and Range Province Implications for petroleum and precious metal exploration. The American Association of Petroleum Geologists Bulletin, Association Round Table Abstracts, vol. 77, no. 8, p. 1149.
- Green, R., Mellon, G.B. and Carrigy, M.A. 1970. Bedrock Geology of Northern Alberta. Alberta Research Council, Unnumbered Map (scale 1:500,000).
- Gurney, J.J. and Moore, R.O. 1993. Geochemical correlations between kimberlitic indicator minerals and diamonds; *In Diamonds: Exploration, Sampling And Evaluation*, Proceedings of a short course presented by the Prospectors and Developers Association of Canada, March 27, 1993, Toronto, Ontario, Canada, pp. 147-171.
- Gulf Canada Resources Ltd. 1993. Phase I of a study to assess the potential of coproduct minerals and metals in Alberta's Oil Sand deposits, MDA project number M92-04-004; Alberta Research Council, Open File Report 1993-24.

- Hackbarth, D.A., and Nastasa, N. 1979. The hydrogeology of the Athabasca oil sands area, Alberta. Alberta Research Council, Bulletin No. 38.
- Halferdahl, L.B. 1986. 1986 late winter drilling of Metallic Minerals Exploration Permit 6886020001 near Fort McKay, northeastern Alberta, for Mr. Kenneth Richardson; Alberta Research Council, Economic Mineral File Report U-AF-169(1).
- Hamilton, W.N. 1971. Salt in east-central Alberta; Research Council of Alberta, Bulletin No. 29.
- Hart, B.S. and Plint, G. 1990. Upper Cretaceous warping and fault movement on the southern flank of the Peace River Arch; Bulletin of Canadian Petroleum Geology, vol. 38A, pp. 190-195.
- Hoffman, P.F. 1988. United plates of America: The birth of a craton. Annual Review of Earth and Planetary Sciences, vol. 16, pp. 543-604.
- Horne E. and Seve, G. 1991. Pleistocene "Buried Valley" outwash channels east bank, Athabasca River; Paper No. 76, Fifth District Meeting, Canadian Institute of Mining and Metallurgy, September 17-20, 1991, Fort McMurray.
- Hudson, H.R. 1982. Hydrometeorology of the Firebag River basin. Alberta Research Council, Civil Engineering Department Report No. U61.
- Hulen, J.B. and Nielson, D.I. 1993. Hydrothermal systematics, alteration and mineralization in the Grant Canyon, Bacon Flat, and Blackburn oil fields, Nevada -Intriguing parallels with Carlin-type gold deposits; The American Association of Petroleum Geologists Bulletin, Association Round Table Abstracts, vol. 77, no. 8, pp. 1152.
- Hume, G.S. 1947. Results and significance of drilling operations in the Athabasca bituminous sands; Transactions of the Canadian Institute of Mining and Metallurgical Engineers, vol. 50, pp. 298-333.
- Hume, G.S. 1949. Drilling and sampling of bituminous sands of northern Alberta; Department of Mines and Resources, Canada, Mines Branch Publication no. 826.
- Ives, J.W. and Fenton, M.M. 1983. Continued research on geological sources of Beaver River sandstone; Archaeological Survey of Alberta, Occasional Paper No. 21, pp. 78-88.
- Jewell, P.W. and Parry, W.T. 1987. Geology and hydrothermal alteration of the Mercur gold deposits, Utah; Economic Geology, vol. 82, pp. 1958-1977.

- Jewell, P.W. and Parry, W.T. 1988. Geochemistry of the Mercur gold deposit, Utah; Chemical Geology, vol. 69, pp. 245-265.
- Kidd, F.A. 1951. Geology of the bituminous sand deposits of the McMurray area, Alberta; Proceedings of the Athabasca Oil Sands Conference, Government of Alberta, Edmonton, pp. 30-38.
- Laanela, H. 1977. Project 508, Northeast Alberta Permits (Quartz mineral exploration permit no.'s 185, 186, 187, 214, 215, 216, 217 and 218), Progress report on results of work done during summer 1976 and winter 1976/77; Eldorado Nuclear Ltd., Alberta Research Council, Economic Mineral File Report U-AF-117 (1).
- La Casse, L.J. and Roebuck, J. 1978. *Minerals of Alberta*; Hallamshire Publishers, Edmonton.
- Langenberg, C.W. and Nielsen, P.A. 1982. Polyphase metamorphism in the Canadian Shield of northeastern Alberta; Alberta Research Council, Bulletin No. 42.
- Langenberg, C.W., Salat, H., Turner, A and Eccles, R. 1993. Evaluation of the economic mineral potential in the Andrew Lake-Charles Lake area of northest Alberta, MDA project number: M92-04-007; Alberta Research Council, Open File Report 1993-08.
- Leckie, D.A., Staniland, M.R. and Hayes, B.J. 1990. Regional maps of the Albian Peace River and Lower Shaftesbury formations on the Peace River Arch, northwestern Alberta and northeastern British Columbia; Bulletin of Canadian Petroleum Geology, vol. 38A, pp. 176-189.
- Leckie, D.A., 1989. Upper Zuni SequenceL Upper Cretaceous to Lower Tertiary; *In B.D. Ricketts* (ed.), *Western Canada Sedimentary Basin, A Case History*, Canadian Society of Petroleum Geologists, Calgary, Alberta, pp. 269-284.
- Martin, R. 1966. Paleogeomorphology and its application to exploration for oil and gas (with examples from western Canada); Bulletin of the American Association of Petroleum Geologists, vol. 50, no. 10, pp. 2277-2311.
- Martin, R. and Jamin, F.G.S. 1963. Paleogeomorphology of the buried Devonian landscape in northeastern Alberta; in M.A. Carrigy (ed.), The K.A. Clark Volume, A Collection Of Papers On The Athabasca Oil Sands, Research Council of Alberta, Information Series No. 45, pp. 31-42.
- McCandless, T.E. and Gurney, J.J. 1989. Sodium in garnet and potassium in clinopyroxene: criteria for classifying mantle eclogites; *In Ross*, J. (ed.), *Kimberlites*

- And Related Rocks, Volume 2, Their Mantle/Crust Setting, Diamonds and Diamond Exploration, Geological Society of Australia, Special Publication No. 14, pp. 827-832.
- McConnell, R.G. 1893. Report on a portion of the district of Athabasca, comprising the country between Peace River and Athabasca River north of Lesser Slave Lake. Geological Survey of Canada Annual Report 1890-1891, vol. 5, Part D, pp. 5-62.
- McDonough, M.R., Grover, T.W., McNicoll, V.J. and Lindsay D.D. 1993a. Preliminary report of the geology of the southern Taltson magmatic zone, northeastern Alberta; *In Current Research, Part C*, Geological Survey of Canada, Paper 93-1C, pp. 221-232.
- McDonough, M.R., Grover, T.W. and McNicoll, V.J. 1993b. Geological evolution and magnetic signature of the southern Taltson Magmatic Zone (Canadian Shield), northeastern Alberta (NTS 74M); *In* G.M. Ross (ed.), *Alberta Basement Transects Workshop (March 1-2)*, LITHOPROBE Report #31, pp. 130-133.
- McNicoll, V., McDonough, M. and Grover, T. 1993. Preliminary U-Pb geochronology of the southern Taltson Magmatic Zone, northeastern Alberta; *In G.M. Ross*, (ed.), *Alberta Basement Transects Workshop (March 1-2)*, LITHOPROBE Report #31, pp. 129.
- McPherson, R.A. and Kathol, C.P. 1977. Surficial geology of potential mining areas in the Athabasca Oil Sands region. Alberta Research Council, Open File Report 1977-4, 180 pp.
- McWilliams, G.H. 1977. Norcen Energy Resources Ltd. Final Report, 1977 exploration program quartz mineral exploration permit 6876120006; Alberta Research Council, Economic Mineral File Report U-AF-134(1)
- McWilliams, G.H. and Cool, L. 1979. Summary of exploration on quartz mineral exploration permits in northeastern Alberta; Norcen Energy Resources Limited on behalf of the Norcen Uranium Joint Venture, Alberta Research Council, Economic Mineral File Report U-AF-136(3)
- McWilliams, G.H. and Sawyer, D.A. 1976. Year-end report, Quartz mineral exploration permits, N.E. Alberta, Lake Athabasca and Athabasca River areas, Report covering permits 208 213; Norcen Energy Resources Limited, Alberta Research Council Economic Mineral File Reports U-AF-128 (2), -136 (2), -137 (2), -138 (2), -139 (2) and -140 (2).
- McWilliams, G.H. and Sawyer, D.A. 1977. Year-end report, 1977 Exploration Program, Quartz mineral exploration permits, northeastern Alberta; Norcen Energy

- Resources Limited, Alberta Research Council, Economic Mineral File Report U-AF-137(3).
- McWilliams, G.H., Smith, L.J. and Sawyer, D.A. 1979. Year-end report 1979 Exploration Program Richardson River project, northeastern Alberta, NTS 74 L/2, 3, 6 and 7; Alberta Research Council, Economic Mineral File Report U-AF-161(2)
- Mitchell, G. and Fortuna, P.A. 1978. Project 508 Northeastern Alberta; Report on summer field programme 1978. Alberta Research Council, Economic Mineral File Report U-AF-144(2).
- Mossop, G. 1980. Facies control on bitumen saturation in the Athabasca Oil Sands; *In* A.D. Miall (ed.), *Facts And Principles Of World Petroleum Occurrence*, Canadian Society of Petroleum Geologists, Memoir 6, pp. 609-632.
- Mossop, G. and Flach, P.D. 1983. Deep channel sedimentation in the Lower Cretaceous McMurray Formation, Athabasca Oil Sands, Alberta; Sedimentology, vol. 30, pp. 493-509.
- Nielson, P.A., Langenberg, C.W., Baadsgaard, H. and Godfrey, J.D. 1981. Precambrian metamorphic conditions and crustal evolution, northeastern Alberta, Canada; Precambrian Research, vol. 16, pp. 171-193.
- Norris, A.W. 1963. Devonian stratigraphy of northeastern Alberta and northwestern Saskatchewan; Geological Survey of Canada, Memoir 313.
- Norris, A.W. 1973. Paleozoic (Devonian) geology of northeastern Alberta and northwestern Saskatchewan. *In* M.A. Carrigy and J.W. Kramers (eds.), *Guide To The Athabasca Oil Sands Area*, Alberta Research Council, Information Series No. 65, pp. 15-76.
- Northern Miner, 1993a. Focal drills Alberta prospect. The Northern Miner Newspaper, April 26 issue, p. 3.
- Northern Miner, 1993b. ASE requests fire assays of Focal drill samples. The Northern Miner Newspaper, May 3 issue, pp. 1, 2.
- O'Connell, S.C., Dix, G.R. and Barclay, J.E. 1990. The origin, history, and regional structural development of the Peace River Arch, Western Canada; Bulletin of Canadian Petroleum Geology, vol. 38A, pp. 4-24.
- Olson, R.A., Dufresne, M.B., Freeman, M.E., Eccles, D. R. and Richardson, R.J.H. *In Press.* Regional metallogenic evaluation of Alberta; Alberta Research Council

- Open File Report.
- Ozoray, G.F., Hackbarth D.A., Lytviak, A.T. 1978. Hydrogeology of the Bitumont-Namur Lake area, Alberta. Alberta Research Council, Earth Sciences Report 78-6.
- Paterson, N.R. 1969. Airborne radiometric survey, Marguerite River area, Alberta. Alberta Research Council, Economic Mineral File Report U-AF-074(3) and U-AF-075(3).
- Pinnell, M.L. 1993. Results of deep exploratory drilling between Long and Newark Valleys, White Pine County, Nevada Implications for oil migration in the nearby Yankee gold mine paleohydrothermal system. The American Association of Petroleum Geologists Bulletin, Association Round Table Abstracts, vol. 77, no. 8, p. 1158.
- Quirt, D. 1992a. Garclass a program to classify garnets using the algorithm of Dawson and Stephens (1975); Saskatchewan Research Council, Publication R-1230-10-E-92.
- Quirt, D. 1992b. Minclass A program to classify garnets and pyroxenes using the discriminant functions of Dawson and Stephens (1975) and Stephens and Dawson (1977); Saskatchewan Research Council, Publication R-1230-12-E-92.
- Ramaekers, P. 1979. Stratigraphy of the Athabasca Basin; Summary of Investigations, Saskatchewan Geolgoical Survey, Miscellaneous Report 79-10, pp. 154-160.
- Romberger, S.B., 1986. Disseminated gold deposits; *In* R.G. Roberts and P.A. Sheahan, (eds), *Ore Deposit Models*, Geoscience Canada, Reprint Series, pp. 21-30.
- Ross, G.M. 1991. Precambrian basement in the Canadian Cordillera: an introduction; Canadian Journal of Earth Sciences, vol. 28, pp. 1133-1139.
- Ross, G.M. 1992. Tectonic evolution of crystalline basement along the Central Transect; In Ross, G.M. (ed.), Alberta Basement Transects Workshop (March 4-5), LITHOPROBE Report #28, pp. 120-138.
- Ross, G.M. Parrish, R.R., Villeneuve, M.E. and Bowring, S.A., 1989. Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta Basin, western Canada; Geological Survey of Canada, Open File 2103.
- Ross, G.M., Parrish, R.R., Villeneuve, M.E. and Bowring, S.A. 1991. Geophysics and geochronology of the crystalline basement of the Alberta Basin, western Canada; Canadian Journal of Earth Sciences, vol. 28, pp. 512-522.

- Ross, G.M. and Stephenson, R.A. 1989. Crystalline Basement: The Foundation of Western Canada Sedimentary Basin; *In* B.D. Ricketts (ed.), *Western Canada Sedimentary Basin, A Case History*; Canadian Society of Petroleum Geologists, Calgary, Alberta, pp. 33-45.
- Ross, G.M., Villeneuve, M.E., Parrish, R.R. and Theriault, R.J. 1993. Tectonic assembly of crystalline basement, Alberta Basin: Implications for mantle evolution and ancestry of Canada's Pacific margin; *In* Ross, G.M. (ed.), *Alberta Basement Transects Workshop* (March 1-2), LITHOPROBE Report #31, pp. 134-143.
- Smith, D.G. and Fisher, T.G. 1993. Glacial Lake Agassiz; the northwestern outlet and paleoflood; Geology, vol. 21, no. 1, pp. 9-12.
- Sproule, J.C. and Stuart-Smith, J.H. 1966. Photogeological and geomorphological study, Firebag River area, northern Alberta; J.C. Sproule and Associates Ltd. on behalf of C.C. Huston and Associates Ltd., Alberta Research Council, Economic Mineral File Report Pb-AF-002 (1).
- Sprenke, K.F., Wavra, C.S. and Godfrey, J.D. 1986. The geophysical expression of the Canadian Shield of northeastern Alberta; Alberta Research Council, Bulletin No. 52.
- Sproule, J.C. 1938. Origin of the McMurray oil sands, Alberta; Bulletin of the American Association of Petroleum Geologists, vol. 22, no. 9, pp.1133-1152.
- Stewart, G.A. 1963. Geological controls on the distribution of Athabasca oil sand reserves; in M.A. Carrigy (ed.), *The K.A. Clark Volume, A Collection Of Papers On The Athabasca Oil Sands*, Research Council of Alberta, Information Series No. 45, pp. 15-26.
- Stewart, G.A. 1981. Athabasca oil sands; *In R.F.* Meyer and C.T. Steele (eds.), *Future Of Heavy Crude And Tar Sands*. McGraw-Hill, New York, p. 208-222.
- Stelck, C.R., Burwash, R.A. and Stelck, D.R. 1978. The Vreeland High; A Cordilleran expression of the Peace River Arch; Bulletin of Canadian Petroleum Geology, v. 26, no. 1, pp. 87-104.
- Swanson, F.J. and Gent, M.R. 1993. Results of reconnaissance diamond indicator mineral sampling, Saskatchewan; *In* K.P.E. Dunne and B. Grant (eds.), *Mid-Continent Diamonds*. GAC-MAC Symposium Volume, Edmonton, Alberta, May 17-18, 1993, pp. 113-122.
- Thorleifson, H. and Garrett, R.G. 1993. Prairie kimberlite study till matrix geochemistry and preliminary indicator mineral data; Geological Survey of Canada, Open file

- report 2745.
- Tintina Mines Limited, 1993. Press release dated October 28, 1993.
- Tremblay, L.P. 1961. Geology, Firebag River area, Alberta and Saskatchewan; Geological Survey of Canada, Map 16-1961 (scale 1" = 4 miles).
- Trevoy, L.W., Schutte, R. and Goforth, R.R. 1978. Development of the heavy minerals potential of the Athabasca Tar Sands; Canadian Institute of Mining and Metallurgy Bulletin, vol. 71, no. 791, pp. 175-180.
- Villeneuve, M.E., Ross, G.M., Theriault, R.J., Miles, W., Parrish, R.R. and Broome, J. 1993. Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta basin, western Canada; Geological Survey of Canada, Bulletin 447.
- Wilson, J.A. 1985a. The geology of the Athabasca Group in Alberta. Alberta Research Council, Bulletin No. 49.
- Wilson, J.A. 1985b. Basement geology beneath and around the western end of the Athabasca basin, Alberta; Alberta Research Council, Open File Map 1985-10.
- Wilson, J.A. 1986. Geology of the basement beneath the Athabasca basin in Alberta. Alberta Research Council, Bulletin No. 55.
- Wilson, J.A. 1987a. The geology and economic potential of the Athabasca Basin in Alberta; Canadian Institute of Mining and Metallurgy Bulletin, vol. 80, no. 898, pp. 29-36.
- Wilson, J.A. 1987b. The economic potential of the western end of the Athabasca Basin; In C.F. Gilboy and L.W. Vigrass (eds.), *Economic Minerals Of Saskatchewan*; Saskatchewan Geological Society, Special Publication Number 8, pp. 138-152.
- Wilson, P.N. and Parry, W.T. 1990. Mesozoic hydrothermal alteration associated with gold mineralization in Mercur district, Utah; Geology, vol. 18, pp. 866-869.

APPENDIX 1 SAMPLE LOCATIONS. DESCRIPTION AND TYPES OF ANALYSES

		NIHL	SECTION																	×	×			×			×	×	×	×			×	×		
Sisk	2	INDICATOR	MINERAL	×	×	×		×	×		×		×		×									2												
YSES		FIRE	ASSAY																																	
ANALYSE		GEOCHEM		×	×		×	×	×	×		×		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
OCATION, DESCRIPTION AND TYPES OF ANALYSES	SAMPLE DESCRIPTION	The same and the s		Till from Kearl Lake East	Till from Kearl Lake West	Fluvial sand (<2mm) from Firebag River	Till from Firebag River (T4)	Till from Firebag River (T5)	Till from Firebag River (T4)	Till from Firebag River (Grey diamicton)	Fluvial Sand (<2mm) from Marguerite River	Till from Ft. McKay	Fluvial sand (<2mm) from Muskeg River	Till from Saline Lake	Till from Johnson Lake	Salt crust from spring near Saline Lake	Sulfurous mud from Saline Lake area	Beaver River sandstone float from Saline Lake area	Hematite-stained granitoid with 675 cps	Megacrystic granitoid with 1500 cps	Banded megacrystic granitoid with 3000 cps	Red hematite-stained granitoid with garnet	Red granitoid with quartz vein	Black mylonite in leucocratic granitoid	Leucocratic granitoid with quartz vein	Quartz vein in sheared granitoid	Chlorite-rich mafic rock	Syenite-looking rock	Megacrystic granitoid - has syenitic appearance	Mafic dyke	Rusty saussertized granitoid	Rusty granitoid with yellow stain	Rusty mylonitized shear zone	Rusty sheared granite with trace pyrite	Quartz vein with granitic wall rock	Mylonitic zone in granitoid
SAMPLE LO	UTM	NORTHING		6344769	6345243	6376344	6368649	6355018	6362201	6389309	6386458	6380091	6337621	6325855	6387314	6325625	6325625	6325625	6404585	6404391	6402948	6402948	6402379	6402166	6402166	6404780	6402068	6402068	6401680	6401680	6404880	6404880	6404752	6404752	6395100	6395070
/S	MTO	EASTING		496697	475804	494204	498249	532833	515307	487895	499709	470310	466022	469579	519272	469125	469125	469125	526170	526084	526519	526519	526408	528485	528485	526045	525437	525437	524850	524850	525422	525422	525128	525128	526990	526990
	TYPE			III	Ē	Fluvial	Ē	Ē	Ē	Ē	Fluvial	Ē	Fluvial	₽	Ē	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock
	SAMPLE	NUMBER		NAT92-24	NAT92-25	NAT93-80	NAT93-81	NAT93-82	NAT93-83	NAT93-84	NAT93-85	NAT93-86	NAT93-87	NAT93-88	NAT93-89	082401A	082401B	082401C	082701	082703	082704	082705	082707	082803A	082803B	082804	082901A	082901B	082903A	082903B	083002A	083002B	083003A	083003B	090101	090102

TYPE	NTM	UTM	SAMPLE DESCRIPTION	TYPE	OF ANALYSIS	
	EASTING	NORTHING		GEOCHEM	FIRE	NIHL
					ASSAY	SECTION
Rock	526166	6394779	Foliated melanocratic rusty granite with 1-2% pyrite	×		×
Rock	526729	6393653	2-3% magnetite, trace pyrite in mylonitized granitoid	×		×
Rock	526550	6393550	Sheared quartz-chlorite rock with up to 5% pyrite	×		×
Rock	526550	6393550	Glassy mylonite with garnet and 1-2% pyrite	×		×
Rock	526353	6383328	Intensely mylonitized quartz-rich rock with garnet	×		
Rock	526353	6383328	Mylonitized pink quartz-feldspar-garnet rock	×		
Rock	525851	6395415	Glassy silica- and chlorite-rich mylonite	×		
Rock	526380	6395380	Glassy gray mylonitized rock with minor chlorite	×		
Rock	526380	6395380	Felsic mylonite with chlorite partings and garnet	×		
Rock	526380	6395380	Leucocratic gneiss to mylonite with trace sulfides	×		
Rock	527250	6295650	Dark quartz-chlorite mylonite with 2-3% pyrrhotite	×		×
Rock	524385	6394703	Mylonitic feldspar-quartz-chlorite gneissic rock	×		
Rock	524190	6294335	Mafic meta-igneous schist with 1% pyrite + pyrrhotite	×		×
Rock	524190	6294335	Mafic meta-igneous schist with 1-2% pyrite + pyrrhotite	×		×
Rock	524146	6294892	Quartz-feldspar-amphibole-chlorite-garnet gneiss	×		
Rock	525917	6293712	Rusty gneiss with chlorite, quartz and garnet	×		
Rock	523797	9392629	Weakly foliated amphibolite with 1% pyrite + pyrrhotite	×		
Rock	523797	9598689	Garnet-rich paragneiss with 1-2% pyrrhotite + pyrite	×		×
Rock	523695	6393644	Rusty quartz-amphibole rock	×		×
Rock	460920	6340811	McMurray siltstone with 2-3% framboidal pyrite	×	×	×
Rock	461950	686/889	Sideritic vein in Waterways Fm.	×	×	×
Rock	461950	6337989	Fossiliferous Waterways Fm. with pyrite in fractures	×	×	
Rock	461950	6337989	Float of rusty McMurray Fm.	×	×	
Rock	538850	6393303	Quartz-rich granitoid with chlorite, and up to 10% pyrite	×		×
Rock	538850	6393303	Quartz-chlorite-garnet granitoid with 3-5% pyrite	×		X
Rock	538366	6392679	Leucocratic granitoid with up to 1,100 cps	×		×
Rock	530588	636369	Rusty leucocratic gneiss	×		
Rock	462380	6331051	Silica sandstone (Beaver River) with plant material	×	×	×
Rock	465051	6339637	Beaver River sandstone	×	×	×
Rock	465051	6339637	Beaver River sandstone with some carbonate	×	×	×
Rock	464564	6339170	Beaver River sandstone	×	×	
Rock	464721	6334676	Waterways Fm. carbonate	×	×	×
Rock	464721	6334676	Waterways Fm. carbonate	×	×	
Rock	460086	6344470	McMurray Fm. oil sands with up to 15% pyrite	×	×	×
Rock	521887	6396662	Mylonitic pink granitoid	×		
Rock	521450	6397050	Chlorite-quartz gneiss to mylonite with 1% pyrite	×		×

NUMBER EASTIN 090901A Bock 462664 090901B Bock 462664 091001A Bock 469126 091001B Bock 469126 091001C Bock 464721 091101B Bock 464721 091101C Bock 464721 091101B Bock 464721 091101F Bock 464721 091102A Bock 464721 091102B Bock 462063 SL27C2-1 Core 511219 SL27C2-2 Core 511219 SL27C2-3 Core 511219 SL27C2-4 Core 511219 SL27C2-5 Core 511217 E+8C-1 Core 511217	EASTING N	NORTHING		00000		
A Bock B	2664			GEOCHEM	FIRE	ZHIN
A Rock B Rock B Rock C	2664				ASSAY	SECTION
Bock	-)	6367443	Waterways Fm. limestone with 2-3% pyrite	×	×	
A Rock B Rock C	462664	6367443	Limestone with trace pyrite	×	X	
Hock Hock Hock Hock Hock Hock Hock Hock	469125	6325625	Rusty carbonate boulder	×	×	
Bock	469125	6325625	Limonitic mud with sulfurous carbonate crust	×	×	
Bock	469125	6325625	Limonitic mud with sulfurous carbonate crust	×	×	
Hock Hock Hock Hock Hock Hock Hock Hock	464721	6334676	Rubbly limestone	×	X	
Rock	464721	6334676	Nodular to brecciated limestone	×	×	
Bock	464721	6334676	Nodular to brecciated limestone	×	×	
Pock	464721	6334676	Nodular to brecciated limestone	×	×	×
A Rock B Rock B Core Core Core Core Core Core Core Core	464721	6334676	Nodular to brecciated limestone	×	×	×
A Rock 3 Rock 1 Core -1 Core -2 Core -3 Core -5 Core -6 Core Core Core Core Core Core Core Core	464721	6334676	Nodular to brecciated limestone	×	×	×
3 Rock 1 Core -1 Core -2 Core -3 Core -5 Core -6 Core -7 Core	462063	6330265	Rubbly limestone	×	×	
1 Core -1 Core -3 Core -4 Core -5 Core -6 Core -7 Core	462063	6330265	Rusty rubbly limestone	×	×	
-1 Core -2 Core -3 Core -5 Core -5 Core -6 Core -7 Cor	511219	6375144	Gray mottled shale with secondary fibrous alteration	×	×	
-1 Core -2 Core -3 Core -5 Core -6 Core -7 Core -7 Core -Core	511219	6375144	Dull coal with trace pyrite	×	×	
-2 Core -4 Core -5 Core -6 Core -7 Core -7 Core -6 Core -7 Cor	511219	6375156	Dull coal with white alteration of pyrite or carbonate	×	×	
-3 Core -4 Core -5 Core -6 Core -7 Cor	511219		Typical coal	×	×	
-5 Core -6 Core -7 Core	511219		White to yellow crusty alteration of brown sandy unit	×	×	
-5 Core -6 Core -7 Core Core Core Core Core Core	511219		Massive pyrite and quartz in oil sand	×	×	
-6 Core -7 Core Core Core Core Core Core	511219	6375156	Shaley lens in oil sand - some white alteration	×	×	
Core Core Core Core Core Core Core	511219	6375156	Tan to maroon shale with poker chip cleavage	×	×	
Core Core Core Core	511219		Shale with carbonate clasts - possibly regolith	×	×	
Core Core Core Core	511217	6372306	Gray silt clasts at top of silt interval in oil sands	×	×	
Core Core Core Core	511217		Black oil sand with white secondary crust	×	×	
Core Core Core	511217	$\neg \neg$	Pyrite nodule in black oil sand	×	×	
Core	1217		White fibrous alteration and yellow sulfur clots in coal	×	×	
Core	217		Dull coal chips	×	×	
Core	511217		White and yellow alteration crust in coal	×	×	
	511217		Sulfur stain in coal chips in oil sand	×	×	
Core	511219		Gray to black oil sands	×	×	
SL27C1-2 Core 5113	511219	6374140	Contact of pebbly sand and dark oil sand	×	×	
SL27C1-3 Core 511	511219		Maroon shale with minor white alteration crust	×	×	
Core	513235	Ì	Brown to black oil sand with thin shale lens	×	×	
B+148C-2 Core 513	513235	6375970	Massive pyrite and quartz nodule in oil sand	×	×	
Core	513235		Typical coal chips	×	×	
B+148C-4 Core 513;	513235	6375970	Contact of maroon shale and tan sand	×	×	

APPENDIX 2 HIGHLIGHTS* OF GEOCHEMICAL ANALYSES FOR ROCK, CORE AND TILL SAMPLES

^{*}Duplicate analyses and analyses for standards and certain major elements omitted, refer to certificates of analysis in Appendix 3 for complete results.

		Ā	Ā	Au	Ą	Ad	L	1	1			ı	ı	1	1	1	ı		ı	<u>_</u>	1	ŝ
SAMPLE #	TYPE	pp NAA	pp CP	ppb FA/AA	를 다 만 다	MAN NAA	mg G C P	mgg ICP	med S	PP MAN	MAAN H	mg S	ppm p	md do	mgd ICP	ppm r	E B	Ppm Ppm NAA	ppm ppm	۰ ۷	md AV	E G
SHIELD GRANITOIDS										l												
MD93082701	Rock	ιζ	7		0.3	ς. Υ	7	=			Ŋ	%	4	<0.2	က			160	V	٠.	ιζ	2
MD93082703	Rock	κ	۲ <u>۰</u>		0.1	<u>ې</u>	L	50	59		۲۶	 %	Ĭ	0.2			68	9	<u>V</u>	δ.	ဖ	_
MD93082704	Rock	, 5	7		0.2	ç, 21	2	103	_		ζ,	_ ∜	=	0.2	<u>ი</u>			48	V	က်	₩,	စ္
MD93082705	200 1	လူ	ې ک		0.5	လူ		တေ၊		, 50 1	٠ ا	۲, ۲	٧ ٧ ′	20.5	α (99	⊽ `	က္	ťΩι	- (
MD93082707	. 26 1	ψ,	çy ·		0.1	လူ '		<u>ر</u> ما		<20 1	୍ଧ (ω'	٧ ن	40.2 0.2	α.			220	· V	ι Υ	δı	თ ,
MD93082803A	. S	လို ၊	۲ ک		0.1	ις Υ		. .	L	200	<u>ښ</u> و	ଫ ୯	٠ ي	0.0 2.0	. ,	ι V		150	· V	ზ.	θr	,- (
MD93082803B	. X	ψ, i	۲ ۲		0.2	ις L	α (ο ο		25/25	સું ઉ	Si c	٧ ي د		- (ָר י		240	· V 1	ůι	€r	י מ
MD93082804	S	ις Υ	გ (0.2	ι Ω	ი ი	ဖ		ဂ္ဂ (સ લ	کا د	y N		N C	_ '	· ·	2 5	· V	υr	₽ L	- ,
MD93082901B	Yock Pock	ς Υ	% '		0.1	δ,	24	ກ :		ဂ္ဂ (χ, (₹ (٧ کا (9. iz	N (က က ၊		04.	· V	ا ن	ا ئ	- (
MD93082903A	. K	ς Υ	ფ∙		0.1	က် ၊	თ (~		200	9 (çy (۷ ' کا د	20.5	o o			150	· V	δı	δı	ი ი
MD93083002A	. Koc	ψ,	γ,		0.3	ις L	, 133	თ :		200	ر د د	کا ر	~ ~ (2,5	9 (י די י פי	_	2	· V	Ω, ı	ņι	N (
MD93083002B	. Š	ις, ι	۷ ،	_	0.1	ις L	o 8	<u></u>		200	જુ લ	oy o	v N	0.2 0.2	M r		_	013	· ⊽¹	€ r	€ 0	
MD93083003A	Š .	ůι	ý (9.0	Ω ι	N G				γ,	y ¢	, ,	ָ פָּ פָ	ი •			2 9	· ·	۶ ۲	با م	- 0
MD93083003B	Š	δ, r	λ .		4.0	θ, r	2 0		40 0	ر ا ا	n (Ŋ (N 9	אַ כָּ	4 14	9 6		5 6	- ₹	ο 4	₽ 4	v -
MD93090101	Š	ο C	λ (7 7 0 0	ο C	n			200	y c	Ņ Ç	y (, c	ΩT			9 9	· ,	6 H	O H	
MD93090102		Ω, ι	ý (r.o 6	δ,	N (4 (ဥ္က ဒ	, v	Ŋ (y c	, c V	_ •			2 2	- V	٠ د د	o i	- (
MD9390103	. 8	ر د	Ά,		, i.	٠ د ۲	3 ء			ဥ္က ဒု	9 0	9 (4 (2 2	- V	6 r	θr	N 1
MD93090104	¥ .	ι Υ	₹,		0.1	₽,	ا 2			သို့ ပို	સ (V			ו סכ	<u>ب</u> و		2 2	· V	Ω.	ůι	- (
MD93090105A		ზ ¦	9		0.2	€ '	_ (_ (Ŋ (Ŋ (20.2 VO.2	Ω,			05. 05.	√ `	ن ي	Ω.	. v
MD93090105B	Hoo S	လို	Ÿ		0.1	လူ	ဖ	ග :			7	∾ '		0.2	.			8	⊽ .	Ω V	Ω I	_
MD93090106A	₩.	.ئ ائ	7		0.2	ις	ო	7			2	Ÿ		<0.2	0			9	V	က္	လူ	۵.
MD93090106B		14	7		0.3	ςŞ	က	Ŋ			çy	გ V		0.2	-			170	√	ις	ιĈ	
MD93090202	Rock	လို	7		0.1	ςγ	9	2		<50	7	8	۷ ک	<0.2	4	ς. Σ	96	150	<u>~</u>	Ŝ	ı.	4
MD93090203A	Rock	Ϋ́	٥		0.2	<u>ې</u>	4	Q		² 20	∾	₽	•	<0.2	-			30	⊽	ιΩ	ς.	_
MD93090203B	Rock	လို	Ŋ		0.2		N	ო		<50	٥	Ø	•	<0.2	-			180	Ţ	ιδ . [\$	~
MD93090203C	Rock	Ϋ́	ζ ^γ		0.2		9	7		<50	٥	∾	•	<0.2	9			150	· V	.∵ .∵	0	2
MD93090206	Rock S	Ŷ	ď		0.2		9	4		<50	7	7		0.2				210		ιδ	Ŝ	-
MD93090301	Rock K	ψ	7		0.2		ო	œ		<50	٥	∾	-	<0.2	9			40	V	ۍ.	လူ	N .
MD93090304	Rock	လို	7		0.3		9	0		<50	ფ	çy	•	0.2	ო			120	√	ζ.	ιδ	-
MD93090305	Rock	လို	7		0.2	1	7	ი ო	ſ	<50	%	4	۷ %	0.2 0.2	4	r		160	. ∠	ιδ Γ	\$	_ص
MD93090306B	Pock K	\$	ð		0.3		191	ᅌ	\neg	<50	₹	3	v ღ	<0.2 	<u>۳</u>	_		210	√	.გ 	8	
MD93090601A	700 X	8	♡		0.3	Ω	8	19		² 20	ય	က	v N	<0.2	Ω.	رئ 1		90	√ .	ις. ·	က္	0
MD93090601B	80 °	8	۷ °		0.3	က V		4 (9e 9e	, 20	٠ کا د	٠ ا	v N (0.0	4 .	 		2 2	√ ,	ις	r S	o o
MD93090603	ž č	δ, r	Å ć		5 6	ე. ქ	ი გ	7 6		00 t	Ŋ (γ ο	י י א	7 C	4 (D 00	18	⊽ 7	0 4	€ 4	, c
MDSCOOOS	3	, ,	y		9 0	, ,	† L	1 1	2 T	2 4	y q	۸ ¢		ų ¢	u c	-	_		7 7	, ,	, 4	· ·
MD93090801	ž č	ς Υ	7 9		, c	6 4	ဂ α	- 0	47	200.00	१ ५	2 8	v v V ~	5 6 7 0	v	δ rc Λ τ	원 원	220		S π.	9 (- 0
200000000000000000000000000000000000000	3)	,		- 5	?)	1	F	3	ļ	ļ		į				<u> </u>	,	;	;	1
MAFIC GNEISS																				ı	ı	
MD93082901A	Rock	လို	Ŷ		4.0	Ϋ́	ည	ις L	٦		cy ·	7			2			110	√ .	₽ V	ις V	_
MD93082903B	Rock	Ϋ́	8		0.3	ις V	္က	4	1			Ŋ			L	Γ	L	<u>8</u>	V	ις.	ή.	-
MD93090303A	Rock	ς,	8		0.2	^ي 1	26	ო	29	503	L	∀[٧ ٧	<0.2	은 일	88	220	410	V	رئ ب	ıئ ا	α.
MD93090303B	Rock	လို	7		0.2	 '\$	<u>3</u>			¥3		_				\neg	_	8	⊽	r S	rÔ.	N ·
MD93090306A	, Soc Y	\$	8		0.3	L	 ਜ	0		-			۰ م			44		00		ις. ·	ι Ω	α .
MD93090307	Bock Y	_	γ,					α.	සු		: . ∀		∵ ; ;	2.5	.			30	· ⊽	ιΩ	Ю	-
Methods: FA/AA & INAA analyses using 30 gm aliquots; ICP an	analyses	using 3	0 gm ai	idnots; 1	ส เ	lysis with	ष	regia pa	partial digestion		box indicates		OSSIDIA	anoma	possible anomalous values	lues.						7

Type % Paper Pape			Ā	ž	Z	gs	SS	တ္တ	Sn	≥	≥	>	8	Ba	Ba	占面	Ь	g	Ş	Š	æ	Ŧ	Ħ
No.	SAMPLE #	TYPE	PP CP	ppm ICP	ppm NAA	ppm INAA	PPM CP	ppm INAA	NAA		ppm INAA		ppm ICP	ppm INAA		ppm NAA	% ICP	ppm INAA	ppm ICP	NAA	ppm INAA	ppm ICP	ppm INAA
1, 4, 0,01	SHIELD GRANITOIDS																						
8.8	AD93082701	Pock	4	ო	<50	<0.2	8	4.	<0.01	-	۸ 4	œ		1500	49	<u>~</u>	0.024	.δ	5 6	<0.05	 82 	185	6
15	AD93082703	Rock	88	23	~ 20	<0.2	ð	3.8	<0.01	₹	4	5		910	47	~ √	0.147	ς,	44	<0.05	210 	930	450
2.7. Court 1	AD93082704	Ж.	8 i	တ (20.	0.5 0.5	ij,	ထ က ၊	0.07	∵ .	, 4	99	•	1200	235	⊽ .	5.107	ر د	59	<0.05	350	1153	1900
10	AD93082705	. Š	2	თ •	200	<0.2	თ (2.7	40.01 10.03	- -	4,	Ν,		200	2/	∵ ∵∵	0.011	δ,	တ	0.05 0.05	120 23	ارد ر	
2.9	AD93082707		1	4 (200	<0.2	χ (V	6.0	<0.01	, .	4,	4 (00[>	ω¦	~ √ `	5.004	ტ I	N I	<0.05	08 83 83 83 83 83 83 83 83 83 83 83 83 83	ω ¦	ж. С. 6
1.	4D93082803A	. Č	6 1	ကျ	×20	<0.2	<u>ښ</u>	2.9	<0.01	, ,	۸. 4	თ (~100 100	ر دو ز	∵ ∵	0.02	ტ ,	က	0.05 5 0	240	3/	66 6
2.5	ID93082803B	Noc K	78	Q	×20	×0.2	Ş	- 12	40.0 ¹	-	4	က		370	1/	_ √	600.0	ψ,	က	<0.05	140	16	8
1.3. 0.01 1.4. 5 6 1600 54 4 0.019 4 0.019 5 0.005 100 5 0.005 100 5 0.005 100 5 0.005 100 5 0.005 100 5 0.005 100 5 0.005 100 5 0.005 100 5 0.005 100 5 0.005 100 <td>1D93082804</td> <td>Pock</td> <td>94</td> <td>4</td> <td><50</td> <td><0.2</td> <td>Ø</td> <td>5.6</td> <td><0.01</td> <td>_</td> <td>^</td> <td>4</td> <td>5</td> <td>1100</td> <td>8</td> <td>∵</td> <td>5.013</td> <td>ς,</td> <td>9</td> <td><0.05</td> <td>150</td> <td>¥</td> <td>8</td>	1D93082804	Pock	94	4	<50	<0.2	Ø	5.6	<0.01	_	^	4	5	1100	8	∵	5.013	ς,	9	<0.05	150	¥	8
3.4 0.001 ct 5 4 680 35 ct 0.019 c5 8 c.005 170 82 1.3 c.001 ct ct 3 2 1200 171 ct 0.05 ct c.005 15 0.05 16 ct 0.05 ct ct 0.05 ct 0.05 ct 0.05 15 ct 0.05 16 ct 0.05 ct 0.05 <td< td=""><td>4D93082901B</td><td>Rock</td><td>121</td><td>Ŋ</td><td>~20</td><td><0.2</td><td>Ş</td><td>2.4</td><td><0.01</td><td>_</td><td>۸4</td><td>വ</td><td></td><td>1600</td><td>24</td><td>⊽</td><td>2007</td><td>ς,</td><td>6</td><td><0.05</td><td>9</td><td>2</td><td>6.2</td></td<>	4D93082901B	Rock	121	Ŋ	~ 20	<0.2	Ş	2.4	<0.01	_	۸ 4	വ		1600	24	⊽	2007	ς,	6	<0.05	9	2	6.2
13.7 <a href="text-align: left-align: left-align:</td><td>1D93082903A</td><td>Pock</td><td>26</td><td>Ŋ</td><td><50</td><td><0.2</td><td>ζ,</td><td>3.4</td><td><0.01</td><td>⊽</td><td>4</td><td>S)</td><td></td><td>069</td><td>32</td><td>∠</td><td>0.019</td><td>\$</td><td>œ</td><td><0.05</td><td>170</td><td>85</td><td>68</td></tr><tr><td>1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9
 1.9
 1.9
 1.0
 1.1
 1.0 <b</td><td>4D93083002A</td><td>Rock</td><td>168</td><td>Ŋ</td><td><50</td><td><0.2</td><td>7</td><td>8.7</td><td><0.01</td><td>_</td><td>4</td><td>æ</td><td></td><td>1200</td><td>171</td><td>⊽</td><td>5.033</td><td>ς.</td><td>80</td><td><0.05</td><td>73</td><td>17</td><td>8</td></tr><tr><td> 10</td><td>#D93083002B</td><td>Rock</td><td>184</td><td>က</td><td><50</td><td><0.2</td><td>7</td><td>4.3</td><td><0.01</td><td>⊽</td><td>^</td><td>က</td><td></td><td>830</td><td>104</td><td>⊽</td><td>5.011</td><td>₹.</td><td>13</td><td><0.05</td><td>180</td><td>15</td><td>18</td></tr><tr><td>8.8 4 35 2 1000 94 <1</td> 0.025 15 <0.05</td> 16 35 1000 94 <1</td> 0.025 15 <0.05</td> 16 30 6 4 <0.05</td> 10 <0.05</td> <</td><td>AD93083003A</td><td>Rock</td><td>464</td><td>4</td><td>~20</td><td><0.2</td><td>Ÿ</td><td>16</td><td><0.01</td><td>_</td><td>۸
4</td><td>25</td><td></td><td>1600</td><td>168</td><td>⊽</td><td>2.037</td><td>δ</td><td>16</td><td><0.05</td><td>150</td><td>우</td><td>Ξ</td></tr><tr><td> 1,</td><td>4D93083003B</td><td>Rock</td><td>234</td><td>4</td><td><50</td><td>0.3</td><td>Ø</td><td>6.8</td><td><0.01</td><td>-</td><td>4</td><td>35</td><td></td><td>1000</td><td>94</td><td>⊽</td><td>3.038</td><td>\$</td><td>12</td><td><0.05</td><td>160</td><td>32</td><td>88</td></tr><tr><td> 1, 7 -0.01 1 -4 2 3 310 16 <1 0.006 <5 4 -0.05 110 8 8 8 8 8 8 8 8 8 </td><td>AD93090101</td><td>Rock</td><td>246</td><td>11</td><td><50</td><td><0.2</td><td>7</td><td>3.5</td><td><0.01</td><td></td><td>۸
4</td><td>8</td><td></td><td>260</td><td>98</td><td>7</td><td>0.053</td><td>\$</td><td>7</td><td><0.05</td><td><30</td><td>9</td><td>5.2</td></tr><tr><td>4 6 <t< td=""><td>4D93090102</td><td>Rock</td><td>106</td><td>8</td><td><50</td><td><0.2</td><td>7</td><td>1.7</td><td><0.01</td><td>_</td><td>4</td><td>0</td><td></td><td>310</td><td>16</td><td>~ ⊽</td><td>900.0</td><td>δ</td><td>4</td><td><0.05</td><td>110</td><td>00</td><td>8.3</td></t<>	4D93090102	Rock	106	8	<50	<0.2	7	1.7	<0.01	_	4	0		310	16	~ ⊽	900.0	δ	4	<0.05	110	00	8.3
	AD9390103	Rock	171	ო	<50	<0.2	ო	4	<0.01	-	۸ 4	21		1400	20	~ ⊽	0.023	ς,	21	<0.05	<30	9	5.8
5.9 CO.01 ct 4 25 12 1900 98 ct 0.036 c5 9 c0.05 16 25 5.6 co.01 ct ct ct co.04 ct	1D93090104	Rock	218	7	<50	<0.2	۲۷ ۲۷	17	<0.01	√	۸ 4	98		1300	161	∑	0.056	٠Ĉ	49	0.11	930	2	2.2
5.6 <td>ID93090105A</td> <td>Rock</td> <td>153</td> <td>က</td> <td><50</td> <td><0.2</td> <td>2</td> <td>5.9</td> <td><0.01</td> <td>ī</td> <td>4</td> <td>25</td> <td></td> <td>1900</td> <td>86</td> <td>∵ ⊽</td> <td>9:036</td> <td>\$</td> <td>တ</td> <td><0.05</td> <td>160</td> <td>22</td> <td>37</td>	ID93090105A	Rock	153	က	<50	<0.2	2	5.9	<0.01	ī	4	25		1900	86	∵ ⊽	9:036	\$	တ	<0.05	160	22	37
1.9 COOT 1 44 10 3 860 57 3 0.011 45 80 67 3 0.011 45 80 67 10 60 61 10 5.8 6.001 1 44 1 3 1400 51 <1	1D93090105B	Rock	2	0	<50	<0.2	Ø	9.6	<0.01	7	4	7		260	19	⊽	0.004	ιζ	4	<0.05	35	Ÿ	0.7
8.8	1D93090106A	Rock	187	-	<50	<0.2	8	4.9	<0.01	_	^	9		860	22	ი	0.011	ς,	œ	<0.05	61	9	12
5.8 C.O.O.I 1 c4 22 3 1000 101 c1 0.024 c5 11 0.09 140 10 1.3 c.O.O.I 1 c.4 2 6 450 20 c1 0.008 c5 1 c0.05 10 12 1.5 c.O.O.I 1 c.4 2 3 2 10 c0.039 c5 1 c0.05 10 10 c0.05 10 12 2.2 c.O.O.I c1 c4 29 8 1300 31 c1 0.009 c5 10 c0.05 10 11 c0.05 10 c1 c0.05 c1 <td< td=""><td>ID93090106B</td><td>Rock</td><td>9/</td><td>α,</td><td>Ş2</td><td><0.2</td><td>α</td><td>3.8</td><td><0.01</td><td>_</td><td>۸ 4</td><td>14</td><td></td><td>1400</td><td>51</td><td>∑</td><td>900.0</td><td>۸.</td><td>ω</td><td><0.05</td><td>83</td><td>9</td><td>9.7</td></td<>	ID93090106B	Rock	9/	α,	Ş2	<0.2	α	3.8	<0.01	_	۸ 4	14		1400	51	∑	900.0	۸.	ω	<0.05	83	9	9.7
3 6.001 1 6 450 20 6 450 20 6 1008 65 3 6.005 100 12 1.5 6.001 1 4 2 3 280 8 <1	ID93090202	Rock	229	4	210	<0.2	Ÿ	5.8	<0.01	-	۸ 4	22		1000	101	∑	0.024	လို	=	60.0	140	10	13
S	ID93090203A	Rock	1	0	<50	<0.2	ď	1.3	<0.01		4	0		450	20	∵	900.	လို	ო	<0.05	9	12	13
1.7	ID93090203B	Rock	65	-	<50	<0.2	۲	1.5	<0.01	-	۸ 4	0	က	280	œ	∑	600.0	٠Ĉ	_	<0.05	110	ςı	-
3.2 <.0.01	ID93090203C	₽ S S	220	4	~ 20	0.3	Ş	2.7	<0.01	-	^	ဗ္ဗ	4	1300	26	∠	0.011	ςγ	우	<0.05	120	4	16
5.4 <a. bracket<="" td=""> <a. a="" bracket<=""> <a. bracket<="" td=""> <a. a="" bracket<=""> <a. a="" bracket<=""> <a. a="" bracket<=""> <a. bracket<="" td=""> <a. a="" bracket<=""> <a. a="" bracket<=""> <a. bracket<="" td=""> <a. a="" bracket<=""> <a. bracket<="" td=""> <a. a="" bracket<=""> <a. a="" bracket<=""> <a. bracket<="" td=""> <a. bracket<="" td=""> <a. bracket<="" td=""></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.></a.>	1D93090206	Rock	284	13	~ 20	<0.2	Ÿ	8.2	<0.01	⊽	۸ 4	20	N	1000	301	∵	650.0	လူ	20	<0.05	120	6	4
1.1	ID93090301	Rock	145	10	~ 20	<0.2	Ÿ	5.4	<0.01		۸ 4	59	ω	1300	21	<u>~</u>	0.045	۸ ئ	4	<0.05	130	27	56
1.1 < 0.01 < 1 < 4 16 4 860 58 < 1 0.011 < 5 10 < 0.05 140 13 1.2 < 0.01 < 1 < 4 68 6 490 154 < 1 0.007 < 5 21 < 0.05 190 31 1.3 < 0.01 < 1 < 4 88 6 490 154 < 1 0.007 < 5 21 < 0.05 190 31 1.4 < 0.01 < 1 < 4 98 1100 46 < 1 0.004 < 5 12 < 0.05 10 38 1.5 < 0.01 < 1 < 4 19 8 1100 39 < 1 0.042 < 5 10 < 0.05 10 88 1.1 < 0.01 < 1 < 4 10 5 1200 57 < 1 0.044 < 5 14 < 0.05 180 21 1.2 < 0.01 < 1 < 4 6 6 250 18 3 0.003 < 5 5 6.005 10 88 1.3 < 0.01 < 1 < 4 9 6 6 250 18 3 0.003 < 5 16 < 0.05 30 2 1.4 < 0.01 < 1 < 4 6 6 6 250 18 3 0.003 < 5 16 < 0.05 30 2 1.5 < 0.01 < 1 < 4 58 16 670 214 < 1 0.027 < 5 21 < 0.05 30 2 1.5 < 0.01 1 < 4 58 16 670 214 < 1 0.027 < 5 21 < 0.05 30 2 1.5 < 0.01 1 < 4 58 16 670 214 < 1 0.027 < 5 21 < 0.05 30 2 1.5 < 0.01 1 < 4 58 16 670 214 < 1 0.027 < 5 21 < 0.05 30 2 1.5 < 0.01 1 < 4 58 16 670 214 < 1 0.057 < 5 21 < 0.05 30 2 1.5 < 0.01 1 < 4 58 16 670 39 < 1 0.034 < 5 113 < 0.05 30 2 1.5 < 0.01 1 < 4 58 16 670 39 < 1 0.024 < 5 110 < 0.05 30 2 1.5 < 0.01 1 < 4 58 1	ID93090304	Rock	211	ო	~ 20	<0.2	٧	2.2	<0.01	₹	4	7	4	90	29	∵	900.0	Ϋ́	œ	<0.05	96	우	÷
2	ID93090305	Rock	202	က	² 20	<0.2	8	4.1	<0.01	₹	۸ ۰	16	4	860	28	⊽	0.011	ςς V2	9	<0.05	140	13	17
3 5 2200 69 <1 0.005 <5 12 <0.05 210 38 1.5 <0.01 <1 <4 19 8 1100 46 <1 0.014 <5 12 <0.05 10 <88 1.1 <0.01 <1 <1 <1 <1 <1 <0.05 <1 <0.05 <1 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <0.05 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	ID93090306B	Rock R	151	28	~ 20	<0.2	%	42	<0.01	₹	4	89	ا و	490	154	⊽	2007	ς.	7	<0.05	130	સ	44
1.5 < 0.01 < 1 < 4 19 8 1100 46 < 1 0.014 < 5 12 < 0.05 100 68 1.1 < 0.01 < 1 < 4 12 2 1100 39 < 1 0.042 < 5 10 < 0.05 130 238 1.2 < 0.01 < 1 < 4 10 5 1200 57 < 1 0.044 < 5 14 < 0.05 180 21 1.3 < 0.01 < 1 < 4 6 6 250 18 3 0.003 < 5 5 < 0.05 30 2 6 < 0.01 < 1 < 4 6 6 250 18 < 1 0.023 < 5 16 < 0.05 30 2 1.2 < 0.01 < 1 < 4 68 16 670 214 < 1 0.057 < 5 27 < 0.05 94 6 1.2 < 0.01 1 < 4 58 16 670 214 < 1 0.024 < 5 113 < 0.05 75 1.3 < 0.01 1 < 4 58 16 670 214 < 1 0.027 < 5 21 < 0.05 75 1.4 < 0.01 < 1 < 4 58 4 390 56 < 1 0.048 < 5 110 < 0.05 30 < 2 1.5 < 0.01 < 1 < 4 60 6 < 100 95 < 1 0.042 < 5 110 < 0.05 30 < 2 1.8 < 0.01 < 1 < 4 18 10 < 100 39 < 1 0.027 < 5 49 < 0.05 44 12 1.9	ID93090601A	Rock	120	ო	<50	<0.2	N	6.	<0.01	7	۸ 4	ო	2	5200	69	⊽	0.005	δ	5	<0.05	210	88	46
1.1 < 0.01 < 1 < 4 12 2 1100 39 < 1 0.042 < 5 10 < 0.05 130 238 2.2 < 0.01 < 1 < 4 10 5 1200 57 < 1 0.044 < 5 14 < 0.05 190 21 2.3 < 0.01 < 1 < 4 6 6 250 18 3 0.003 < 5 5 < 0.05 180 21 2.2 < 0.01 < 1 < 4 6 6 250 18 3 0.003 < 5 5 < 0.05 30 2 2 < 0.01 < 1 < 4 6 6 250 18 3 0.003 < 5 5 < 0.05 30 2 2 < 0.01 1 < 4 68 16 670 214 < 1 0.057 < 5 27 < 0.05 94 6 2	ID93090601B		240	က	20	<0.2	γ,	5.5	<0.01	<u>.</u>	, 4	<u></u>	ω (8	46	⊽ `	0.014	က္ပ	<u></u>	<0.05	ا 1 ع	88	-
2.2 < 0.01 <1 <4 10 5 1200 57 <1 0.044 <5 14 <0.05 180 21 2.1 <0.01 <1 <4 6 6 250 18 3 0.003 <5 5 <0.05 30 2 6 <0.01 <1 <4 6 6 250 18 3 0.003 <5 5 <0.05 30 2 6 <0.01 <1 <4 6 6 250 18 3 0.003 <5 5 <0.05 30 2 7 < 0.02	ID93090603	. <u>X</u>	307	N ·	×20	<0.5 6	η,	4 .	<0.01	√ .	۸ 4	22 :	N 1	100	ල ¦	∵ ∵	0.042	က်	은 :	<0.05	130	238	220
6 <0.01 <1 <4 6 6 250 18 3 0.003 <5 5 <0.05 30 2 6 <0.01 <1 <4 6 6 250 18 3 0.003 <5 5 <0.05 30 2 6 <0.01 <1 <4 6 6 250 18 3 0.003 <5 5 <0.05 30 2 7 < 0.05 <1 <4 52 11 730 29 <1 0.234 <5 113 <0.05 75 23 7 <0.01 1 <4 58 16 670 214 <1 0.05 <5 21 <0.05 75 23 8 <0.01 <1 <4 58 4 390 56 <1 0.018 <5 18 <0.05 <30 <2 8 <0.01 <1 <4 60 6 <100 95 <1 0.042 <5 110 <0.05 <30 <2 8 <0.01 <1 <4 18 10 <100 39 <1 0.027 <5 49 <0.05 44 12 8 <0.05 <1 <0.05 <1 <0.05 <1 <0.05 <1 <0.05 <1 <0.05 <1 <0.05 <1 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	ID93090605	Hoo Y	162	ო	20	0.2 0.2	Ŋ	2.5	×0.01	⊽	4	<u></u>	ro.	1200	22	⊽ .	0.044	လူ	4	<0.05	90	5	6
6 <0.01 <1 <4 34 3 1400 164 <1 0.023 <5 16 <0.05 <30 10 55 <0.01 1 <4 68 16 670 214 <1 0.057 <5 27 <0.05 94 6 21 <0.01 1 <4 52 11 730 29 <1 0.234 <5 113 <0.05 75 23 45 <0.01 1 <4 58 4 390 56 <1 0.018 <5 18 <0.05 <30 <2 57 <0.05 <30 <2 58 <0.01 <1 <4 58 4 390 56 <1 0.042 <5 110 <0.05 <30 <2 58 <0.01 <1 <4 60 6 <100 95 <1 0.042 <5 110 <0.05 <30 <2 79 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	1D93090801	₩ ¥	9	9	- 20 20	9.0	Ÿ		<0.01	⊽	^	9	9	250	8	ი ო	0.003	Ϋ́	ည	<0.05	ဓ	N	Ø
25 < 0.01 1 < 4 68 16 670 214 <1 0.057 <5 27 <0.05 94 6 21 < 0.01	4D93090802	Rock	446	2	<50	<0. 2	ð	9	<0.0>	⊽	^	뚕	თ	1400	164	⊽	0.023	۸.	9	<0.05	, 93	10	4
25 <0.01 1 <4 68 16 670 214 <1 0.057 <5 27 <0.05 94 6 21 <0.01 1 <4 52 11 730 29 <1 0.234 <5 113 <0.05 75 23 21 <0.01 1 <4 163 4 <100 62 <1 0.02 <5 21 <0.05 75 23 22 <0.01 <1 <4 58 4 390 56 <1 0.018 <5 18 <0.05 <30 <2 23 <0.01 <1 <4 60 6 <100 95 <1 0.042 <5 110 <0.05 <30 <2 24 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	AFIC GNEISS						•	- [
21 <0.01 1 <4 52 11 730 29 <1 0.234 <5 113 <0.05 75 23 45 <0.01 1 <4 163 4 <100 62 <1 0.02 <5 21 <0.05 <30 <2 38 <0.01 <1 <4 58 4 390 56 <1 0.018 <5 18 <0.05 <30 <2 37 <0.01 <1 <4 60 6 <100 95 <1 0.042 <5 110 <0.05 <30 <2 38 <0.01 <1 <4 18 10 <100 39 <1 0.027 <5 49 <0.05 44 12 44 12 qua regia partial digestion	D93082901A	Pock	764	თ	~ 20	<0.2	N		~0.01	-		89	16	670	214	⊽	0.057	δ. I	27	<0.05	94	9	6.7
45 <0.01 1 <4 163 4 <100 62 <1 0.02 <5 21 <0.05 <30 <2 38 <0.01	ID93082903B	Rock	929	19	~ 20	<0.2	∾		<0.01	-	ı	25	=	730	59	⊽	7.234	ر دئ	113	<0.05	75	23	28
38 < 0.01 <1 <4 58 4 390 56 <1 0.018 <5 18 <0.05 <30 <2 37 <0.01 <1 <4 60 6 <100 95 <1 0.042 <5 110 <0.05 <30 <2 1.8 <0.01 <1 <4 18 10 <100 39 <1 0.027 <5 49 <0.05 44 12 qua regia partial digestion	D93090303A	Rock	282	34	~ 20	<0.2	ય		<0.01	_		<u>چ</u>	4	×100	82	_	0.02	δ	21	<0.05	39	Ŋ	9.0
37 <0.01 <1 <4 60 6 <100 95 <1 0.042 <5 110 <0.05 <30 <2 .8 <0.01 <1 <4 18 10 <100 39 <1 0.027 <5 49 <0.05 44 12 qua regia partial digestion	ID93090303B	Rock	332	68	~ 20	<0.2	٥	П	<0.01	₩		28		390	26		0.018	Ş	9	<0.05	93	ð	<0.5
.8 <0.01 <1 <4 18 10 <100 39 <1 0.027 <5 49 <0.05 44 12 qua regia partial digestion	ID93090306A	Rock	275	49	<50	<0.2	٥		<0.01	⊽		09		700	92		0.042	٨ ا	110	<0.05	89	Ŋ	<0.5
qua regia partial dig	ID93090307	₩ Soc	192	24	<50	<0.2	გ ე	ထ္	×0.01	_ ;		2		4100	စ္တ	⊽	0.027	Ϋ́	49	<0.05	44	72	2
	//dethods: FA/AA & INAA a	inalyses t	sing 30	gm aliq	tots; IC	P analy	'SIS WIT	gla	egia pai	읭	estion												

		=	=	8	ű	Ē	Ħ	-		٥	ž	Sm	T-	£	۶	
SAMPLE#	TYPE	ppm INAA	pp ICP			-=	-=	ppm INAA	ppm ICP	ppm INAA	ppm INAA	ppm INAA	ppm INAA	-	ppm INAA	
SHIELD GRANITOIDS			1		, Г		!									
MD93082701	¥ 6	9. G	٠ ۲	26 26 26 26 26	? ∜ T	ָבָּ ק	52	250	217	5 5 5 5 7	200	2 2	√ √	S 6	, v V V	
MD93082704	80 X	95) g	3300	T	4.5	+	1900	1040	0.05	1200	300	7 V	15	<0.5	
MD93082705	Rock	4	\$	170	7	<0.2	8	6	78	90.0	62	9.4	7		6.	
MD93082707	Rock	<0.5	<5	28	ζ,	<0.2	<0.5	13	=	<0.05	18	1.6	⊽	<0.5	0.3	
MD93082803A	Rock	15	9] 110	Ø	0.3	z,	25	40	<0.05	36	6.7	⊽	<0.5	1.3	
MD93082803B	Pock S	9.	9	52	8	<0.2	OI I	42	Ŧ;	0.15	- !	9. !	⊽ '	<0.5	0.5	
MD93082804	. X	<u>.</u>	ψ,	1	ყ ,	0.5	ო (4 i	8 8	60.0	37	4.7	⊽ .	<0.5	- ;	
MD93082901B	Rock C	د ون ر	ς Ω	8	ო ⁽	0.5	ო	42	13	0.7	<u>ئ</u> ج	9:	۲ √	0 7 7	9.0	
MD93082903A	Š	4. c	δ μ	2 2	 } ₹)) ;	ю ц	3 5	8	0.14	_ 20 8	4	⊽ ₹	0.0 0.0	20.2	
MD93083002A	X 20	3.4	S S	2 26 7	9 9	4	ט ל מ	2 2	S #	0.47 0.65	χ ς 7 Χ	ם ת	⊽ ₹	٥ د د	u	
MD93083003A	3 2	34	3 4	. e	7 8	- o	5, 4	3 6	2 8	000	7 4	o co	7 7	0.00	, c	
MD93083003B	<u> </u>	6	λ ιζ	150	9 8	600	יט י	s &	3 8	0.51	: 62	7.4	, L.	0.5) (C	
MD93090101	Rock	<0.5	Λ	37	8	0.8	N	83	6	60.0	14	. 2. .3	-]⊽	<0.5	8.0	
MD93090102	Rock	-	Ą	2	8	<0.2	8	Ξ	œ	<0.05	9	6.	⊽	<0.5	<0.2	
MD9390103	Rock	<0.5	9	46	Ŋ	<0.2	4	56	12	0.13	1	1.8	⊽	<0.5	9.0	
MD93090104	Rock	<0.5	ιδ	43	Ŋ	6.	ო	52	ω	0.35	16	3.9	7	<0.5	Ø	
MD93090105A	Rock	2.4	ς,	140	7	1.1	9	8	36	0.35	45	9.9	⊽	<0.5	1.6	
MD93090105B	Rock	6.	ΛÔ	17	8	0.4	<0.5	=	က	0.41	ιζ	0.7	7	<0.5	2.7	
MD93090106A	Rock	ო	φ	62	8	0.7	က	32	2	0.29	52	3.3	⊽	<0.5	6.	
MD93090106B	Rock	<0.5	Ŋ	61	Ş	0.7	ო	32	12	0.15	13	ო	⊽	0.7	0.7	
MD93090202	Rock	Ø	Λ	61	γ	-	Ø	34	24	0.52	16	3.7	⊽	<0.5	3.1	
MD93090203A	Rock	1.2	Ą	9	γ	<0.2	4	3	50	0.34	56	5.9	⊽	<0.5	7	
MD93090203B	Rock	4.4	ω	က	Ÿ	<0.2	<0.5	Ø	Ø	0.11	Ϋ́	0.4	⊽	<0.5	0.5	
MD93090203C	Rock	.	Ą	86	Q	-:	က	24	59	0.13	ဓ	4. 2.	7	<0.5	6.0	
MD93090206	Rock	2.5	ιΩ	86	Ŋ	4.	ល	64	56	0.18	9	വ	⊽	<0.5	-	
MD93090301	Rock	4.	ις	85	Ş	-	ည	23	တ္က	0.23	<u>8</u>	3.6	⊽	<0.5	- -	
MD93090304	Hock K	<0.5	ψ	26	γ V	0.7	က	සූ	<u>e</u>	0.28	23	რ	V	<0.5	1.7	
MD93090305	Hock F	2.1	လို	72	٧ ا	0.7	4 ;	41	33	0.27	19	3.8	⊽ '	<0.5	<u>.</u> 75	
MD93090306B	, K	<0.5	₩,	9 1	9	9	우 .	97	.	0.27	27	우 !	√ .	<0.5	- :	
MD93090601A	. X	0.5 1	ω 1	150	γ,	4.	ω ;	გ <u>გ</u>	1	0.18	4 6 1	6.7	$\nabla \left[\cdot \right]$	0.5	6.0	
MD93090601B	ž Č	۔ • •	\	2 2	, c	 	5 r	85	2/2	0.14 1.7	25,	8.5	4	0.0 0.0	И (
MD93090603	Š	→ ,	، اع	3 5	_ } °	D. 0	ნ ^г	260	25.5	ا داره ا	2 ;	S .	⊽ `	ر دن ر	ים ים	
MD93090605	Š	4-0 Dir	ه ه	ς S	λ .	ος Ο	n q	8 0	<u>,</u>	V C.C.	<u>.</u> 4	o o	<u>,</u>	0, 0 0, 1		
MD93090801		Ω ·	٠ V	ດ	γ,	×0.7	ς. Υ	n :	N	0.0	€ ;	ر ا ن	⊽ :	0.0	ر د د	
MD93090802	Hock Hock	4.	Ŷ	89	8	6.0	4	04	55	0.21	6 8	3.7	⊽	<0.5	6.0	
MAFIC GNEISS																
MD93082901A	Rock	3.8	Ϋ́	49	ო	1.2	ഹ	24	4	96.0	24	6.3	7	0.7	6.3	
MD93082903B	Rock	3.7	ιû	88	Ÿ	1.6	6	46	33	0.41	43	6.4	9	<0.5	5.6	
MD93090303A	Rock	<0.5	ιĈ	Ξ	γ	9.0	<0.5	7	7	0.57	Ĉ,	4.	⊽	<0.5	3.2	
MD93090303B	Pock	<0.5	Ϋ́	27	8	6.0	8	9	0	0.78	1 3	4	V	<0.5	4.4	
MD93090306A	Hock L	<0.5	ပို	83	' ∜ 1		×0.5	=[4	0.51	14	3.1	<u>v</u>	9.0	2.7	
MD93090307	<u>Ж</u>	, vo.5	ზ .	210		- - -	ო) 08 1	. 21	- - 0- 	82	9	⊽	<0.5	0.8	
Methods: PAVAA & INAA ahalyses using 50	lalyses u	S Gus	g E	grii aliquots, ICP		ariarysis wirr	adna	regia partial digestion	al digest	<u> </u>						

HAMEROZOIC CARIBO MANES	ТҮРЕ		Au , ppb p	Au Ppm ICP F	Au ppb FA/AA	Ag ppm ICP	Ag ppm INAA	Cu Ppm ICP	Pb ppm ICP	Zn ppm ICP	Zn ppm INAA	As ppm iNAA	As ppm ICP	Bi ICP	P md d	S mdd	Co INAA	C bbm	Cr ppm INAA	Hg ppm INAA	r ppb iNAA	Mo ppm INAA	Mo ppm ICP
\$\text{c}\$ \text{c}\$ \tau\$ \text{c}\$	있	ध्र⊢	<u> </u>	S		0.2	5	10		욘	<50	8	က	<u> </u>	0.6	2	< <u>5</u>	91	220	7	۸ 5	55	2
\$\text{c}\$ \times \times \text{c}\$ \times \text{c}\$ \times \times \text{c}\$ \times \text{c}	×	_	٦ .	Ŋ	۸٠	0.1	V	7		ဖ	57	8	Ş		<0.2	വ	~	42	82	٧	۷ <u>.</u>	ιζ	-
\$\text{c}\$ \times \text{c}\$ \times \text{c}\$ \times \text{c}\$ \text{c}\$ \times \text{c}\$ c	~	·		♡	۸. ئ	0.1	۸. ح	4	L	77	144	က	7		<0.2	2	۸ ئ	6	170	Ÿ	~	ςς	2
\$\text{c} \times \text{c} \times \text{c}	$\overline{}$	•		Ŋ	ې ئ	0.1	ς. Ω	9	}	2	<50	7	က		<0.2	_	ς. Ω	526	340	7	\$	9	4
\$\text{c} \times \text{c} \tex	77			Ŋ	ς,	0.1	۸ ک	4		ผ	<50	7	8		<0.2	-	\$	253	330	7	۸ 5	ς.	-
\$\text{c}\$ \times \text{c}\$ 0.2 \$\text{c}\$ 0.2 \$\te		·	·	ઝ	\$	0.1	δ	4		ო	<50	4	9		<0.2	_	ς.	- 62 143	260	7	\$	ς.	4
\$\text{c}\$ \times \text{c}\$ \times \text		•		٥	δ	0.2	ΛÔ	က	١	_	<50	7	Ŋ		<0.2	_	۸ ئ	224	340	⊽	ς	လို	_
\$\text{c}\$ \times \text{c}\$ 0.1 \$\text{c}\$ \text{c}\$ 0.1 \$\text{c}\$ \text{c}\$ 0.2 \$\text{c}\$ 0.2 \$\text{c}\$ 1.2 \$\text{c}\$ 0.2 \$\text{c}\$ 0.2 \$\text{c}\$ 1.2 \$\text{c}\$ 0.2	()	•		Ÿ	δ	0.2	ιΩ	က		49	85	7	Ŋ		<0.2	7	9	73	130	₹	۸ ئ	Λ Ω	က
\$\frac{1}{2}\$ \$\		·		Ŋ	۸. ئ	0.1	٠Ĉ	2		9	<50	9	က		<0.2	Ţ.	72	83	160	⊽	ιΰ	٠Ĉ	-
65 62 0.1 65 2 1 65 62 2 60 1 65 62 1 65 62 1 65 62 1 65 62 1 65 62 1 65 62 1 65 62 1 65 62 1 65 62 1 65 62 1 65 62 1 65 62 62 1 65 62 62 1 65 62 62 62 1 65 62	1	ES	Г																				
\$\text{c}{5}\$ \$\times 2\$ \tag{6}\$ \$\text{c}{1}\$ \$\text{c}{5}\$ \$\text{c}{	. 0		1	Ŋ		0.1	ئ ئ	8		10		çy	Ø		0.2	-	ςŞ	8	410	7	ς.	\$	-
6 2 6 6 2 3 2 3 2 2 4 4 5 3 4 5 4 5 6 2 2 2 4 4 5 6 2 2 4 4 5 6 2 2 2 4 4 5 6 4 5 6	O	-		Ŋ		0.2	ې ک			-		Q V	۵		<0.2	_	ςγ	Ŋ	17	⊽	۸ ئ	ŝ	-
\$\text{c}{5}\$ \$\leq 2\$ \$\leq 5\$ \$\leq 0.3\$ \$\leq 5\$ \$\leq	O	•		٥	_	0.4	\$			21		çy V	٥		<0.2	Ξ	Ξ	7	22	⊽	^	~	-
\$\chinal{1}{2}\$ \$\chinal{2}{2}\$ \$\chinal{2}{2}	O	·		Ŋ	J	0.3	ς. Ω			2		ζ,	9		<0.2	4	۷. ک	8	20	√	\$	\$	-
\$\circ{1}{2}\$ \$\	×	·		٥	ιδ	0.2	ςŞ			œ		۲۷	0		<0.2	က	ςγ	ნ	50	⊽	۸ ئ	ς	-
\$\circ{1}{2}\$ \$\	Ŏ	·	-	Ŋ	<u>۸</u>	0.2	ή			7		۲,	Ø		<0.2	7	۸ 5	13	56	₹	<u>ئ</u>	۸ 5	-
5 2 9 0.1 65 11 11 42 40.2 12 12 10 26 41 55 11 11 42 40.2 12 10 26 41 45 41 450 11 11 42 40.2 12 10 26 41 45 41 450 10 16 42 40.2 11 45 40	×	·		٥	ئ ئ	0.3	\$			9		7	ო		<0.2	4	ς,	Ŋ	17	⊽	~	\$	-
\$\circ{1}{2}\$ \$\	×	Ť	·	Ŋ		0.1	\$		_	31	\vdash	#	Ξ		<0.2	12	12	9	56	7	\$	۲ <u>٠</u>	-
5 6 0.5 6 0.5 6 7 54 14 60 16 6 60.2 3 65 10 16 6 6 6 6 6 6 6 6 6 6 6 7 47 7 7 6 6 2 6 2 6 2 6 2 60.2 1 65 27 47 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7	×	·		Ŋ	٨	0.1	\$		i	2		7	က		<0.2	~ ~	ςς	8	1 0	⊽	<u>۸</u>	ς. Ω	_
\$\circ{1}{2}\$ \$\	8		·	Ŋ	L	0.5	ς. 5			4		10	16		<0.2	ო	٠ دئ	85	120	⊽	^	\$	-
5 6 6 6 6 6 6 6 7 17 <1 5 6 6 6 6 6 6 6 6 6 7 17 <1 5 6 <td>8</td> <td></td> <td></td> <td>Ŋ</td> <td>ı</td> <td>0.2</td> <td><u>ې</u></td> <td>•</td> <td>ı</td> <td>ღ</td> <td>ı</td> <td>ဗ</td> <td>9</td> <td></td> <td><0.2</td> <td>, -</td> <td>رئ ا</td> <td>27</td> <td>47</td> <td>7</td> <td>۷<u>.</u></td> <td>လူ</td> <td>_</td>	8			Ŋ	ı	0.2	<u>ې</u>	•	ı	ღ	ı	ဗ	9		<0.2	, -	رئ ا	27	47	7	۷ <u>.</u>	လူ	_
5 6 6 7 7	8	·		٥		0.1	\$			Ŋ		8	9		<0.2	ო	ς, I	7	17	⊽	\$	\$	_
5 6 7 6	8			٥	٠Ĉ	0.1	ۍ ئ			က		٥	7		<0.2	_	ڻ	ო	410	7	\$	<u>ئ</u>	-
5 6 6 50 6 60	8	·		٥		0.1	ς Ω			က		Ş	9		<0.2	Q	۸.	4	410	⊽	\$	\$	-
5 6 6 50 6 60 6	8	·		٥		0.2	۸. ئ			8		₽	5		<0.2	-	ιδ	က	۲ <u>۰</u>	⊽	ς,	ŝ	·-
<5	8	·		٥	ς	0.2	\$			9		٥	٥		<0.2	α	δ	9	4	7	ς Ω	ς Ω	-
<5	-8	·		çı	۸ ک	0.2	ςŞ			16		က	7		<0.2	4	۸	10	28	⊽	ς <u>ν</u>	δ	_
<5 <2 0.1 <5 5 2 14 <50 3 <2 <2 <0.2 3 <5 6 14 <1 <5	8	·	·	٥	<u>ې</u>	0.1	ς Ω	_		15		က	თ		<0.2	Ø	ې ئ	9	15	⊽	, 5	۸ 5	က
	8	Ť	·	ď		0.1	ςς Υ	•	ı	4		က	Ŋ		<0.2	ო	\$	9	4	⊽	\$	\$	_

		Ā	Ξ	Ē	ଟ୍ଡ	හි	တိ	S	>	>	>	8	Ba Ba	Ba	ä	_	S	Š	ۍ	2	Æ	돈
SAMPLE #	TYPE	ppm ICP	E B	PP A A	PPM NAA	<u>명</u> 인	PPM NAA	% AN	면 당	Ppm NAA	E do	E 6	ppm INAA	PP CP	PPM NAA	% <u>C</u>	PPM NAA	E G	»NA	Ppm NAA	B 라	MAN NAA
PHANEROZOIC CLASTIC ROCKS	ROCKS	0																				
MD93082401B	Rock	520	4	<50	<0.2	Ø	9	<0.01	⊽	۸ 4	우	ഗ	Н	06	7	900.0	\$	142	<0.05	93	ო	4.7
MD93090501	Rock	3904	ဖ	~ 20	0.2	8	9.2	<0.01		^ 4	4	ω	_	233	7	0.062	\$	2	<0.05	32	Ø	3.5
MD93090503C	Rock	325	9	<50	<0.2	Ø	3.7	<0.01	⊽	^ 4	42	ω 		19	₹	0.041	\$	49	<0.05	93	ო	4.7
MD93090701	Rock	26	9	~ 20	<0.2	ģ	1.2	<0.01	⊽	^ 4	က	2		4	₹	0.001	۸. ئ	-	<0.05	<30	∾	6:1
MD93090703A	Rock	28	വ	~ 20	<0.2	Ŋ	1.2	<0.01	⊽	^ 4	4	8		4	7	0.001	Λ̈́	-	<0.05	°30	ð	-:
MD93090703B	Rock	22	4	<50	0.3	Ŋ	2.1	<0.01	⊽	^ 4	Ξ	8		œ	⊽	0.018	۸,	ო	<0.05	930	8	5.6
MD93090705	Rock	41	2	~ 20	<0.2	ζγ	6.0	<0.01	7	۸ 4	က	က	×100	Ŋ	7	0.001	۸	-	<0.05	×30	ð	0.7
MD93090707	Rock	1199	80	<50	0.5	8	4.2	<0.01	-	^ 4	9	9	<u> </u>	101	8	0.00	Λ	63	<0.05	<30	ð	3.7
MD93090803	Rock	93	32	, 20 ,	0.3	8	2.1	<0.01	7	^ 4	ო	Ø	J	ည	⊽	0.004	Ş	2	<0.05	93	V	3.6
PHANEROZOIC CARBONATES	ATES																					
MD93082401A	Rock	13	-	<50	0.3	∾	0.2	<0.0	-	^ 4	8	ღ	×100	2	6	0.005	.5	474	0.12	06>	7	<0.5
MD93082401C	Rock	8	_	~ 20	<0.2	Ŋ	0.3	<0.01	_	۸ 4	8	6	<100	N	7	0.003	ۍ آ	1079	0.19	<30	₽	<0.5
MD93090503A	Rock	2079	13	<50	<0.2	۲	1.9	<0.01	⊽	^ 4	က	8	×100	60	⊽	0.094	ۍ ۱	20	<0.05	×30	0	1.3
MD93090503B	Rock	176	16	<50	<0.2	٥	9.1	<0.01	-	۸ 4	8	12	×100	#	ღ	0.01	\$	233	<0.05	<30	₽	1.2
MD93090706A	Rock	179	9	~ 20	0.3	7	2.5	<0.01	-	4	8	-	×100	15	က	0.01	ς,	312	90.0	×30	ð	<u>t.</u>
MD93090706B	Rock	213	7	<50	<0.2	7	2.5	<0.01	-	۸ 4	က	13	150	14	ღ	0.01	<u>ې</u>	265	<0.05	930	7	1.7
MD93090901A	Rock	270	55	<50	<0.2	ð	1.4	<0.01	⊽	4	7	7	×100	œ	Ŋ	0.004	ς. Υ	187	<0.05	<30	7	-
MD93090901B	Rock	375	13	<50	4.0	8	2.5	<0.01	-	۸ 4	8	80	×100	Ξ	က	0.012	ιζ	184	<0.05	×30	7	6:
MD93091001A	Rock	135	Ø	<50 <	<0.2	Ŋ	9.0	<0.01	₹	4	5	က	1 00	ω	7	0.004	ς,	245	<0.05	30	7	<0.5
MD93091001B	Rock	221	თ	<50 <50	1.2	0	2.8	<0.01	-	4 	6	36 36	×100	19	18	0.019	<u>ئ</u>	472	<0.05	93	7	2.1
	Rock	52	Ø	· 20	9.0	ผ	0.4	<0.01	₹	^ 4	2	11	×100	8	6	0.003	\$	1002	0.17	30	8	<0.5
MD93091101A	Pock	217	9	~ 20	<0.2	8	1.9	<0.01	₹	۸ 4	ო	9	×100	12	4	0.011	۸ رئ	245	<0.05	93	Ø	ر تن
MD93091101B	Rock	178	ო	~ 20	<0.2	Ŋ	1.3	<0.01	₹	۸ 4	Ŋ	ო	9	Ξ	က	0.008	٠Ĉ	202	<0.05	93	8	9.0
MD93091101C	Rock	168	4	~ 20	<0.2	Ŋ	1.7	<0.01	7	۸ 4	α	4	۲ 9	Ξ	ო	600.0	ۍ	508	<0.05	93	٧	<u>-</u> :
MD93091101D	Rock	173	က	20	<0.2	∾	6.0	<0.01	⊽	۸ 4	Ø	က	×100	6	ო	0.004	٠Ĉ	219	<0.05	30	8	<0.5
MD93091101E	Rock	119	4	2 20	<0.2	ð	2.1	<0.01	⊽	4	2	5	×100	12	ო	0.008	٨	272	<0.05	30	8	1.2
MD93091101F	Rock	1181	6	<50	0.4	Ÿ	3.1	<0.01	 -	۸ 4	4	01	140	4	α	0.107	Λ	242	<0.05	40	8	6:1
MD93091102A	Rock	377	c)	<50	32	50	2.8	<0.01	7	^	0	ღ	×100	23	7	0.014	ζ.	172	90'0	°30	8	6.1
MD93091102B	Rock	378	2	×20	<0.2	\$	2.4	<0.01	-	۸ 4	2	2	120	24	N	0.025	Ϋ́	180	<0.05	30	8	6.

ą	Ppm NAA		2.2	0		1,5	د .	Ø	1:1	Ø	1.3		<0.2	<0.2	0.5	0.3	0.5	9.0	0.5	6.0	0.2	0.7	<0.2	0.5	0.4	0.5	0.3	0.5	9.0	0.7	0.5
Ф	md AN		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Та	pp NAA		7	⊽	⊽	۲	7	-	7	⊽	₽		⊽	⊽	₹	⊽	⊽	⊽	⊽	⊽	7	7	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	₽
Sm	PP NAA A		2.7	2.3	1,3	0.3	0.2	9.0	0.2	2.1	τ.		6 0.1	0.2	9.0	8.0	6.0	Ξ:	6.0	1.6	0.4		0.2	6.0	0.8	6.0	0.5	6.0	-	1.2	6.0
Ž	PP A		17	12	9	Λ	δ	ς	۸.	12	Ϋ́		ςŞ	\$	Ą	9	6	7	S	10	Ϋ́	Ŝ	Ϋ́	ۍ	7	Ŝ	ς	Λ	\$	۸ ئ	9
3	may NAA		0.42	0.33	0.19	0.27	0.24	0.38	0.18	0.33	0.2		<0.05	<0.05	0.09	90.0	90.0	0.1	90.0	0.14	90.0	0.13	<0.05	0.1	90.0	60.0	0.07	0.07	90.0	0.12	0.11
ם	Ppm CP		IJ	6	2	8	ય	Ø	7	2	N		8	α	8	8	8	7	7	က	8	က	Ø	0	Ø	8	0	Ø	Ø	Ø	Ø
ā	ppm NAA		19	19	=	8	⊽	4	7	17	13		7	Ø	2	5	7	7	9	우	Ø	9	0	9	Ŋ	S	က	9	ω	œ	_
茔	ppm NAA		1	Ŋ	2	9	6	Ţ.	10	თ	^		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8	·	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ш	ppm NAA		<0.2	0.7	0.4	<0.2	<0.2	0.3	<0.2	9.0	0.4		<0.2	<0.2	<0.2	0.3	0.3	<0.2	0.2	0.3	<0.2	<0.2	<0.2	0.2	0.3	0.2	0.3	<0.2	<0.2	<0.2	<0.2
ర	md A N		8	Ş	ç	8	8	Ş	γ	Ÿ	8		Ş	Ŋ	Ş	٥	ς,	Ŋ	ζ,	ζ\	%	Ŋ	8	♡	٥	7	7	ζ,	∾	%	8
පී	MAN MAA		40	ဗ္ဗ	18	4	ç	ω	8	32	25		જ	ဗ	42	7	=	16	6	50	9	19	ဗွ	7	о	9	7	5	16	16	र्ट
<u></u>	<u> </u>		ς	ŝ	Ş	\$	ς,	, S	۸ 5	ςŞ	\$		\$	Λ̈́	۸.	٠Ĉ	ςγ	ςγ	Ϋ́	ςγ	٠Ĉ	۸.	7	Ŝ	ςŞ	လို	ςς	δ	ۍ	Ϋ́	ιδ
⊃	m A V	(n	-	1.2	6.0	-	6.0	4.	9.0	Ξ:	1.6		1.6	<0.5	<0.5	<0.5	8.0	<0.5	0.7	1.4	<0.5	<0.5	<0.5	<0.5	9.0	<0.5	<0.5	<0.5	0.7	<0.5	0.7
	TYPE	ROCK	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	ATES	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock	Rock
		ASTIC										ARBON																			
	SAMPLE #	SOIC C	31B	7	33C	7	33A	33B	35	77	ဥ	ZOIC C	J1A	210	33 A	33B)6A	36B)1A	31B	НΑ	ЯВ	310	J1A	31B	31C	J.D	7E	71F)2A	32B
	SAM	PHANEROZOIC CLASTIC ROCKS	MD93082401B	MD93090501	MD93090503C	MD93090701	MD93090703A	MD93090703B	MD93090705	MD93090707	MD93090803	PHANEROZOIC CARBONATES	MD93082401A	MD93082401C	MD93090503A	MD93090503B	MD93090706A	MD93090706B	MD93090901A	MD93090901B	MD93091001A	MD93091001B	MD93091001C	MD93091101A	MD93091101B	MD93091101C	MD93091101D	MD93091101E	MD93091101F	MD93091102A	MD93091102B
		표	Σ	MDS	MDS	MDg	MDS	MDg	MDg	MDS	MDS	PHA	MDS	MDS	MDS	MDS	MDS	MDS	MDS	MDS	MDg	MDg	MD9	MDB	MDB	MDB	MDB	MD9	MD9	MD9	MDg

		Ψ	₽	Pα	₽	1	 3	8	Z Z	Zn	As		O	8	8		ပ <u>ံ</u>		≒	≗	₽
SAMPLE #	TYPE	Pp NAA A	ppm CP	ppb FA/AA		ppm INAA			_	_	_	pp mgg				<u> </u>	_=	n ppm A INAA	_=		_
HOLE SL27C																					
SL27C-1	Core		9	24	<0.1		= 1	61 4	14		V	۷ ک	∂	<0.2	12	104	4				α
SL27C-2	Core		ð	4	0.1				9		V					-					-
HOLE SL27C2																					
SL27C2-1	Core		Ŋ	13	0.1		Ш		5		V				₹.	×	_				-
SL27C2-2	Core		7	۸. ئن	0.2		L.	Г	4		2				_	ര്	٥.				-
SL27C2-3	Core		7	Ξ	0.3		<u>. </u>	Т	4		5	Ь				27	6				2
SL27C2-4*	Core		8	1040	6.0	Ľ	34	1	15		٧	1	٦.		₩.	12]4				-
SL27C2-5*	Core		Ŋ	647	0.3	j	H	\vdash	=		80				2	8	8				က
SL27C2-6	Core		A ,	ŕŞ.	0.1	-4	<u>2</u>	19	150		5		ο ε	<0.2	15	58]_				-
SL27C2-7	Core		ð	16	0.3	-			£		14				_	8	~				0
Co. 11 10 10 10 10 10 10 10 10 10 10 10 10																					
FL8C-1*	ğ		?	455	8	,-			Š		ď					00	[c				0
E+8C-2*	9 O		7 9	╈	0.5				1 0		4	Ц	2002	i 0		7 2	0 0				1 m
E+8C-3*	Core		Ŋ	†	0.4		- α	· ~			· 3	_	\$ 6.2			398					0
E+8C-4	Core		A ,	17	0.1				ღ		1,	⊢			⊽	~]				-
E+8C-5	Core		8				1		Ø		ľ	ו ן	2 0.2			23					_
E+8C-6	Core		8		- -		\neg		4		7				₹	ઌ૽	~				ო
E+8C-7*	Core		∂	277	0.3				.		2		2. 2. 2. 2.			17	α				-
HOI F SI 27C1																					
SI 27C1-1*	9		0	677	60				0		V			0		25	<u></u>				0
SL27C1-2*	S S		7 8	Т	0.0			L	99		/ ∛					3 @]4				1
SL27C1-3	Core		3	7	0.2	•-		 =] _∞		Ŋ		8	<0.2 10	0	104	4				-
HOLE B+148C			,	Γ					,		•						[(
B+148C-1*	ည် လ		Α,	Т	- - -				ω ⁽		∜`				'	အျွ	ي ا				თ ,
B+148C-2"	e 3		3 8	60 60		۲	-	Г	<u>N</u> c		۷ <i>۱</i>					S 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				- 6
B+148C-4*	9 9 9 9		4 8	+	0.1	ل ً	2 rv	, _, } @	o ro		y 9		4	i () 1 —		165	مارة				
			i																		
13																					
Methods: FA/AA & INAA analyses using 30 gm aliquots; ICP analysis with aqua regia partial digestion	analyses	using 30	gm al	iquots; IC	P analy	sis with	adna n	egia par	tial dige	stion											
*FA/AA and ICP analyses performed on the ash residue after 16 hours at 800C	performe	o on	e ash r	esidue a	ter 16 h	ours at	စ္ထ														

Ppm Th						
다 Bg 그	ω 🖔	Y Y m a a a m	ι ν ω φ α 4 ω α	004	7 e 0 2	
PP						
Sr INAA						
is made	33	259 354 46 13 18 41 76	29 10 193 372 372 34	21 21 21	12 8 8 951 33	
Se ppm INAA					_	
л % <u>О</u>	0.010	<0.0010.0020.0020.0030.0030.0040.015	0.009 0.003 0.001 0.001 0.002	0.004 0.003 0.021	0.006 0.002 0.006 0.003	
Ppm NAA						
Ppm ICP	34 95	7 49 30 38 28 25 15	94 29 30 12 7 7	37 19 3	51 42 54	
Ba ppm INAA						
в ш д	14	21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 4 147 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 4 0	257 17	
> md O	9. 8	2 4 1 8 2 6 9	33 24 4 4 11 13	20 9	28 39 24	
V V V						
r ppm	- ₽	~ ~ ~ ~ ~ ~ ~	$\triangle \triangle \triangle \triangle - \triangle \triangle$	△ - △	$\triangle \triangle \triangle \triangle$	
Sc Sn ppm % INAA INAA						
Sb ds ppg mdg	2 4	34430003	a y y y m m m	888	m V V V	
Sb ppm p				, , ,	• • •	
is ned						
iz md CD	35	5 5 5 47 47	22 23 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 12 28	19 19 7	
M F C P C D	171 53	41 45 50 346 55 77	206 1020 422 62 70 55	44 46 146	81 75 106 32	
TYPE						
-			i e		П	
SAMPLE #	27C	27C2	ပ္က	7C1	78C	
SAN	HOLE SL27C SL27C-1 SL27C-2	HOLE SL27C2 SL27C2-1 SL27C2-2 SL27C2-3 SL27C2-4* SL27C2-6*	HOLE E+8C E+8C-1* E+8C-2* E+8C-3* E+8C-4 E+8C-5 E+8C-6 E+8C-6	HOLE SL27C1 SL27C1-1* SL27C1-2* SL27C1-3	HOLE B+148C B+148C-1* B+148C-2* B+148C-3* B+148C-4*	
<u> </u>	ᅚᄧᄧ			IXIS S S	<u> </u>	

Methods: FA/AA & INAA analyses using 30 gm aliquots; ICP analysis with aqua regia partial digestion *FA/AA and ICP analyses performed on the ash residue after 16 hours at 800C

SAMPLE #	TYPE	Dpm NAA	⊃ mad G	S mdb NAA NAA	Cs INAA	Eu ppm i INAA II	Hf ppm INAA II	La ppm INAA	La ppm ICP	Lu ppm INAA I	Nd ppm INAA	Sm T ppm pp	Ta T ppm pp INAA IN	Tb Y ppm pr	Yb ppm INAA	
HOLE SL27C SL27C-1 SL27C-2			ιδ. ιδ.						£ %	l						
HOLE SL27C2 SL27C2-1 SL27C2-3 SL27C2-4* SL27C2-4* SL27C2-6 SL27C2-6			\$ \$ \$ \$ \$ \$ \$ \$						g 4 rv rv <u>st et</u>							
HOLE E+8C E+8C-1* E+8C-2* E+8C-3* E+8C-4 E+8C-5 E+8C-6			\$ \$ \$ \$ \$ \$ \$ \$ \$						25 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 9 9 5 7 7 9 9 9 9							
HOLE SL27C1 SL27C1-1* SL27C1-2* SL27C1-3			ቲ ቲ ቲ						၈ ဖ ဖ							
HOLE B+148C B+148C-1* B+148C-2* B+148C-3* B+148C-4*			<i>የ</i> ነ የነ የነ						22 7 14 14							
A A A A A A A A A A A A A A A A A A A		, c	: : :	<u>;</u>												
*** INFLIGOR: FAYAR & INVAR analyses using 50 gm anduots, ICF analysis with adua regia partial digestion *** FA/AR and ICF analyses performed on the ash residue after 16 hours at 800C	performed	d on the	gin alliquash res	idue afte	er 16 ho	urs at 80	odua regi	a partial c	aigestion	_						$\neg \neg$

		Pα	PΓ	PΓ	Ą	Ą	Ą	3	3	<u>۾</u>	e.	ā			As	As	iã	8	8	8	රි	රි	රි	ర	ŏ
SAMPLE#	TYPE	ppb FA	ppm ICP	ppb NAA	ppm A	_	ppm	ppm AA	ppm ICP	ppm AA	ppm	_	ppm ICP	ppm INAA	ppm ICP I			_		ppm I	_	_			ppm INAA
	E		ND		0.2	0.7		32	25	13	12	89	92		6		<3 (0.3	-		o ;	12		14	
NAT92-25 (1993) NAT92-25 (1993)	Ē		S		0.2	0.2		2 K	12	<u>n</u> w	Ŋ	, 1	8		8		v) ຕຸ		⊽		2 ო	ო		7	-
NAT92-25 (1994)	Ē) :		<0.2			9		Ξ		19									2				
NAT93-81	Ē			۲ ک	0.2		۲ ۲	5		<u>ლ</u>		26	٠	<100		3.9	٧	:0.2		~ 2	7		တ		49
NAT93-82	Ē			۲ د	0.2		4 2	-		10		37	•	۲ ۱ 00	-	3.2	٧	:0.2		<2	ဗ		2		36
NAT93-83	₹				<0.2		7	18		15		09	•	×100		9	٧	:0.2		^ 2	စ		-		40
NAT93-84	Ē			ო	0.3		2	19		13		20	•	ر ا 00		9.7	٧	:0.2 :0.2		× 2	7		<u></u>		49
NAT93-84G	Ē			က	0.3		4 2	18		12		62	•	<100		7.4	٧	:0.2		^ 2	9		7		20
NAT93-84P	Ē			7	0.2		4 2	-		12		31	•	<100	=	4.2	_	2.2		~ 2	ო		<5		34
NAT93-86D1	Ē			9	0.5		2	18		20		88	•	<100 <	-	9.9	٧	:0.2		^	9		2		64
NAT93-86D2	Ē			8	<0.2		2	17		16		73	•	<100	-	6.3	٧	:0.2		~ 2	7		8		89
NAT93-88	Ē			6	0.4		7	19		13		48	•	<100		4	~	7.2		<5	1		16		49
NAT93-89	Ē			7	<0.2		%	15		4		41	•	<100	٠	8.4	٧	:0.2		~ 5	7		9		37
Methods: <0.063mm fraction; 1993 ICP & AA analyses with aqua	fraction	; 1993	SICP &	₹ AA a	nalyse	s with		egia p	artial c	digestic	on; 199	34 AA	& ICP	regia partial digestion; 1994 AA & ICP analyses with multi acid full digestion	es with	n multi	acid fu	III dige	stion						
NU = NOt Detected; N/A = Not Available	I = NOT A	vallabik																							

		Щ	Fe	Fe	Fe							Σ		Z						S	≥			>
SAMPLE #	TYPE	ppm AA	% \$	~ ⊡ 8	% AN	ppm PA	ppm ICP	ppb p	ppm p	ppm r	ppm INAA	ppm AA	ppm ICP	ppm AA	mdd CD	ppm p	mdd ICP	ppm	ppm NAA	ppm INAA	Ppm ICP	ppm NAA	Ppm -	PPM ICP
VAT92-24 (1993)	 ≞	570		2.3		02	 ₽		Į.	 -		286	ı	26	24		7				7			ω_
VAT92-24 (1994)	Ē		3.1								- 4	268		27								•		
JAT92-25 (1993)	Ē	260		6.0	. •	30	S			7		125		10	ω		4				4		17	72
VAT92-25 (1994)	Ē		1.5						4			157		-									47	
VAT93-81	Ē		1.8		1.5		•		ღ		-	185		23		28	_		•	<100			80	
VAT93-82	Ē		1.8		4.1		•		8		<u>-</u>	169		-		<10	_		•	<100			54	
VAT93-83	Ē		2.3	- •	2.2		•	<50	4			460		24		21	_	9.0	ა თ	100		7	84	
VAT93-84	Ē	,	2.4		8		•	<50	4		<u>^</u>	253		19		20	_		•	<100			88	
NAT93-84G	Ē		ო	- •	2.2		•	<50	7			251		17		22	-		٧	<100			89	
VAT93-84P	Ē	-	2.1		4.1		٧	<50	ဗ			160		12		×10	-		٧	<100			54	
NAT93-86D1	Ē		Ø	-4	2.1		•	<50	7			168		17		۲ <u>۰</u>	-		٧	<100			97	
VAT93-86D2	Ē	-	2.5	- •	2.5		•	<50	ო			174		19		19	-		٧	<100			8	
4AT93-88	Ē	_	6.1		5.3		٧	<50	4			940		24		38	-		٧	<100			88	
VAT93-89	≣	,	2.2		1.5		•	<50	9		_	167		28		34	_		٧	<100			94	

Methods: <0.063mm fraction; 1993 ICP & AA analyses with aqua regia partial digestion; 1994 AA & ICP analyses with multi acid full digestion ND = Not Detected; N/A = Not Available

APPENDIX 3 CERTIFICATES OF ANALYSES

To: ALBERT	TA RESEARCH	COL	JNCIL,
P.O. Box 8	3330,		
Postal Sta	ation "F",		
Edmonton,	Alberta	Т6Н	5X2
84			

File No. <u>36190-1</u>
Date <u>January 28, 1994</u>
Samples <u>Rock</u>
P.O. # EC 94061286

ATTN: Mike Dufresne

Certificate of Assay LORING LABORATORIES LTD.

SAMPLE NO.

PPB GOLD

Geochemical Analysis

0011011		71110L1	010	
MD	9309	0501		<5
		0503	Α	<5
		0503	В	<5
		0503	C	<5
		0701		<5
		0703	Α	<5
		0703	В	<5
		0705		<5
		0706	Α	<5
		0706	В	<5
		0707		<5
		0803		<5
		0901	Α	<5
		0901	В	9
		1001	Α	<5
		1001	В	6
		1001	C	≺5
		1101	Α	<5
		1101	В	<5
		1101	С	<5
		1101	D	<5
		1101	E	<5
		1101	F	<5
			A	<5
		1102	В	<5

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month.
Pulps retained one month
unless specific arrangements
are made in advance.

Lingwaler "

GEOCHEMICAL ANALYSIS CERTIFICATE

Loring Laboratories Ltd. PROJECT 36190 File # 93-3328 Page 1
629 Beaverdam Road N.E., Calgary AB T2K 4W7

SAMPLE#		l)			င့်ခ	ည လ		Fe	Ŧ	Ę	1	}	11	11		11	1	Sr	Ta	Ę				1	łi –			11	41	E.
	BPB.	d Wdd	Mdd Mdd	PPM PPM	34	Mdd Mdd	PPM	*	₩dd		PP8 P	M.	Mdd Mdd	м ррм	Mdd	PPM P	PPM %	×	PPM	PPM	PPM	МОМ МОМ	M PPM	M PPM	M PPM	Mdd h	M PPM	Mdd	PPM	₽ PPM
MD93082401A	ψ,	۵,	•		13		\$.23	<.5	▼.	₽,				٣.	-5	<5<.01	.12		6.5	1.6								v	.05
MD93082401B	<u> </u>	۱ ئ		•	4	N	, V	12.00	11.0	⊽ '					4.2	6.0	<5<.01	<.05		4.7	1.8								۸i	77.
MD95082401C	۰ ک	۰, ۵			75		Ş (84.		₽.		,			~. 2	۲.	<5<.01	.19		. .5	. .5								v,	05
MU95082701	٥ ۲	٥ _۲	010 C	⊽ 7 2 2	~ T	\$ t	; ¢	1.5/	15.0	⊽ ₹	♦ 4	\$ 14.5 24.5 24.5	4500 <50	0 230	?,	4. 6	\$\$<.01	.05	Ţ;	0.06	o. 0	2 . 2 .	<50 250	0 480	130	19.0	0 1.6	5.	*. 2×	50.
50,72005,701	7	7			7		y	0,.	0.72	7		_			7.	0.0	10°>C>		4	0.00	o.								v.	.05
MD93082704	\$	څ	-	00		15 48	\$		110.0	⊽						8.5	<5<.01	<.05			65.0			0 3300	0 1200	3 200.0			•	50.
MD93082705	φ.	ψ,		0 7	₹		Ŷ	1.18	8.0	⊽						2.7	<5<.01	<.05			4.0								-	90
MD93082707	\$	ۍ				<5 220	\$	9.	6.5	⊽						٥.	<5<.01	<.05	۲		6.5									.05
MD93082803A	ψ,	Α,	<2 <100 25 <100		⊽ '		~ (1.09	5.0	₽,		<5 222	22200 <50	0 240	~. 5	2.9	<5<.01	<.05	∵ '	39.0	15.0	<4 <50	50 52	2 110	0 36	5 6.7	7.	. .5	1.3	.05
#D950828058	٥	Ç	22.0	⊽ 2	V	<> 240	%	ş	2.0	⊽	≎					1.2	<5<.01	.95	⊽		9.									. 15
MD93082804	Ą	\$	_	00	₩.	<5 170	\$.92	3.0	⊽	₽.			•		2.6	- 5	<.05	₽	34.0	87									2
MD93082901A	\$	\$		10 10 10 10 10 10 10 10 10 10 10 10 10	7	•	M	4.83	5.0	⊽						25.0	5	<.05	₽	6.7	3.8									86
MD93082901B	\$ '	φ,	_			•	M	1.02	3.0	⊽.		<5 31000	00 <50	0 100	<.2	5.4	<5<.01	<.05	⊽	6.2	- 8.	<4 <50	71 09	7 28	8 15	5 1.6	6 .5	\$.5	9	2
MD95082903A	ا	ΰ,	869 75		∵.		ů,	1.53	8.0	⊽ .	₽,			•		3.4	Ξ	<.05	∵	89.0	6.4		_							- 14
MD95082905B	\$	Ç	<2 730	50	⊽	22 180	\$	5.31	0.6	⊽						21.0	5	<.05	9	28.0	3.7									.41
MD93083002A	Ŷ	\$	<2 1200	10 10 10 10 10 10 10 10 10 10 10 10 10	⊽	6 180	\$	2.26	5.0	7	ŵ						<5<.01	<.05	~		3.6						-	٧		27
MD93083002B	\$	\$	<2 830	50 <1	⊽		\$	1.00	5. 5	⊽				•			<5<.01	<.05	<u>~</u>		30.0							V		65
MD93083003A	\$	Ŷ			۲		%	2.74	4.0	₩		6 24300	00 <50	0 150	<.21	16.0	<5<.01	<.05	₽	11.0	2.4	<4 <50		37 68	8 17	3.5	5.		2.3	36
MD93083003B	\$	ک	3 1000		⊽	<5 140	Ş	2.57	5.0	7	Ŷ			•			<5<.01	<.05	Ŋ		6.4			•				,		.51
MD93090101	\$	ئ	<2 560	8 2	₹	6 260	\$	1.74	2.0	7				•			<5<,01	<.05	₽		۰.5 د.5							Ÿ		8
MD93090102	\$	ô		0 <1	₩.		\$	84.	2.0	₽	ŵ						<5<.01	د.05	V	8	1,0									Ķ
MD9390103	\$	φ.	-		7	-	%	1.95	4.0	₽							<5<.01	<.05	₽	5.8	\$; ₽
MD93090104	φ,	<u>ئ</u> ئ	- •				<u>ې</u> د	5.42	3.0	⊽ ¹	φ, ,	<5 29500	00 <50	05 05 05 05 05 05 05 05 05 05 05 05 05 0	4.2 1	17.0	<5<.01	=	∵ .	2.2	. .5	<4 <50		25 43	3 16	5 3.9	9 1.3	5. 5	2.0	.35
MD95090105A	٥ ۲	٥ ٪	006L %	⊽ 7 ⊋ 9	⊽ ₹	ر بر 50 در	۶ ر	2.15	9 1	Ţ ;							<5<.01	×.05	∵ :	37.0	5.4			•						:35
800000000	7	7					y	-	;	7							494.UI	S	-	•	<u>.</u>									.41
RE MD93090105B	φ,	'nή			∵'		% و	٠. و	2.5	₽,		6 31000	00 <50	65	2. 2	5.3	<5<.01	د.05	₩.	7	1.5									95.
MD93090106A	2 5	<u>ک</u> ر	2,000	7 T	2،ں	0 K	? 5	6.5	o 6	⊽ ₹	0 K			- č			54.01	9 8	⊽ 1	12.0	3.0	•								న:
MD93090202	\$		-		; ⊽		, ¢	2.03	20.0	, v		\$ 272 \$		3 6			55.01	<u>.</u> 8	, v	13.0	, ,	\$ 4								<u>ئ</u> و
MD93090203A	ψ,	\$	<2 450	00 12 00	⊽	<5 290	%	.55	4.0	⊽	\$			100			<5<.01	.05	. ₽	13.0	1.2	4 <50		31 60	. 6	2.9	9 <.2) ()	2.0	34.
MD930902038	φ.	\$	\$ 280	8	⊽	<5 180	%	94.	5.5	٧	۵.			110		1.5	<5<.01	<.05	₹	10	7									,
MD93090203C	\$		•		_			2.39	2.0	₩				120			<5<.01	.05	₹	16.0	. &									. 13
MD93090206	φ,		•				٥,	3.15	2.0	₽,				120			<5<.01	50.	₩.	14.0	2.5									.18
MD95090501	ۍ بر	٥ ۲	\$ 1500 \$ 4100	⊽ ₹ 2	۳ ۲	5 140 38 410	•	2.55	0. 7	⊽ ₹	φ, 4	<5 25500 <5 16500	00 <50	130	×.2	4.0	<5<.01	50.5	⊽ ;	26.0	7.7	4 <50	53	3 8 8	2 18	3.6	6 1.0	5.5	1.1	23:
) 						_)					3			10.75	9	,	ó	9									۶۲.
MD930903038	ψ,		\$ 380 \$ 280 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 50 \$ 5		Ξ;		% (8.95	2.0		Α̈́	<5 18200	00 <50	30	<.23	38.0	<5<.01	50.	₽.	\$°.5	6.5									.78
MD93090305	0.40	0 %		⊽ ⊽ 2	v v	6	7 0	5.5	۰ د د د	⊽ ⊽				8 5			\$ \$ \$ \$	5.5	⊽ 7	11.0	۰ د د	4 55 5 50 5 50	32	2 t	8 2 5	 	٠. ١	2,	7.7	82.
		1	1		-		ب	3		ı	-			2			2	3	,		-	- 1			-	-		- 1		,

ANALYSED BY INAA. - SAMPLE TYPE: PULP Samples beginning 'RE' are dygligate samples.

ı	T						· · · · · · · · · · · · · · · · · · ·	 1
크	12.2.05.89	9 4 4 5 7 7 7	. 27 . 27 . 24 . 38 . 18	.19 .08 .10 .33	.20 .20 .44 .08	5.85.88	.07 .06 .12	71.
& ₹	2.7	5.1 9.1 1.8 1.8	7.1. 2.1. 2.0. 1.1.	1.1 5.0 3.3	9.4.2.9.5	بنيمتن	w.n. 6 r.n.	4.
유준	4000	******	$\hat{\mathbf{v}}_{i}$	n in in in in				. .5
P M	5.1.	w. 4. 4. W. Q.	๘๖ํ๛ํ๛ํ		<i>ં</i> વંડાયાં.	, ., ., ., ., ., ., ., ., ., ., ., ., .,	w 44 44 44	κ.
PP. M.	3.1 10.0 10.0 2.3 6.3	.8 1.3 6.7 7.9 25.0	2 2 2 2 3 3 4 3 5 4	5. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	3.7 1.5 1.6 4.		20010	0.
PNdd	14 57 12 12 55	65 52 52 52	7 8888	5 6 7 25 5	8555	255×5	δδδδ ο	φ
3 K	25 25 33 25 25 25 25 25 25 25 25 25 25 25 25 25	7 18 170 170 500	% 4 ₽ ∞ ₽	5 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2	8 2 0 2 9	₹ ₹\$	~ £ 5 5 £	5
잘	12 051 051 051 051 051 051 051 051 051 051	11 28 98 28 280 280 280 280 280 280 280 280 280	82244	ヤファドラ	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5444	~ ~ ~ ~ ~	^
2 4	\$50 \$50 \$50 \$7 \$50	55 50 50 50 50 50	\$50 \$50 \$50 \$50 \$50	% % % % %	88888	88888	\$ \$ \$ \$ \$	\$50
3 M	33333	44444	33333	44444	33333	44444	33333	4
D M	2.5.5.5	6.2 6.2 7.1 4.0	4.9 9.1 9.1 6.1	0.1 8.5 1.1 5.5	1.4 1.6 7.7 5.5	2,5,6,5	25.	ω.
두ᇲ	44.0 21.0 3.5 1.3	1.2 4.7 46.0 71.0 220.0	19.0 1.9 1.1 2.6 7.	7. 1.5 1.7 3.7 2.0	14.0 3.6 1.0 1.9 2.5	2.5 7.5 1.5 1.1	2.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	1.8
P Ta	55555	22242	~~~~	~~~~	5 5 5 5 5	5 5 5 5 5	5555	⊽
۲. ×	\$5.01.05 \$5.01.05 \$5.01.05 \$5.01.05	\$6.5 \$6.5 \$6.5 \$6.5	.05.05.05.05.05	88888	5.55	8585	014.05 014.05 014.05 014.05	5
S %	55555	22222	\$<.01<.05 \$<.01<.05 \$<.01<.05 \$<.01<.05 \$<.01<.05	\$50105 \$50106 \$501<.05 \$501<.05	55555	\$<.01<.05 \$<.01<.17 \$<.01<.05 \$<.01<.05 \$<.01<.05	\$5.014.05 \$5.014.05 \$5.014.05 \$5.01.06	<5<.01<.05
Se	i	***		44444	44444		\$ \$ \$ \$ \$ \$	Ý
S PM	37.0 12.0 4.8 9.2 9.2	1.6 3.7 1.9 4.5	2:2 1:2 1:2 0.	2.5 2.5 4.2 1.1	6.0 2.1 1.4 2.5 6.0	2.8 1.9 1.3	2.7 3.1 2.8 2.4	2.5
SP M	2,2,2,2,2	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	û	û ki û 4 û	1.2	2 2 32.0 2	4.2
P.P.R.	882388	\$\$ 250 150 130	\$ 8 8 8 8	88888	88888	8 8 8 8 8	88488	33
PPM	\$50 \$50 \$50 \$50 \$50 \$50	\$50 \$50 \$50 \$50 \$50	\$50 \$50 \$50 \$50	\$50 \$50 \$50 \$50 \$50	\$50 \$50 \$50 \$50 \$50	\$\$0 \$\$0 \$\$0 \$\$0 \$\$0	\$	\$
P W	14700 31500 14200 1200 542	<.05 <.05 19000 24400 20600	23900 4.05 4.05 4.05 4.05	<.05 .05</.05</.05</.05</.05</.05</.05<</th <th>26900 <.05 <.05 <.05 <.05</th> <th>19200 11000 <.05 <.05 <.05</th> <th>6.057446.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.05<l< th=""><th>520</th></l<></th>	26900 <.05 <.05 <.05 <.05	19200 11000 <.05 <.05 <.05	6.057446.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.057.05<l< th=""><th>520</th></l<>	520
₩ ₩ ₩	\(\pa_{\phi}\phi_{\phi}\ph_{\phi}\phi_{\phi}\phi_{\phi}\phi_{\phi}\phi_{\phi	\$\$\$\$\$	δοδο	\$\$\$\$\$	\$ \$ \$ \$ \$ \$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<i>66666</i>	δ
1. PPB 1	88888	$\delta \delta \delta \delta \delta$	<i>&&&&&</i>	<i>&&&&</i>	<i>&&&&</i>	<i>১</i>	<i>৯</i>	ŵ
PP#	5555	22222	22222	~~~~	$\nabla \nabla \nabla \nabla \nabla \nabla$	$\triangledown\nabla\nabla\nabla\nabla$	~~~~	⊽
PPM PPM	3.0 3.0 5.0 5.0	5.0 8.0 13.0 15.0	5.0 10.0 11.0	0.0 6.5 6.5 9.0 6.5	0.7 0.0	2.0 2.5 5.5 5.5 5.5	********	5.
Fe %	9.02 5.73 3.85 25.40 36.90	5.10 18.10 1.99 2.59 1.82	1.33	.33 1.19 16.40 .68	2.73 28.40 3.41 1.34 .60	2.94 .17 1.15 .78 .69	.92 .55 7.83 1.48 2.51	2.57
Cs	33333	333m3	33333	33333	33333	%%%%%	33333	ѷ
ت M d	200 210 130 82 22	02 150 170 18	170 340 340 340 340	350 20 26 130 330	170 160 71 28 410	120 47 17 <10 <10	c10 41 28 15 15	72
S M	44 27 8 8 11	ሱ ሱ ሱ ሉ ሉ	& & & & & & &	2000	25858	& & & & & & &	δ	δ
S ×	∞ <u>^</u> 4 w v	82222	~~~~~	A 25 55 25	ななななら	48428	41 38 35 37 38	%
PPM PPM	5555	~ ~ ~ ~ ~ ~	22222	^ ww w w	22nws	80 4 ₩ ₩	wwa£a	2
Ba PPM	490 490 4100 520 4100	<pre><100 <100 2200 1100 1100</pre>	1200 *100 *100 *100 *100	\$100 \$100 \$100 \$250	1400 120 <100 <100 <100	\$\frac{1}{2} \frac{1}{2} \frac	120 120 120	¢100
AS PPM	33333	32333	33343	333-3	3 0 0 1 5	52233	9 9 m m m	8
Ag PPM	22222	&&&& &	& & & & & & & & & & & & & & & & & & &	& & & & & & & & & & & & & & & & & & &	& & & & & & & & & & & & & & & & & & &	& & & & & & & & & & & & & & & & & & &	~~~~~	δ
PPB	00-00	<u> </u>	99999	<u> </u>	~ \$\$\$\$	22200	<u> </u>	\$
SAMPLE#	MD93090306A MD93090306B MD93090307 MD93090501 MD93090503A	MD93090503B MD93090503C MD93090601A MD93090601B MD93090603	MD93090605 MD93090701 MD93090703A MD93090703B MD93090705	RE MD93090705 MD93090706A MD93090706B MD93090707 MD93090801	MD93090802 MD93090803 MD93090901A MD93090901B MD93091001A	MD93091001B MD93091001C MD93091101A MD93091101B MD93091101C	MD93091101B MD93091101E MD93091101F MD93091102B MD93091102B	RE MD93091102B
1	1							

Sample type: PULP. Samples beginning 'RE' are duplicate samples.

GEOCHEMICAL ANALYSIS CERTIFICATE

Loring Laboratories Ltd. PROJECT 36190 File # 93-3328 629 Beaverdam Road N.E., Calgary AB 72K 4W7

	Ĭ								
3	E	-25	~		-5				=
~	- 1	29.50.50 20.50.50 20.50.50 20.50.50 20.50.50 20.50.50 20.50.50 20.50.50 20.50.50 20.	.37 .05 .17	55. 53. 50. 50. 50.	28.98.75 17.88.98	483394	23 50 8 51 50 52 50 50 50 50 50 50 50 50 50 50 50 50 50	23.25.25	92
Ra B	24	% 90 90 07	12 2 05 03 07	12 2 2 3 3 4 9	25 14 15 10	00 07 07 08	82233	07 14 27	80
¥ F	26	26 2 8 3	23 25 25 25	87887.6	56. 58. 52. 54.	8,8,2,8,8	55 65 65 65	3,3,2,3,3	1.88
60	E.	w o o so =	57 € 5 8 8 8	15 6 2. 1 3.	4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .	w 2 o 5 4	ωωωω δ	24 08 4 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	34 1.
Ξ	- 1	20009	E 2 2 2 2		6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000	2,2,8,2,2	26. 26. 26. 26. 26.	60.
Ba	mdd.	7 6 7 6 7 7	235 27 28 8 25 17	24 27 23 23 23	171 168 168 36	50 50 161 98 19 <	19 < 57 < 101 101 × 20 <	8 < 97 301 51 62	183
₽ B	- 1	255 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	.82 .40 .13	.55 .33 .33	.58 .14 .61 .57	.20 .54 .61 .58	85.85.85	8848	.94
៦	E.	22 1 2 1 1 2 1 1 2 2 2 3 2 3 3 3 3 3 3 3 3	132 132 163 194 194	117 65 1 104 117 113 3	188 178 172 177 1	128 28 128 128	128282	117 88 128 95 220	29
La	E d	\$ 5 5 27 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11 6 11 78 11 11 11 11 11 11 11 11 11 11 11 11 11	38348	85885	ဆ ဂ်ာ ဆ ဗိုး မ	21223 202123	28882	39
۵	34	005 006 003 024 147	.007 .011 .004 .020 .009	013 057 007 019 234	.033 .011 .037 .038	.006 .023 .056 .036 .004	004 011 024 008	011 011 039 020	.087
ខ	*	14.47 2.43 23.18 .19	.02 .02 .07 .04	.07 .05 .05 .05 .05 .05 .05	24 13 26 19 20	25 27 27 27 27 27	95.55	88.89	.50
>	ma d	\$5 \$ \$ \$ \$	804mm	4 & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	82228	\$2 % 8\$\$	\$648\$	<u> </u>	58
Bi	E dd	00044	5 8888	00000	%%%~%	%%%% %	33333	33333	21
Sp	EG.	~ \$\$~\$	3 × 3 3 3	~~ %%%	33323	9×9~~	33~33	%%%%%	14
ខ	E d	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	,,,,,,	5 to	2,2,2,2,2	22222	2,2,2,2,	2,	19.2
٦٥		44 142 143 143 143 143 143 143 143 143 143 143	80000	6 9 8 113	8 2 2 2 2 2 2 4 7	4 5 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 & & E K	7 4 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	25
£	E dd	330 330	1153 51 8 37 16	¥ 0 2 8 5 5 1	15 10 35 6	80080	% 5555	24 62 62 62 62 62 62 62 62 62 62 62 62 62	*
Ā	ELC d	33333	33333	33333	33333	33333	33333	%%%%%	7
כ	E.	\$ \$ \$ \$ \$ \$	300 \$5 \$6 6	\$\$\$\$	5	δοδδ δ	δδ δ δ δ	∞ A A A A	4
As		๛๛๛๛๛	33~33	99999	33333	33333	33333	~%%%%	1,
ā.	*	.12 9.59 .29 1.11 2.19	5.04 .98 .52 .85	.73 3.69 .80 1.34 4.26	1.88 60 2.21 1.94 1.62	.41 3.24 1.78 1.78	.31 1.16 .93 1.74 .39	20.5 2.05 2.49 1.39 3.43	4.01
둘	E C	13 520 20 41 88	84 77 83 74 84 84	94 764 121 97 626	168 184 464 234 246	106 171 218 153 70	229 289 74	65 220 284 145 282	1019 4.01
ន	E .	~~~~~	13 2 4 1	12 22 22 22	92545	-400-	-2-4-	10 10	32
Ξ	튭	-45w10	9 W 4 W V	40000	2444	0 W ~ W U	242-22	13 t 13 t 1	89
Ag	튭		44444	54+++	wi-2044	-4-4-	44444	uuuuu	6.8
Z,	E dd	10 10 10 29	175 17 28 71	19 69 16 28 144	49 49 38	12 26 25 17	27 - 28 - 29 - 4	31 32 52 53 53 53 53 53 53 53 53 53 53 53 53 53	127
g G	튭	12 8 11 20	103 2 11 2	928274	9 21 25 25	400,00	77557	M 6 4 4 W	37
ខ	퉚	2527	N N & N N	MWWWW	32 23 23 34 35 34 35 35 35 35 35 35 35 35 35 35 35 35 35	24 2 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20 10 87	62
£	<u>E</u>	₽~₽~ -	10 3 3 3 3	> m -	4 1 3 3 3	2 ~ − ~ 2	2024-	22-22	19
SAMPLE#		MD930824018 MD930824018 MD93082401C MD93082701 MD93082703	MD93082704 MD93082705 MD93082707 MD93082803A MD930828038	MD93082804 MD93082901A MD930829018 MD93082903A MD930829038	MD93083002A MD93083002B MD93083003A MD93083003B MD93090101	MD93090102 MD93090103 MD93090104 MD93090105A MD93090105B	RE MD93090105B MD93090106A MD93090106B MD93090202 MD93090203A	MD930902038 MD93090203C MD93090206 MD93090301 MD93090303A	STANDARD C

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. Samples beginning 'RE' are duplicate samples.

<u> </u>	· · · · · · · · · · · · · · · · · · ·	*****						
> #G	5555	2-2-2	~~~~	~~~~		▽-▽-▽	~~~~	10
∀ ₩	23.28.28.24.24.24.24.24.24.24.24.24.24.24.24.24.	68. 01. 02. 03.	4:1: 2:1: 5:0:	2.0.0 10.00	. 25. 20. 20. 20. 20.	.05 .03 .11	.05 .03 .03	. 14
Z X	80. 84.	8.9.20.	9,86,69	22222	9.6.59.6.	. 20. 10. 15. 18.	869	90.
₹×	1.30 .87 3.56 2.26	2.42 .36 .38 .31	4.2.4.4.9	2.222%	.30 .18 .27 .1.32	25.25 25.05 26.05 26.05	.24 .15 .08 .22	1.92
8 6	44400	5 & 2 5 8	က ထ ကို က က	20mm=	ποουζ	7 8 39 11	9 14 4 10	33
.i. %	. 51. . 05. . 03. . 72.		2.50.50	22222	10. 10. 10. 10.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	20.00.00.00.00.00.00.00.00.00.00.00.00.0	80.
88 6	3 8 8 8 7 7	33 233 11 19	4 23 66	48895	101 101 18 164 5	∞ L ∞ C ∞	51 11 6 12	188
E %	55. 35. 1.70 1.70	5:1: 5:2: 5:0:	45. 26. 26. 26. 26.	9.9.9.8	.32 1.28 .18 .91	.31 .33 .40 .47	.43 .27 .31 .27 .39	٤.
5 គ្គ	82 85 8 5 E	90 7 7 97	25 25 25 25 25 25 25 25 25 25 25 25 25 2	253 179 224 238 9	13 248 131 93	5 2 27	FW4W0	8
P P	13 23 4 31	20000	22222	9~99~	2222	α α α α α α	~~~~~	88
₽ %	.018 .008 .011 .042	.027 .062 .094 .010	962	.001 .001 .001 .001	.010 .003 .004 .004	.002 .012 .019 .003	00.009 00.009 00.009 00.009	980
8 %	1.01 .04 .07 2.25 .19	1.44 1.49 2.72 50.56 .32	82.22. 22.22. 24.22.	02 02 03 .03	3.71 1.72 1.13 1.9	30.27 31.24 37.24 16.98 22.78	35.28 39.06 38.78 40.14 34.81	.50
> mdd	82 12 28 88 60 88	85 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ოგცნო	23 33 42 33	w 24 k	90969	20000 20000	25
is Bd	3333m	00000	00m00	\$~\$\$\$	\$\$\$~\$	33333	33333	19
ds m	33333	99990	~4444	99999	~ ~ ~ ~ ~ ~	99900	~%%%%	14
3 6	wûûuû	44444	2,2,2,2	2,2,2,2	,,,,,,,	2,2,2,2	~, ~, ~, ~,	18.7
rs mgd	81 81 01 12	49 50 233 19	2204-	312	265 63 5 16 5	187 184 245 472 0002	245 207 208 219 272	52 1
# E	30 22 25	50038	88 88 22 22 23 88 88 22 22 23	33333	33~53	33333	~ % % % %	36
P Mg	33333	333 33	33333	3 3333	33333	33333	33333	7
⊃ E	88888	\$\$\$\$	≈ <u>~</u> 5 0 \$	<i>৯</i> ৯ ৯ ৯ ৯ ৯	৯৯৯৯৯	১১১১ ८	& & & & & &	4
As my	53433	33301	w û û a w	นอนิพบ	იობ ეო	wEw50	91.923	43
n %	2.31 1.41 1.42 3.05 4.14	2.33 24.85 35.41 4.54 18.11	1.84 2.15 1.72 1.27 30	4.04 .27 .27 .26 .85	.60 16.46 .69 2.64 20.69	2.62 1.08 .52 2.91	1.01 .54 .52 .76 .37	4.03
를 없	332 211 205 275 151	192 3904 2079 176 325	120 240 307 162 56	138 138 138 138 138 138 138 138 138 138	213 1199 103 446 63 2	278 375 135 221 25	217 178 168 173	1079
သ ရွာ	15 4 31	7 2 4 5 2 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5	N 4 4 N F	m	27 27 11	45-W-	w-0-0	31 1
i N mdd	83	22 5 5 5 5 6	0 M M M M	N4N40	32 22	22 2 2 2 2	9 M 4 M 4	8
Pp Mg	undun	w 4 w	ww-4-	444	2225	4-4-4-4	00	7.0
Zn ppm	3x3xa	% o 2 o €	22333	0 m e	47 47 6	34 24 34 34 34 34 34 34 34 34 34 34 34 34 34	0 M M M M	122
d mg	\$220 5	~ %%%4	5 4 2 5 5	~~%% %	99rnm	N 0 1 7 8	r G w G r	8
3 6	103 6 7 31 191	121 7 7 8 4 4 4	108 41 3 24 6	44MMV	$v \approx v \approx v$	m 0 2 1 2	4 M N M M	19
oM mqq	0 + × 0 8	-2250	00884	-42	2 w - v 2	~~~~	~~~~	17
	5 4 5 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7- 11- 38- 30-	13 B 2 C 1	38 38 5 0705 6A	68 7 1 3 3	¥ 8 ¥ 8 Ú	¥ 8 5 5 5 3	U
LE#	MD93090303B MD93090304 MD93090305 MD93090306A MD93090306B	MD930903 07 MD930905 01 MD930905 038 MD930905 038	MD930906018 MD930906018 MD93090603 MD93090605	MD93090703A MD93090703B MD93090705 RE MD93090705 MD93090706A	MD9309070 6B MD93090707 MD93090801 MD93090802 MD93090803	MD93090901A MD93090901B MD93091001A MD93091001C	MD93091101A MD93091101B MD93091101C MD93091101B MD93091101E	STANDARD (
SAMPLE#	MD93 MD93 MD93 MD93 MD93	MD93 MD93 MD93 MD93 MD93	MD 93 MD 93 MD 93 MD 93	MD93 MD93 MD93 RE M	MD93 MD93 MD93 MD93	MD93 MD93 MD93 MD93	MD93 MD93 MD93 MD93	STAN
]								

Sample type: PULP, Samples beginning 'RE' are duplicate samples.

Loring Laboratories Ltd. PROJECT 36190 FILE # 93-3328

SAMPLE#	£	Mo Cu Pb		5 2	Ag	ï	೮	£	Fe	As	-						Вi	ت >	9										3
	E dd	Edd.	mdd mdd	Edd	udd	E Edd	E	mdd.	*	wdd.	u wdd	m d	mdd.	udd	d mdd	udd	d mdd	bom	×	mdd 3	udd .	×	Widd.	*	E C	~ ×	**	*	E d
MD03001101F	⊽	1	M	4	^	0	1 7	181 6	07	7	\$						Ç	4 21 R						1	5		ı		•
	. 1				! •				. !	. () 1						ļ												-
MD95091102A	~	>	118		-	^	~	377	.17	S	Ŷ						Ç	2 25.6			9				M	ຂ.			⊽
MD93091102B	⊽	S	~	14	۲.	Ŋ	M	3 378 1	.78	%	٨						7	2 26.60			9	.42			5				-
RE MD930911028	₩	4	4	14	·.1	5	M	360 1	1.67	2	₽	%	, ~	176	4. 2	ç	\$	2 26.29	9 .025	2		.42	23		7	.23			7
STANDARD C	18	63	45	122	7.0	8	31 1	1070 4	.05	41	14						20	56 .5			. 61			.08	33	•	.08	.16	-

Sample type: PULP. Samples beginning 'RE' are duplicate samples.

To: ALBERTA RESEARCH COUNCIL,
P.O. Box 8330,
Postal Station "F",
Edmonton, Alberta T6H 5X2

File No : 36416.00

Date : April 6, 1994

Samples : Core

P.O. # : ED 94062364

Certificate of Assay Loring Laboratories Ltd.

	ppt		Total Rec'd Wt	Total Wt After LOI @ 800 C /16 Hours	
Sample	No. GOL	. <u>D</u>	grams	grams	
SL 27C-	-1	24			
SL 27C-	-2	14			
SL 27C	2-1	13			
SL 27C	2-2	<5			
SL 27C	2-3	11			
SL 27C	2-4 10	40 *	130.58	105.03	
SL 27C	2-5 6	47 *	49.96	44.23	
SL 27C	2-6	<5			
SL 27C	2-7	16			
E+86-1	4	55 *	42.13	36.10	
E+86-2	7	17 *	96.22	77.47	
E+86-3	1	07 *	71.62	57.56	
E+86-4		17			
E+86-5		5			
E+86-6		17			
E+86-7	2	77 *	122.95	105.85	
SL 27C	1-1 6	77 *	113.00	101.86	
SL 27C	1-2 1	68 *	168.67	161.44	

I Hereby Certify that the above results are those assays made by me upon the herein described samples

Rejects retained one month.

Pulps retained one month
unless specific arrangements
are made in advance.

Soul Seran Assayer

To: ALBERTA RESEARCH COUNCIL,
P.O. Box 8330,
Postal Station "F",
Edmonton, Alberta T6H 5X2
<u> </u>

File No : 36416.00

Date : April 6, 1994

Samples : Core

P.O. # : ED 94062364

Certificate of Assay Loring Laboratories Ltd.

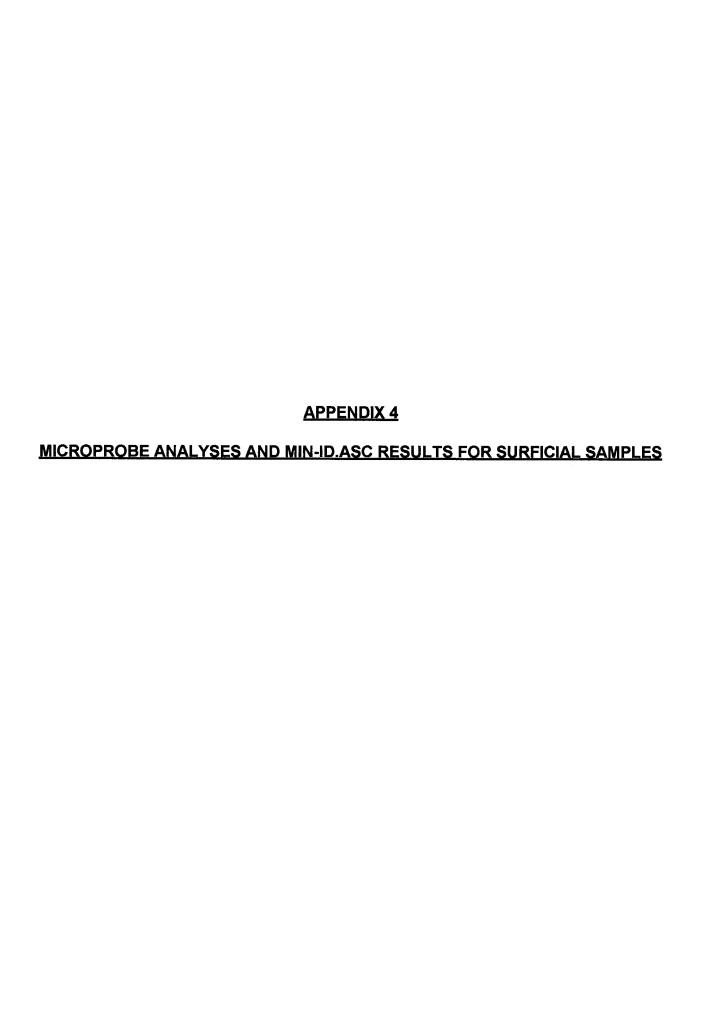
		J		Total Wt After LOI @	
_	Sample No.	ppb GOLD	Total Rec'd Wt grams	800 C /16 Hours grams	
	SL 27C1-3	<5			
	B+148C-1	109 *	81.94	69.87	
	B+148C-2	69 *	73.22	58.50	
	B+148C-3	218 *	57.44	21.06	
	B+148C-4	297 *	101.60	95.21	

I Hereby Certify that the above results are those assays made by me upon the herein described samples

Rejects retained one month.

Pulps retained one month
unless specific arrangements
are made in advance.

Holl Gran Assayer


^{*} Asterisk indicates these particular samples were burned off due to Bitumen content.

GEOCHEMICAL ANALYSIS CERTIFICATE

Loring Laboratories Ltd. File # 94-0812
629 Beaverdam Road N.E., Calgary AB T2K 4W7

3	шф	•		₹ '	⊽	⊽	⊽	7	, T	; ₩	⊽	⊽		⊽	∵	⊽	-	⊽	,	⊽ T	7	-	- ₩	•	7	⊽	⊽	7	13	
¥		١.	_			<u>.</u>	_				.13	_		8.	90.	.01	<u>.</u>	.03		8	9 8	66	8	2	.15	۴.	-05	.21	.13	
	24	ĺ			٠.	.02					5				٥.	•				2.5	5 5	5	5		٥.	.0	-05	.01	.07	
Al	*				_	53.					3			.31	87.	.32	.19	φ <u>,</u>		8 . 1	3 2	8	2 8		8.	\$	4.25	1.42	1.88	
m	Wd.	:	4	702	110	141	15	ς	ָ קלי	2 5	۲ م	19	!	%	ŷ	147	122	8		<u>ئ</u> د	2 =	. *	r 0	•	ထ	Ÿ	257	17	34	
ï	×		5	<u>.</u>	-05	.03	.0	S	9.5	, ,	50,0	.03		.0	.02	70.	.02	S		8.5	5 6	3.5	5	;	.02	.02	19	0	80	
Ba	EG d	;	7	ድ	7	67	30	9	9 8	9 K	3 5	8	:	8	33	12	8	7		27	2 5	<u>ک</u> د	<u>-</u> ~	1	51	42	71	25	18	
E	><	!	.13	07.	٤	.35	.07	8	20.	3 5	5	2	•	.01	<u>e</u>	.13	.33	Ξ.		2.5	3.5	3 5	÷ 5	-	20.	6	K	8	5	
៦			104	1,	2	32	279	į	471	2 5	3 2	22.5	}	219	398	7	22	33		172	0 2	Ç,	\$ 2	2	396	302	553	165	50	
la l	E d		13	ç	%	7	Ŋ	1	n (7 5	5 5	7 2	1	٥	7	7	5	%		~	> (2 `	٥ ٧	0	22	7	76	17	× ×	3
۵	×		.010	.004	.001	00.	.002		7007	9,5	4	200	9	003	00	9	.001	.002		.002	•00°	•00°	30.5	.021	900	000	700	8	9	
3	36		.17	8.	1.26<	1.77	2.	1	8	કું :	 	3 6	5	9	9	8	%.	19.		.14	= :	7.	3:	=	.03	2	. 52	2 8	3 12	
>		1					=======================================	•	x	77	2 ₹	9 1	2	28	2 2	4	'n	Ξ		13	20	21	2 9	2	28	1	2 0	2,5	ָר ה ה	
j.			Ç	?	\$	0	Š	4	<u>ې</u>	ا \$	n (,	*	4	,	ļ	, ?	9		<u>ې</u>	ζ,	7	۵,	7	Ş	, 0	, ~	, ć	7 5	3
ક	2 60		~	4	0	4	4		ç	7	~ (, ג	7	Ç	, ¢	, 0	M	M		M	Ş	Ÿ	ζ,	7	*	, ?	, (7 ?	'n	2
3	3 6		~. 2	<.2	\ \ \	,	.2		~ .2	ĸ.	7.7	7.7	7.	,	; `	; `	\ \ \	?		4.2	~.2	~. 2	4.2	7.				7.		
ů	, 6		33	717	250	35,	79		13	<u></u>	5 i	0 8	Ŝ	5	2 «	50, 50	322	130		34	21	25	£ ;	21	1	ā a	ָ כ	5 5	? :	7
Ę	5	į	9	\$,	, ('n		~	~	∞ ı	1	^	۲	า ๙	۰ د	1 4	M)	2	7	Ÿ	~	4	7	- 1	٠ ﴿	2 ′	7 6	8
1	2 5	1	%	0	, (, (7		%	%	φ,	γ,	Ÿ	ς	? १	,	, 0	, Ø	!	\$	<u>ې</u>	%	%	\$	ζ	, 6	'	γ,	y (°
=	2 5	1	Ą	Ŕ	, 4	۲ (γ (ŵ	ô	₩.	۱ 🗘	≎	ų	Ç 4) K) K	. Δ	•	ô	\$	\$	Ą	Ą	ų) 1	ָי ט	۰ ٥	0 :	2
1	S E	1	\$,	, ('n c	4 rv	•	\$	ø	S.	4	M	•	4 (7 ;	<u> </u>	, ~	•	2	\$	\$?	%	ς.	y (۷ '	Ş'	> :	44
، ا	ъ.	•	3 10	, ,	3 5	 	3.60		5.70	2.53	2.10	4.36	3.59	!	3.57	2.70	07.0	. 6	3	К.	5	92.	67.	20.14	•	Ç;;	70.07	2.80	.38	3.96
			171	2		- t	ů.	2			2		506			477				33	77	41	46	146				106	32	1072
	ខ រុ		12			⊽,	- •-	•	⊽	33	5	Φ.	9	,	•	- •	·	- 7	,	-	-	-	2	2	,	'	⊽	8	-	<u>۳</u>
	2		Ķ	3 1	٠,	⊽ '	/ I	`	10	24	37	74	25	!	: 3	၉ `	4 1	^ r	1	∞	9	٥	12	28	:	19	19	23	_	2
	Ag	E C	,	; •	- •	- ('nμ		0	M	٦.	ĸ.	ĸ.		'n.	4.	Ξ,	· -	:	۲	M	M		.2	•	·.	Ξ.	4.	Ξ.	7.2
	2	E .	11	÷ `	۱۵	Δ.	4 <	•	15	211	150	43	22		<u>1</u> 3	∞ 1	9	٧,	\$	•	2	-	8	38		œ	12	٥	Ŋ	132
	ð		**	- 6	<u>`</u>	2	£ 2	2	0	57	19	54	2		4	φ.	4	? ?	=	0	, 02	22	12	=		0	'n	45	9	31
	3	Ed	;	= '	7	~	rv c	•	72	^	7	12	16		Ŋ.	დ 1	`	- ;	ð	۲	'n	· w	'n	8		9	9	61	Ŋ	19
	운	E d	,	v	-		- u	^	-	- M	·-	7	7		M	7	-	- 1	•	-	۰ ،	۱ ۷	۱	-		M	-	9		9
	SAMPLE#			SL27C-1	SL27C-2	SL27C2-1	SL27c2-2	SL2/C2-3	7-632613	SLE/102 4	St 27c2-6	SL27C2-7	E+8C-1		E+8c-2	E+8C-3	E+8C-4	E+8C-5	E+8C-6	7.00.7	c: 27r1-1	DE CI 2751-1	SI 2751-2	SL27c1-3		B+148C-1	B+148C-2	8+148C-3	B+148C-4	STANDARD C

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: PULP <u>Samples beginning 'RE' are duplicate samples.</u>

Sample	Grain	Year	Probe	TiO2	Cr203	FeO	Mao	CaO	SiO2	A1203	A1203 Na20	Mno	K20	Total	<u>S</u>	Classes	Mineral
NAT92-24	-		UofS	000	000	-	7 99	-	37.78	21.31	0.02	0.50	000	100 29	2	0.5	ALMANDINE
NAT92-24	2	1994	Uofs	0.00	0.16	34.87	3.42		37.24	20.48	00.0	0.46	00.0	99.76	+	-	
NAT92-24	ဇ	1994	UofS	0.00	0.09	30.97	7.63	1.04	38.04	21.64	0.00	1.47	0.00	100.88	ည	0	
NAT92-24	4	1994	UofS	0.00	0.04	37.93	2.70	2.03	36.90	20.85	0.01	0.25	00.0	100.71	2	0	ALMANDINE
NAT92-24	2	1994	UofS	0.07	0.03	35.10	4.86	0.85	38.11	20.90	00.00	0.75	00.0	100.64	2	0	ALMANDINE
NAT92-24	9	1994	UofS	00.00	0.00	37.86	2.85	1.42	37.61	20.53	0.02	0.88	00.0	101.17	2	0 5	ALMANDINE
NAT92-24	7	1994	UofS	0.04	0.00	35.16	4.36	1.73	37.71	21.17	0.00	0.61	0.00	100.78	2	0 5	ALMANDINE
NAT92-24	ω	1994	UofS	90.0	0.00	36.16	2.97	1.24	37.39	20.42	0.00	1.97	0.00	100.24	Ω.	0	ALMANDINE
NAT92-24	თ	1994	UofS	0.00	0.00	36.10	4.24	0.33	37.81	21.21	0.00	2.13	0.00	101.82	ß	0	ALMANDINE
NAT92-24	10	1993	Canmet	0.12	0.00	89.03	0.00	0.00	0.03	0.16	0.00	0.03	ΑN	89.37	0	0	Fe_OXIDE
NAT92-24	=	1993	Canmet	63.85	0.01	27.28	0.05	0.12	0.18	0.28	0.00	0.78	NA	92.54	_	0 0	ILMENITE
NAT92-24	12	1993	Canmet	57.74	0.01	33.34	0.18	0.04	0.22	0.28	0.00	0.81	AN	92.63	-	0 0	ILMENITE
NAT92-24	13	1993	Canmet	59.59	0.01	31.51	0.39	90.0	0.22	0.21	0.00	0.39	AN	92.41	-	0 0	O ILMENITE
NAT92-24	14	1993	Canmet	64.10	0.32	26.66	1.26	60.0	0.19	0.73	0.00	0.42	AN	93.76	-	0 0	ILMENITE
NAT92-24	15	1993	Canmet	65.34	0.35	21.84	2.73	0.12	0.29	0:30	0.00	0.40	AN	91.36	0	0 0	O UNKNOWN
NAT92-24	16	1993	Canmet	64.00	0.35	23.52	1.08	0.20	0.88	0.98	0.00	0.20	NA	91.21	0	0 0	UNKNOWN
NAT92-24	17	1993	Canmet	66.14	0.05	22.69	0.04	0.15	0.59	0.36	0.00	1.65	NA	91.65	0	0 0	UNKNOWN
NAT92-25	18	1994	U of S	00'0	60'0	35.79	3.41	2.95	37.15	20.72	0.02	0.21	0.00	100.33	5	0 5	ALMANDINE
NAT92-25	19	1994	U of S	0.08	90.0	36.65	3.79	0.97	37.48	20.99	0.00	0.70	0.00	100.71	rv	0	ALMANDINE
NAT92-25	50	1994	U of S	0.00	0.14	33.14	0.49	0.48	36.36	20.70	0.04	8.91	0.00	100.27	ည	0 5	ALMANDINE
NAT92-25	21	1994	U of S	0.02	0.11	31.84	5.51		37.67	20.85	0.00	0.30	0.00	99.23	വ	+	ALMANDINE
NAT92-25	22	1994	U of S	0.01	0.10	31.29	2.90			20.83	0.01	98.0	0.00	100.71	ഹ	\rightarrow	ALMANDINE
NAT92-25	23	1994	U of S	0.00	0.08	36.32	4.48	9.	37.44	21.02	0.00	0.22	0.00	100.55	Ŋ	0	ALMANDINE
NAT92-25	24	1994	UofS	0.00	0.05	35.79	3.30	2.56	37.53	20.24	0.01	0.48	0.00	99.97	ည	0	ALMANDINE
NAT92-25	22	1994	UofS	0.10	0.00	31.21	1.36	8.93	37.18	20.69	0.05	06.0	0.00	100.41	Ŋ	0	ALMANDINE
NAT92-25	56	1994	UofS	0.07	0.00	32.18	7.77	1.04	38.67	21.84	0.01	0.76	0.00	102.35	Ŋ	0	ALMANDINE
NAT92-25	27	1994	U of S	0.02	0.00	31.44	7.34	1.36	38.81	21.90	0.03	0.48	0.00	101.38	ις.	0	ALMANDINE
NAT92-25	28	1994	UofS	0.05	0.16	5.85	15.53	22.75	53.69	08.0	0.75	0.23	0.00	99.77	Ø	4	CPX_02_UNKNOWN
NAT92-25	58	1993	Canmet	0.20	0.19	89.00	0.00	0.00	0.18	0.08	0.00	0.24	ΑN	88.88	0	0	Fe_OXIDE
NAT92-25	30	1994	UofS	0.05	0.13	28.43	5.19	6.79	38.35	20.66	0.01	0.59	0.00	100.18	ß	3	G_05_MAGNESIAN_ALMANDINE
NAT92-25	31	1994	U of S	0.05	0.04	25.16	9.62	2.61	38.70	21.74	0.00	0.61	0.00	98.53	S.	3	G_05_MAGNESIAN_ALMANDINE
NAT92-25	32	1994	U of S	0.05	0.05	30.18	8.32	1.76	38.57	22.16	0.01	0.41	0.00	101.48	ည	3	G_05_MAGNESIAN_ALMANDINE
NAT92-25	33	1994	U of S	0.08	0.01	28.54	9.18	1.17	38.79	22.53	0.00	0.33	0.00	100.62	ည	0 5	G_05_MAGNESIAN_ALMANDINE
NAT92-25	34	1993	Canmet	62.53	0.26	29.62	0.11	0.18	0.21	0.42	0.00	0.27	A	93.59	-	0	ILMENITE
NAT92-25	35	1993	Canmet	60.52	0.41	27.38	1.82	0.12	0.37	0.25	0.00	0.27	¥	91.14	-	0	ILMENITE
NAT92-25	36	1993	Canmet	62.03	0.12	31.06	0.07	0.11	0.19	0.31	0.00	0.64	Ą	94.51	-	0	ILMENITE
NAT92-25	37	1993	Canmet	59.68	0.07	33.42	0.04	0.02	0.17	0.17	0.00	0.36	ΑN	93.92	-	0	ILMENITE
NAT92-25	38	1993	Canmet	58.39	0.00	30.76	0.07	0.07	0.82	0.54	0.00	1.45	NA	92.11	-	0	ILMENITE
NAT92-25	99	1993	Canmet	59.05	0.05	32.12	0.07	0.07	0.13	0.21	0.00	0.89	NA	92.55	-	0	0 ILMENITE

	L					-		┝			-					-	
<u>ن</u>		Year	Probe	Ti02	_		_	-	Si02	A1203	=	Who	20 5	Total	<u></u> -		Mineral
+	5 1	2000	Callinet	28.28	2 0	20.10	2 5	0.00	- 6	0.40	3 6	0.80	<u> </u>	32.02	- +	0	
-	+	1993	Canmet	56 40		37 14		0 0	0.12	000	3 6	1 43	Z Z	95.14	-	0	
+-	\vdash	1993	Canmet	58.37		32.94		-	0.14	0.24	00.0	0.56	¥	93.36	1	0	ILMENITE
-	44	1993	Canmet	58.53	0.00	31.06	0.00	0.07	0.08	0.09	0.00	1.55	¥ V	91.42	1	0	ILMENITE
	45	1993	Canmet	65.88	0.08	23.42	1.23	0.26	0.74	0.85	0.00	0.56	NA	92.99	0 0	0	UNKNOWN
	46	1993	Canmet	62.95	0.14	23.60	1.92	0.20	0.44	0.33	0.00	0.38	ΑN	96.68	0	0	UNKNOWN
	47	1993	Canmet	63.08	0.02	23.50	0.18	0.19	0.34	0.32	0.00	2.98	NA	90.59	0 0	0	UNKNOWN
	48	1993	Canmet	60.92	0.01	25.42	0.23	0.21	0.61	0.21	0.00	2.15	ΑN	89.76	0	0	UNKNOWN
	49	1994	U of S	0.12	0.00	22.28	3.26	13.46	38.74	21.12	0.01	0.74	00.0	99.72	3 6	က	G_03_CALCIC_PYROPE_ALMANDINE
	20	1994	U of S	0.02	0.04	4.90	24.15	0.02	0.00	67.17	0.02	0.11	0.00	96.44	0	0	SPINEL
	51	1994	U of S	0.05	0.65	4.11	15.87	22.90	53.58	1.55	0.59	0.10	0.00	99.39	2 5	0	CPX_02_UNKNOWN
	52	1994	U of S	0.01	0.17	4.53	15.83	23.00		0.76	0.84	0.28	0.00	99.34		0	CPX_02_UNKNOWN
	53	1994	U of S	0.10	0.58	3.93	16.48	22.66	53.75	1.65	09.0	0.13	0.00	99.88	2	0	CPX_02_UNKNOWN
	54	1994	U of S	0.11	0.77	8.17	15.71	18.01	52.39	2.65	0.77	0.04	00.0	98.63	4 2	0	CPX_04_UNKNOWN
	55	1994	U of S	0.13	0.22	20.32	12.50	4.43	39.71	21.62	0.05	0.70	00.0	69.66	3 5	3	G_03_CALCIC_PYROPE_ALMANDINE
	26	1994	U of S	0.04	0.02	5.12	15.92	23.29	53.48	1.17	0.46	0.27	00.0	99.77	2	0	CPX_02_UNKNOWN
	22	1994	U of S	0.04	0.00	15.51	12.83	0.42	40.39	21.43	0.00	8.96	0.00	99.58	3 9	3	G_03_CALCIC_PYROPE_ALMANDINE
	28	1994	Uofs	0.19	0.00	21.91	5.51	12.01	38.48	21.00	0.01	69.0	0.00	99.80	3	က	G_03_CALCIC_PYROPE_ALMANDINE
	26	1994	U of S	0.06	0.00	25.30	8.35	5.70	39.78	21.19	0.01	0.49	0.00	100.88	5 3	വ	_05_MAGNESIAN_ALMANDINE
	8	1994	U of S	0.00	0.11	29.75	7.98	1.19	39.16	21.08	0.00	0.70	0.00	86.66	5	2	G_05_MAGNESIAN_ALMANDINE
	61	1994	UofS	0.05	0.00	36.90	3.48	1.79	38.25	20.47	0.00	0.71	0.00	101.62	2	2	ALMANDINE
	85	1994	U of S	0.04	0.47	6.84	16.00	21.49		1.36	0.52	0.27	0.00	100.52	2 4	0	CPX_02_UNKNOWN
	63	1994	U of S	0.09	0.00	28.10		6.15	37.89	21.19	0.01	0.67	0.00	92'66		2	G_05_MAGNESIAN_ALMANDINE
	49	1994	U of S	0.08	0.00	25.88	11.39		40.52		0.03	0.46	0.00	101.26	5 3	Ŋ	G 05 MAGNESIAN ALMANDINE
	92	1994	UofS	0.04	0.00	25.56	11.02	1.44	40.17	21.66	0.00	98.0	0.00	100.75		5	G_05_MAGNES!AN_ALMANDINE
	99	1994	U of S	0.01	0.04	25.11	11.45		39.99		0.00	0.48	0.00	100.09		ည ပ	05_MAGNESIAN_ALMANDINE
	29	1994	U of S	0.07	9.0	24.88	11.96	1.32	40.15		0.01	0.52	0.00	100.47		2	G_05_MAGNESIAN_ALMANDINE
	89	1994	U of S	0.01	0.00	24.11	12.10		40.07		0.00	0.87	0.00	100.10	5	ი	_05_MAGNESIAN_ALMANDINE
	69	1994	U of S	90.0	0.00	23.49		8.37	39.52	21.17	0.03	0.67	0.00	100.03	ა ა	က	G_05_MAGNESIAN_ALMANDINE
	20	1994	UofS	0.13	0.00	29.00	7.72	2.81	39.66	21.19	0.00	0.51	0.00	101.01	5 0	5 G	G_05_MAGNESIAN_ALMANDINE
	71	1994	U of S	0.08	0.00	26.75	69.6	1.90	39.83	21.39	0.02	1.06	0.00	100.72	5 3	മ	G_05_MAGNESIAN_ALMANDINE
	72	1994	UofS	0.16	0.00	25.49	11.15	1.38	39.58	21.74	90.0	0.94	0.00	100.50	5 3	5	G_05_MAGNESIAN_ALMANDINE
	73	1994	U of S	0.07	0.00	25.10	11.63	0.68	40.73	21.51	0.01	1.42	0.00	101.14	5 3	2	G_05_MAGNESIAN_ALMANDINE
_	74	1994	UofS	0.05	0.01	33.78	90.9	1.01	37.65	21.46	0.01	0.48	0.00	100.49	5	5	ALMANDINE
	75	1994	UofS	0.05	0.00	36.15	1.74	1.30	36.25	21.03	0.03	3.90	0.00	100.44	2	5 A	ALMANDINE
	9/	1994	UofS	0.03	0.00	30.81	1.78	7.87	37.34	20.40	0.01	1.90	0.00	100.14	5	5 A	ALMANDINE
	77	1994	UofS	0.08	0.05	36.05	1.23	5.67	37.34	20.68	0.03	0.43	0.00	101.57	5 0	2	ALMANDINE
	78	1994	UofS	0.10	0.01	33.19	2.03	96.9	37.82	20.77	00.0	0.84	0.00	101.72	5 0	2	ALMANDINE
	79	1994	UofS	0.05	0.04	32.37	1.82	7.00	36.51	20.29	0.01	2.23	0.00	100.32	2	ည	ALMANDINE
	80	1994	II of S	0.15	0	22.00	_	2	1	L	000		-			7	
	_)	;	3.5	5.00	7.40	0.00	37.55	20.48	3.5	0.94	00.0	101.26	2	Ŋ	ALMANDINE

Sample	Grain	Grain Year	Probe		Ti02 Cr203	Feo Mgo	Mgo	CaO	Si02	AI203	Na20	Mno	K20	CaO SiO2 Al2O3 Na2O MnO K2O Total Classes	읈	SSes	Mineral
NAT93-89	85	1994	U of S	0.09	0.03	8.93	13.63	22.56	53.19	22.56 53.19 0.43 0.98	0.98	0.34	0.00	100.17	4	2 0	0.00 100.17 4 2 0 CPX_04_UNKNOWN
NAT93-89	83	1994	U of S	0.08	0.04	8.36	13.07	22.86	52.03	22.86 52.03 1.52	1.02		0.33 0.00	99.29	4	2 0	99.29 4 2 0 CPX_04_UNKNOWN
NAT93-89	84	1994	U of S 0.16	0.16	0.01	0.01 11.30 11.36		23.05	50.28	23.05 50.28 1.78 0.41	0.41	0.63 0.02		98.99	0	0	98.99 0 0 0 CPX_04_UNKNOWN
NAT93-89	85	1994	U of S 0.10	0.10	0.00	22.51 2.33		12.99	38.40	12.99 38.40 21.20 0.04	0.04	2.68	0.00	100.26	က	6 3	2.68 0.00 100.26 3 6 3 G_03_CALCIC_PYROPE_ALMANDINE
NAT93-89	98	1994	U of S 0.12	0.12	0.00	27.13 5.48	5.48	7.22	37.60	7.22 37.60 21.44	0.01	0.72	0.72 0.00	99.72	S	3 5	99.72 5 3 5 G_05_MAGNESIAN_ALMANDINE
NAT93-89	87	1994	UofS	0.11	0.00	23.90	6.50	8.65	39.01	8.65 39.01 21.88 0.03	0.03	0.72	0.00	100.80	2	3 5	0.72 0.00 100.80 5 3 5 G_05_MAGNESIAN_ALMANDINE
NAT93-89	88	1994	U of S	0.07	0.02	27.73	5.75	6.27	38.38	6.27 38.38 21.43	0.00	0.55	00.0	100.19	2	3 5	100.19 5 3 5 G_05_MAGNESIAN_ALMANDINE
NAT93-89	68	1994	U of S	0.08	0.05	28.60	7.28	3.73	38.61	3.73 38.61 21.48	0.03	0.45	0.00	100.30	2	3	100.30 5 3 5 G_05_MAGNESIAN_ALMANDINE
NAT93-89	06	1994	U of S	90.0	0.00	28.09	9.60	1.30	38.37	1.30 38.37 21.85	0.04	0.52	0.00	99.81	2	3	5 3 5 G_05_MAGNESIAN_ALMANDINE
NAT93-89	91	1994	U of S 97.78	97.78	0.11	0.54	0.00	0.04	0.00 0.02	0.02	0.02	0.05	0.00	98.56	0	0	98.56 0 0 RUTILE
NAT93-89	92	1994	U of S 0.96	96.0	0.00	11.41	2.60	0.01	26.41	0.01 26.41 56.93 0.05	0.05	0.08	0.00	98.45	0	0	0.08 0.00 98.45 0 0 0 STAUROLITE

APPENDIX 5 PETROGRAPHIC DESCRIPTIONS AND SUMMARY

SUMMARY OF OBSERVATIONS OF THIN SECTIONS FROM THE MARGUERITE RIVER AREA

Rock samples were taken from both Precambrian and Phanerozoic rocks in the Marguerite River area. Of these, 36 were cut into regular or polished thin section. The thin sections were observed under transmitted light, and reflected light in the case of the polished sections. A summary of the observations made on both the Precambrian and Phanerozoic samples is given below.

PRECAMBRIAN SAMPLES

Precambrian rocks in the Marguerite River area consist of abundant granitoids, with minor mafic units described as amphibolite (Godfrey 1970) or basaltic dykes (Tremblay 1960).

Granitoids:

Three different varieties of granitoid rocks were defined in this study:

- 1. Megacrystic alkali feldspar granites to syenites. These rocks tend to be meso- to melanocratic in nature with 15 to 30% mafics, including chlorite, biotite +/- hornblende. They are also characterized by relatively low quartz values (less than 20% and often less than 10%), and the presence of minor amounts of corundum, indicating an excess of aluminum in the magma which gave rise to this unit. Two samples which are part of this group (MD93082704A and 2704B) had high radiation counts in the field (up to 5,000 cps), but no uranium-bearing minerals were observed in the thin sections of these samples. Additional samples which were part of this group include MD93082703 and 2901A.
- 2. Granites to granite gneisses. These rocks are generally leuco- to mesocratic, and are more quartz- and plagioclase-rich than unit 1. Mafic minerals include biotite and chlorite. This unit is distinguished from the above unit by its overall composition (especially the presence of plagioclase). In addition, intergrown hematite and magnetite were noted in all of the samples belonging to this unit, which include 93MD090103, 0104A, 0104B, and 0306.
- 3. Alkali feldspar granites to alkali feldspar granite gneisses. This unit comprises a majority of the granitoid rock samples observed in this study. The unit is typically leucocratic to mesocratic, with biotite and chlorite being the main mafic minerals. This unit is differentiated from the megacrystic alkali feldspar granitoids by being less maficrich, less coarse-grained and slightly more quartz-rich overall. It is distinguished from the granites by composition, especially the lack of plagioclase. Some samples of this unit also contain garnet and white mica (pyrophyllite) which are generally lacking in the other two units. Samples which belong to this unit include MD93082901B, 3003B, 090105A, 0105B, 0601A, 0601B, 0603, and 0802.

Mafic meta-igneous unit:

A mafic unit was defined in the field as an approximately 3 m wide unit which could be traced from the limb to the nose of a fold defined primarily by foliation directions. This unit apparently acts as a marker horizon and also defines this fold.

Thin sections of the mafic unit from the limb of this fold contain abundant clinopyroxene (augite), quartz, and lesser hornblende, uralitic hornblende, biotite, chlorite and plagioclase. The augite is readily altering to hornblende +/- chlorite in one sample, and in the sample from the nose of the fold, no augite exists. The fold nose sample, although slightly different in character than the limb samples, is believed to be a fairly highly altered equivalent of the latter, with abundant epidote and uralitic hornblende. The samples belonging to this group tend to have relatively high sulphide contents compared to the remaining samples in the study, although it has not been determined whether these sulfide are primary or secondary in the mafic unit. Although foliation is only vague in the thin sections, it is observed in the field, and this unit has been given the name 'mafic meta-igneous augite-bearing schist', the protolith of which is undetermined, but which is likely a mafic volcanic or mafic dyke. Samples of this unit include MD93090303A, 0303B, and 0307.

A mafic dyke was also observed in the field and one sample from this unit was examined in thin section (MD93082903B). From thin section observations, this sample is consistent with an altered mafic dyke (dioritic? not diabasic).

In addition to the above classification of thin section samples, the following general observations were made:

- ** Potassium feldspar (mainly orthoclase, with lesser local microcline), which is abundant in all three granitoids, was commonly altered to sericite. Also, epidote, clinozoisite, and pyrophyllite exist locally in close relation to K-spar. This indicates that hydrothermal alteration was fairly prevalent throughout the area. This contention is also supported by the alteration of augite to uralitic hornblende that exists in the mafic meta-igneous unit, and possibly by the presence of garnet locally.
- ** The garnet observed is commonly altered to chlorite along grain boundaries and fractures, which suggests it is almandine in composition.
- ** Metamorphic grade, as determined by thin section mineralogy, is likely upper greenschist to lower amphibolite. This is supported by the presence of chlorite, epidote, almandine garnet, and biotite in the granitoids, and clinopyroxene, hornblende, and plagioclase in the mafic meta-igneous unit. It should be noted, however, that the absence of pelitic rocks in this suite precludes a more precise constraint on metamorphic grade, as alumino-silicate minerals are not present, and many of the

above listed minerals are commonly rock-forming, and therefore not a clear indication of metamorphic grade. The mineralogy observed in this study, however, does allow for a general statement about metamorphic grade, given the stability ranges of the above minerals.

- ** Numerous samples of mylonitized granitoids were studied, including MD93080203A, 2903A, 3003A, and 090206. These samples show definite indications of grain size reduction, including an overall fine-grained texture with strong foliation, and sub-grain development in, and recrystallization of, quartz. In addition, augen of recrystallized quartz are common. Feldspar grains are not augen-shaped, although there is local indication of rotation, where foliation wraps around the feldspars. These mylonite zones likely acted as fluid conduits, because minor carbonate exists in most of the samples.
- ** Minor sulfides and oxides (trace to 3%) exist in most samples, and consist of pyrite, pyrrhotite, hematite, magnetite, and hematite/magnetite intergrowths. In two samples (93MD090307 a sample of the mafic unit from the fold nose and 090601B), there is marcasite. There does not appear to be a clear association between degree of alteration, and sulfide content. However, the mafic meta-igneous unit, and the alkali feldspar granites to alkali feldspar gneisses surrounding this unit tend to be higher in sulfide content. That is, they contain 1-3% sulfide as opposed to trace amounts in the other granitoids, and mylonitic zones.

PHANEROZOIC SAMPLES

Thin sections were studied of samples from the McMurray, Beaver River, and Waterways Formations.

McMurray Fm: siltstone, found to consist of sub-angular quartz and plagioclase clasts set in a fine-grained matrix of quartz +/- carbonate. A sideritic vein from this formation was also observed. Includes samples MD93090501, 0503A-A, 0503A-B, 0707 and 0803.

Beaver River Fm: sandstone, found to consist of sub-angular to sub-rounded quartz grains set in a finer grained matrix of primarily quartz +/- carbonate. Includes samples MD93090701, 0703A, and 0703B.

Waterways Fm: limestone, found to consist of fossiliferous, moderately vuggy, locally brecciated limestone, locally iron stained. Includes samples MD93090706A, 1101D, 1101E, and 1101F.

SAMPLE NUMBE	R: MD9308	2703	
MINERAL	%	GRAIN SIZE	COMMENTS
quartz	20		Megacrystic granite to alkali-feldspar granite to syenite. Quartz has sutured boundaries and undulose
biotite	15		extinction. Clinozoisite grains are euhedral to subhedral. Corundum grains are subhedral to
microcline	5		anhedral. Biotite exists in fractures in both quartz and feldspars. K-spar grains have altered to sericite.
orthoclase	45		
plagioclase	5		
chlorite	2		
clinozoisite	1		
corundum	3		*tr = trace
hematite	tr*		

SAMPLE NUMBE	R: MD9308	2704A	
MINERAL	%	GRAIN SIZE	COMMENTS
quartz	20	^10mm	Megacrystic alkali-feldspar granite. Garnet is highly fractured and cemented by chlorite +/- biotite. Quartz
garnet	35		grains have sutured boundaries and undulose extinction.
biotite	5		CAUTOROTI.
chlorite	10		
microcline	tr		
orthoclase	25		
hematite	tr		

SAMPLE NUMBE	R: MD9308	2704B	
MINERAL	%	GRAIN SIZE	COMMENTS
K-spar	55	1-4mm	Megacrystic alkali-feldspar syenite. Hematite is
biotite	30		primarily found alongside biotite grains. Deformation features such as undulose extinction and crenulation in biotite is fairly common. K-spar is often perthitic.
quartz	3		Source is fairly common. A spair is often pertinue.
chlorite	5		
clinozoisite	3	0.3mm	
corundum	3	0.5mm	
hematite	tr		:

SAMPLE NUMBE	R: MD9308	2803A	
MINERAL	%	GRAIN SIZE	COMMENTS
quartz	60		Mylonite with probable alkali-feldspar granite protolith. Fine-grained with alternating bands (foliation) of quartz
chlorite	5		and very fine-grained material (chlorite+biotite+quartz). Quartz occurs as fine-grained stringers which show
zircon?	tr		definite grain size reduction. Quartz is often augen- shaped.
vfg* material	20		1
K-spar	15		*vfg = very fine grained
opaques	tr		
			F

SAMPLE NUMBER: MD93082901A						
MINERAL	%	GRAIN SIZE	COMMENTS			
quartz	18	0.1-2mm	Megacrystic quartz syenite. Orthoclase has altered to sericite in cores. Carbonate grains are interstitial to			
plagioclase	6	1-1.5mm	quartz. K-spar grains commonly contain inclusions of clinozoisite. Quartz has fairly straight grain boundaries,			
biotite	7		but undulose extinction. Hornblende is closely associated with siderite.			
chlorite	10					
orthoclase	38	5mm				
microcline	3	1mm				
carbonate	1	0.5mm				
clinozoisite	2	0.05mm				
siderite	5	0.1mm				
hornblende	8					

SAMPLE NUMBER: MD93082901B						
MINERAL	%	GRAIN SIZE	COMMENTS			
orthoclase	65	1-2.5mm	Leucocratic alkali-feldspar granite. Quartz grains have fairly sutured boundaries and undulose extinction. K-			
quartz	25	0.1-1mm	spar has altered to sericite, and also contains inclusions of a white mica?			
chlorite	5	0.1mm	molasiono or a winto mada.			
plagioclase	5	0.4mm	0			
opaques	tr					

SAMPLE NUMBER: MD93082903A						
MINERAL	%	GRAIN SIZE	COMMENTS			
orthoclase	55		Mylonite with probable alkali-feldspar granite protolith.			
microcline	7		Orthoclase has commonly altered to sericite, and some grains are perthitic. Quartz and feldspar generally have undulose extinction. Carbonate is interstitial to quartz			
quartz	24	and feldspar.				
carbonate	2					
chlorite	10					
apatite	tr					
biotite	tr					
hematite	tr					

SAMPLE NUMBER: MD93082903B						
MINERAL	%	GRAIN SIZE	COMMENTS			
chlorite	30		Fine-grained mafic dyke. Clinozoisite grains found on edges of dark stringers in thin sectiom; these are well-			
quartz	35		formed crystals. Fine-grained mass on one end of slide is composed mainly of epidote. Epidote also			
clinozoisite	2		exists as very fine stringers which were cut by thin quartz stringers.			
plagioclase	6					
Kspar	22					
epidote	5					

SAMPLE NUMBER: MD93083003A							
MINERAL	%	GRAIN SIZE	COMMENTS				
quartz	8		Mylonite with unknown protolith. Rock is very fine- grained and highly sheared. Most minerals are				
K-spar	2		unidentifiable. Quartz is as stringers and augen- shaped masses which show grain size reduction. K-				
vfg mass	90		spar is as rounded grains in which foliation wraps around. Vfg mass probably includes quartz, chlorite				
corundum?	tr		and possibly biotite and epidote.				
W. Militing and the second sec							

SAMPLE NUMBER: MD93083003B						
MINERAL	%	GRAIN SIZE	COMMENTS			
quartz	56		Leucocratic alkali-feldspar granite. K-spar is altered to sericite. Fine-grained epidote is scattered throughout			
biotite	4		quartz-feldspar-rich parts of slide (as small stringers interstitial to quartz and feldspar).			
chlorite	4		interestian to quarte and relacipally.			
epidote	16					
K-spar	20					
opaques	tr					

MINERAL	%	GRAIN	COMMENTS
quartz	55		Leucocratic granite gneiss. Most quartz has
K-spar	30		undulose extinction and very sutured grain boundaries. Gneissic textures prevail. Hematite as inclusions in, and contains inclusions of magnetite.
plagioclase	5		inclusions in, and contains inclusions of magnetite.
biotite	3		*
chlorite	5		
clinozoisite	2		
hematite	tr		
pyrite	tr		
magnetite	tr		

SAMPLE NUMB	SAMPLE NUMBER: MD93090104A						
MINERAL	%	GRAIN	COMMENTS				
quartz	45		Leucocratic granite. Hematite as lamellae in, and				
chlorite	10		contains lamellae of magnetite. Chlorite +/- biotite as corona around garnet. Rusty stringers throughout quartz common. Carbonate (probably siderite)				
biotite	5		usually associated with garnet +chlorite +biotite +opaques.				
plagioclase	25						
garnet	1						
carbonate	1						
K-spar	15						
magnetite	tr						
hematite	tr						
clinozoisite	1						

SAMPLE NUMBER: MD93090104B						
MINERAL	%	GRAIN SIZE	COMMENTS			
quartz	60		Leucocratic granite. Quartz appears strained and shows evidence of grain size reduction. Similar to			
chlorite	7		MD93090104A.			
biotite	3					
garnet	1					
clinozoisite	2					
siderite	7					
plagioclase	7					
K-spar	8					
magnetite	0.5					
hematite	0.5					

5	SAMPLE NUMBER: MD93090105A					
	MINERAL	%	GRAIN SIZE	COMMENTS		
C	quartz	60		Leucocratic alkali-feldspar granite gneiss. Pyrite and pyrrhotite grains are small and anhedral, and are		
c	orthoclase	25		scattered throughout rock. Garnet often contains inclusions of quartz and biotite. Quartz shows evidence		
r	microcline	<1		of grain size reduction. K-spar is locally perthitic. Gneissic textures common.		
g	garnet	7				
t	biotite	5				
C	chlorite	2				
ŗ	pyrrhotite	tr				
t	pyrite	tr				

SAMPLE NUMBE	SAMPLE NUMBER: MD93090105B						
MINERAL	%	GRAIN SIZE	COMMENTS				
quartz	50	<0.05mm	Leucocratic alkali-feldspar granite gneiss. K-spar				
microcline	5		grains are large and partially altered to sericite. Quartz is greatly reduced in grain size. Thin section is basically a fine-grained groundmass of quartz and K-				
orthoclase	40		spar with larger grains of orthoclase, microcline and garnet, and small grains of pyrophyllite. Hydrothermal				
garnet	2		alteration may have affected this rock. Pyrophyllite associated with K-spar.				
pyrophyllite	3						
pyrite	tr						

SAMPLE NUMBER: MD93090206						
MINERAL	%	GRAIN SIZE	COMMENTS			
quartz	75		Mylonite with unknown granitoid protolith. Fe- carbonate occurs as wispy intergranular stringers.			
biotite	3		Large part of slide is as very fine-grained mass consisting of quartz, epidote, sericite, chlorite and			
chlorite	4		biotite. Quartz has irregular boundaries and often shows sub-grain development.			
sericite	3					
Fe-carbonate	5					
K-spar	10					
pyrrhotite	tr					
hematite	tr					
magnetite	tr	V				

ī

SAMPLE NUMBI	SAMPLE NUMBER: MD93090303A					
MINERAL	%	GRAIN SIZE	COMMENTS			
quartz	25	0.05-2mm	Mafic meta-igneous schist. Protolith of this schist is a			
plagioclase	10	0.05-2mm	mafic volcanic or intrusive. Rock basically composed of quartz+plagioclase with larger grains of augite set in it. Tabular biotite and hornblende locally show vague			
chlorite	8		preferred orientation. Augite is anhedral and altered to chlorite on grain edges. Cleavage of augite is indistinct.			
augite	50	0.8mm	3			
biotite	2	0.1mm				
hornblende	3	0.4mm				
pyrrhotite	1	K				
pyrite	tr					
chalcopyrite	tr					

SAMPLE NUMBER: MD93090303B				
MINERAL	%	GRAIN SIZE	COMMENTS	
hornblende	15	0.3-1mm	Mafic meta-igneous schist. Same as MD93090303A. Augite noted with hornblende in center locally, and is	
augite	38	0.6mm	often rimmed by vfg mass which may be uralitic hornblende.	
chlorite	10		nombionae.	
quartz	19			
biotite	1			
plagioclase	6			
vfg mass	10			
pyrite	0.5			
pyrrhotite	0.5			
chalcopyrite	tr			

SAMPLE NUMBER: MD93090306B				
MINERAL	%	GRAIN SIZE	COMMENTS	
biotite	18		Mesocratic granite gneiss. Garnet often with biotite and	
garnet	12		often contains inclusions of biotite or opaques. Vfg mass of sericite may include some epidote.	
sericite	17		*	
quartz	30	0.05-1mm		
plagioclase	4			
K-spar	15			
corundum?	tr			
pyrophyllite	tr			
pyrite+po	3			
chalcopyrite	tr			

SAMPLE NUMBER: MD93090307				
MINERAL	%	GRAIN SIZE	COMMENTS	
plagioclase	25		Altered mafic meta-igneous unit. Similar to	
epidote	8		MD93090303A & B, but much more altered. Quartz has sutured edges. Vfg mass may be from alteration of augite (complete alteration) to uralitic hornblende.	
clinozoisite	2		Vfg mass is similar to material rimming augite in MD93090303B.	
quartz	30			
biotite	3		*cg = coarse grained *py = pyrite	
cg* epidote	10		*cpy = chalcopyrite	
vfg mass	20			
marcasite	1.5			
pyrrhotite	0.5			
ру* + сру*	tr			

SAMPLE NUMBER: MD93090501				
MINERAL	%	GRAIN SIZE	COMMENTS	
quartz	40	0.1mm	McMurray Fm. siltstone. Approximately 45 % clasts as above, in a matrix-supported clastic sediment. Matrix	
plagioclase	3	0.1mm	composition is quartz +/- carbonate.	
white mica	tr	0.1mm		
17.5				

SAMPLE NUMBER: MD93090503A-A				
MINERAL	%	GRAIN SIZE	COMMENTS	
siderite	98		Sideritic vein in McMurray Fm. Rock consists of	
calcite	2		equigranular carbonate grains with locally dark edges. Some intergranular spaces contain quartz or calcite, or are empty. Unit is very rusty and dark coloured	
quartz	tr		adjacent to fractures.	

SAMPLE NUMBE	SAMPLE NUMBER: MD93090503A-B					
MINERAL	%	GRAIN SIZE	COMMENTS			
siderite	100%		Same as MD93090503A-A. Rock is virtually all siderite.			

SAMPLE NUMBER: MD93090601A				
MINERAL	%	GRAIN SIZE	COMMENTS	
quartz	00		Leucocratic alkali-feldspar granite gneiss. Chlorite is locally as inclusions in opaque grains. Orthoclase is	
orthoclase	50		largely altered to sericite.	
microcline	3			
chlorite	7			
corundum?	tr			
muscovite	tr			
chalcopyrite	tr			
pyrite	1			
magnetite	1			

MINERAL	%	GRAIN SIZE	COMMENTS
quartz	50	0.05-1mm	Leucocratic alkali-feldspar granite gneiss. Quartz is
K-spar	40	0.5-2mm	largely sutured and has undulose extinction. Chlori +/- biotite included in large K-spar grain in corner of slide.
chlorite	3		Silde.
biotite	2		
clinozoisite	tr	0.1mm	
plagioclase	2		
marcasite	0.25		
pyrite	0.25		
chalcopyrite	tr		

SAMPLE NUMBER: MD93090603				
MINERAL	%	GRAIN SIZE	COMMENTS	
quartz	48		Leucocratic alkali-feldspar graniteKspar grains locally contain inclusions of quartz +/- chlorite. Smaller	
microcline	4	0.5mm	K-spar grains altering to sericite. Garnet is welded by chlorite. Pyrophyllite noted in K-spar grain.	
orthoclase	35	3mm	otherice. Tyrophymic noted in It opan grain.	
plagioclase	2			
chlorite	3			
corundum?	0.5			
garnet	3			
pyrophyllite	tr			
magnetite	tr			
hematite	tr			

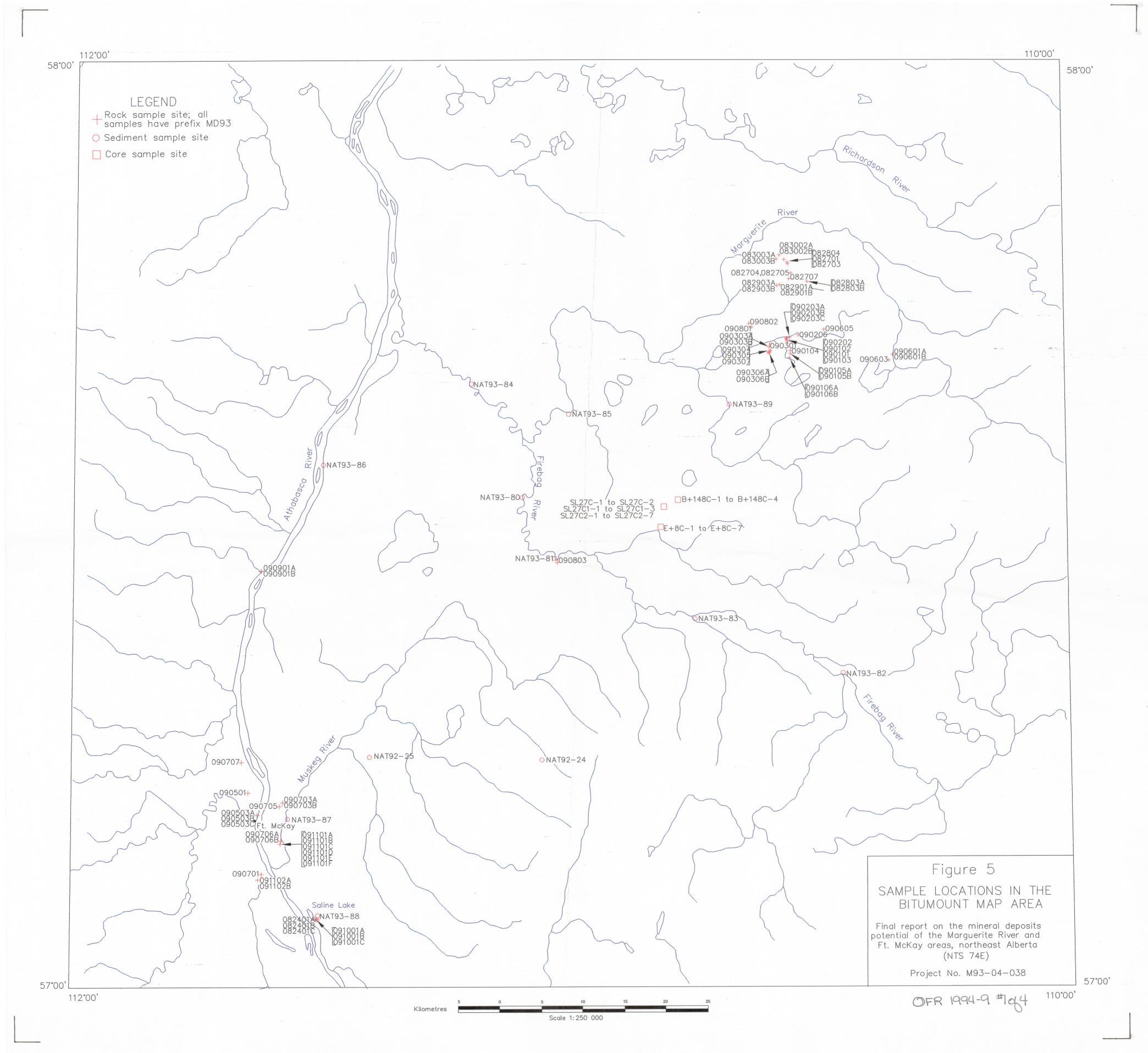
SAMPLE NUMBE			
MINERAL	%	GRAIN SIZE	COMMENTS
quartz	60	0.5mm	Beaver River sandstone. Matrix-supported sub-angular to sub-rounded quartz clasts. Matrix is comprised of finer-grained quartz +/- opaques. Clasts = 60% of rock, matrix = 40%.

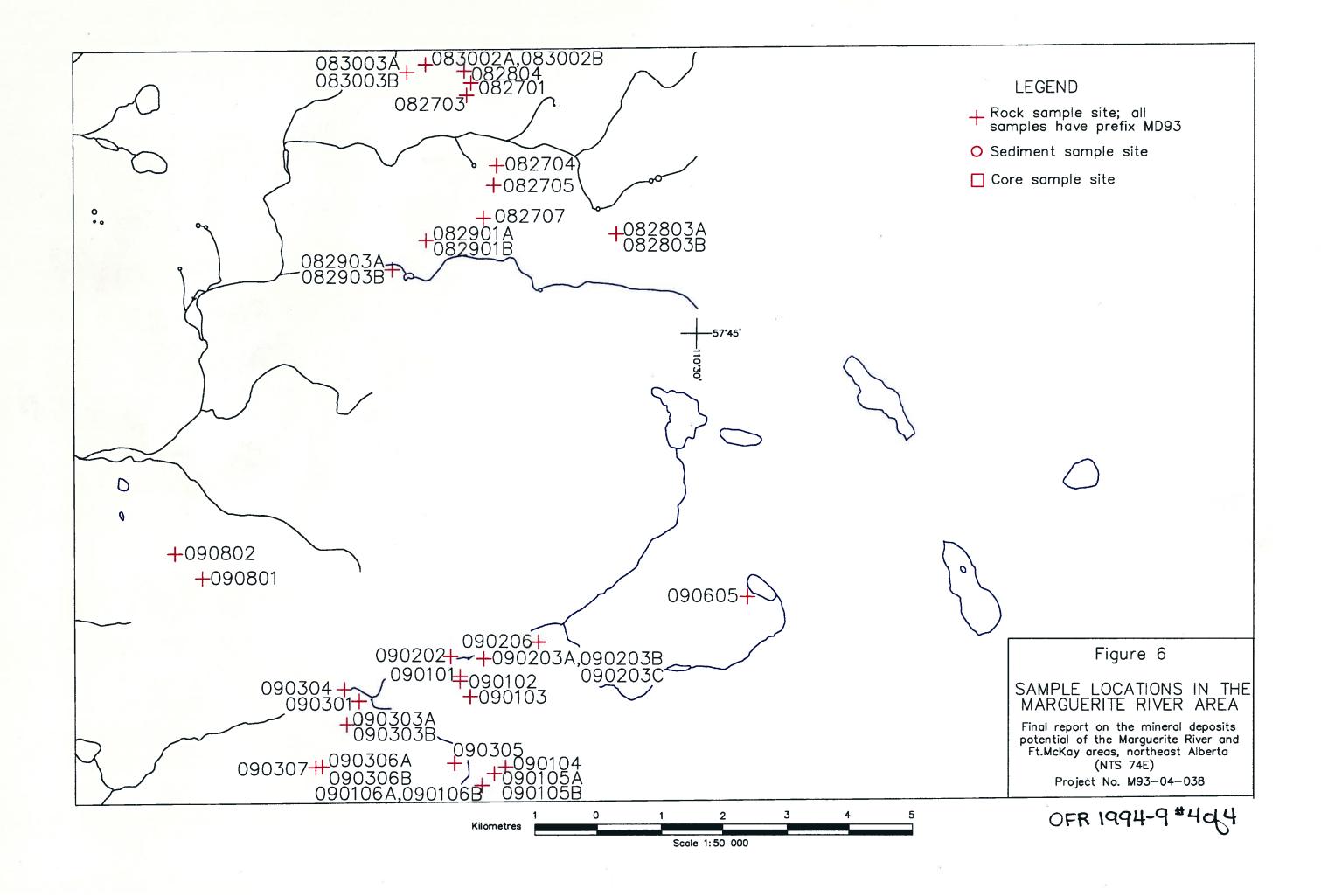
SAMPLE NUMBER: MD93090703A				
MINERAL	%	GRAIN SIZE	COMMENTS	
quartz	60%	0.2-3mm	Beaver River sandstone. Similar to MD93090701. Matrix may contain some very fine-grained carbonate.	

SAMPLE NUMBER: MD93090703B				
MINERAL	%	GRAIN SIZE	COMMENTS	
quartz	60	0.1-2mm	Beaver River sandstone. Similar to MD93090701 and MD93090703A. Sub-angular to rounded quartz clasts set in dirty and possibly rusty matrix. Possibly some siderite in matrix. Clasts = 60% and matrix = 40%.	

SAMPLE NUMBER: MD93090706A				
MINERAL	%	GRAIN SIZE	COMMENTS	
calcite 5	5	0.3mm	Waterways Fm. limestone. Rock consists of carbonate	
groundmass	95		groundmass with local fossils replaced by, and cavities filled by more crystalline calcite. Glide twins exist locally in calcite. Groundmass becomes slightly darker adjacent to fractures. Groundmass may contain minor amounts of quartz as well as carbonate.	

SAMPLE NUMBER: MD93090707				
MINERAL	%	GRAIN SIZE	COMMENTS	
quartz	33		McMurray Fm. siltstone. Slide consists of clasts, as	
chlorite	tr		above, set in carbonate-rich matrix. Clasts = 35% and matrix = 65%.	
white mica	2			
calcite	tr			
pyrite	tr			
magnetite	tr		_	
			15	


SAMPLE NUMBER: MD93090802				
MINERAL	%	GRAIN SIZE	COMMENTS	
quartz	65		Mesocratic alkali-feldspar granite gneiss. K-spar is locally altering to sericite. Cleavage also noted in some	
K-spar	16		grains. Quartz is very strained and shows sub-grain development. Rock is basically quartz + K-spar with	
epidote	2	·	wispy stringers of chlorite +/- epidote +/- opaques. Epidote is euhedral to subhedral. Biotite has altered to	
clinozoisite	2		chlorite.	
chlorite	12		i'	
biotite	tr			
hematite	1			
magnetite	1			
pyrite	1			


SAMPLE NUMBER: MD93090803				
MINERAL	%	GRAIN SIZE	COMMENTS	
quartz	34		Pyrite nodule in McMurray Fm. Rock is primarily pyrite with grains of biotite, quartz and K-spar (slightly altered	
biotite	tr		to sericite). Silicate grains are angular to sub-angular.	
K-spar	1			
pyrite	65			

SAMPLE NUMBER: MD93091101D			
MINERAL	%	GRAIN SIZE	COMMENTS
groundmass	99		Waterways Fm. limestone. Rock consists primarily of
calcite	1		carbonate groundmass with local fossils replaced by, and vugs filled by crystalline calcite. Groundmass is locally darker and may contain minor amounts of Fecarbonate. In one section of slide, groundmass appears brecciated, although fragments are rounded and are welded by a slightly darker carbonate. Possibly nodular.

SAMPLE NUMBER: MD93091101E				
MINERAL	%	GRAIN SIZE	COMMENTS	
groundmass	99	V.	Waterways Fm. limestone. Same as MD93091101D. Fossils fairly common. No brecciated zones.	
calcite	1		Possils fairly common. No directiated zones.	

SAMPLE NUMBER: MD93091101F				
MINERAL	%	GRAIN SIZE	COMMENTS	
groundmass	99		Waterways Fm. limestone. Similar to MD93091101D &	
calcite	1		E. Darker orange brown stringers exist throughout slide possibly hematite stained.	
r sa				

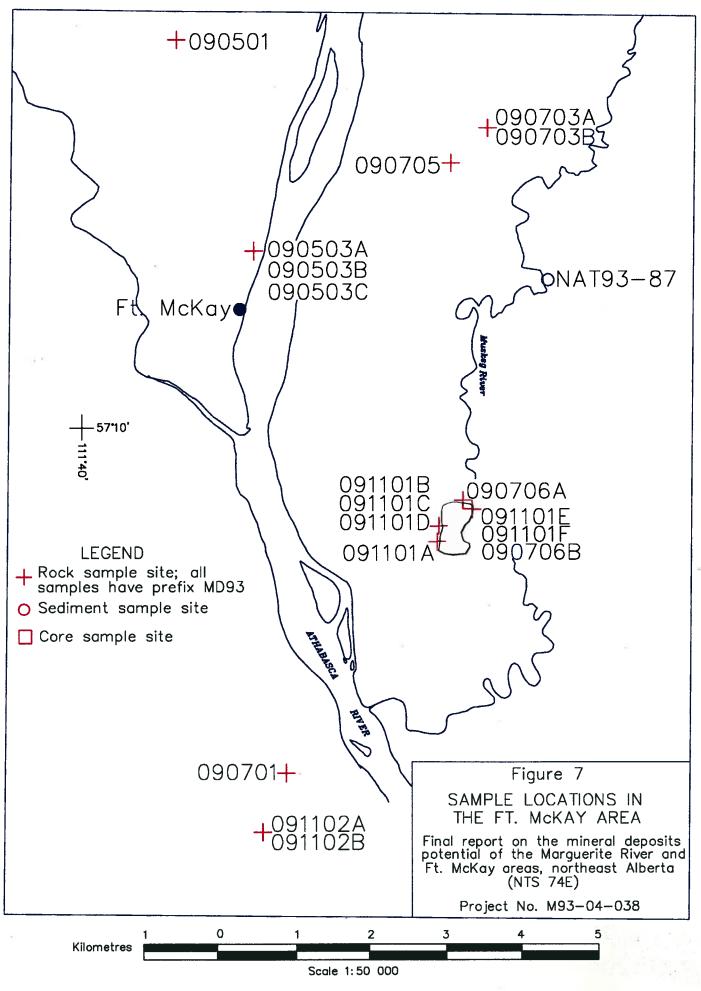
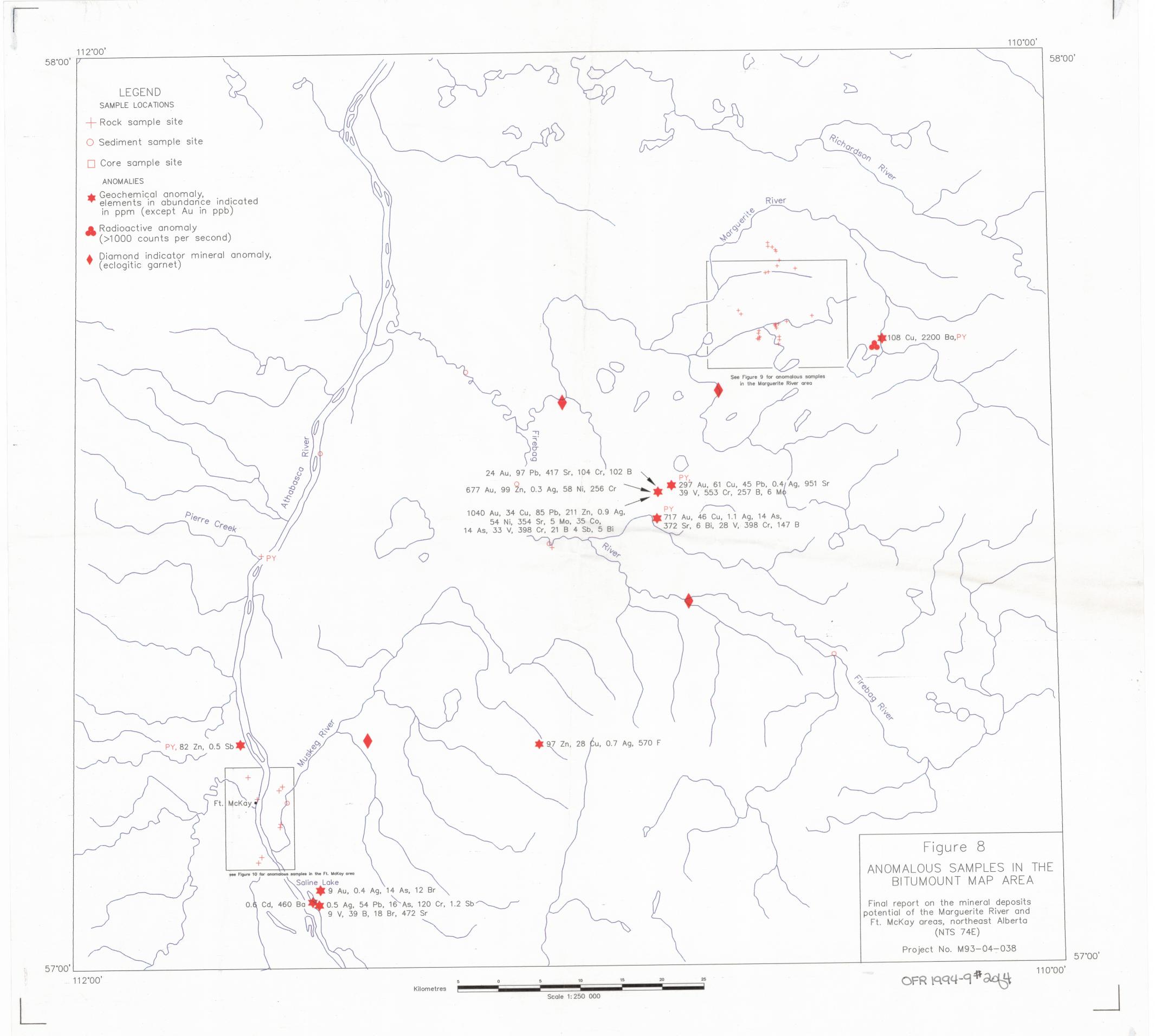



Fig # 304.

