Real-time Laboratory System (RLS)

Vol II: Programmer’s Guide

Karin K.R. Tremaine

Chemistry Department
Alberta Research Council
11315-87 Ave.
Edmonton, Alberta
T6G 2C2

July, 1984

Alberta Research Council Open File Report

OPEN FILE REPORT 1984-28

CHAPTER 1 INTRODUCTION

LABORATORY SYSTEM REQUIREMENTS v ¢ 4« & o ¢ & o o o 1=1
RLS OVERVIEW 4 ¢ ¢ &4 ¢ o ¢ o o o o o o ¢ o o o o & 1=2
RLS STATUS o ¢ ¢ ¢ o o o ¢ « o o s s s o o o o o o 1=3
1-4
1-5

Pt b et et pt
L]
Vi & W =

RLS DOCUMENTATION @ & & s 6 o & & s s 6 * s o e @
REFERENCES ® o o ® o & o o o s o o & e ® o & e

[%]

CHAPTER INTERFACING AN APPLICATION PROCESS WITH RLS
INTERFACING NEW APPLICATION PROCESSES .« o o o o o 2-1
ENTERING A COMMAND IN THE COMMAND CATALOG . o . . 2=2
CREATING A COMMAND DEFINITION ¢ ¢ « o o o o o o o 2=3
CREATING SOURCE PROGRAMS « & & 4 ¢ ¢ o =« o o o« o o 2=5
Title Page o o ¢ ¢ o ¢ o 5 - o o o o o o o o o o 2=5
Declarations « + 4 & & o & » o e e s s o s s s 2=6
Reading User Parameters . e s e e s e o s o 2=7
Application Processing . . e s o e o o s s o 2=8
Return Code .+ & ¢ & & o & s s o s e s s 4+ 2=8
BUILDING AN EXECUTABLE TASK I. e e s o o s s s 2-9
PROGRAM EXAMPLE .+ o & « & & e« o s o o o s o 2=10

.
P
V&N =

.
.
[

RMROPRONND N NN NN
[2
USSR EWN -

CHAPTER

w

RLS CORE SYSTEM

OVERVIEW ¢ ¢ ¢ o ¢ o o 2 o ¢ o o o o o s o s s o & 3=1
The Command Catalog .« « + o « ¢« « o o o o « o o 3=5
The Command Definitifon File .+ ¢ 4 o « o ¢ o « o« 3=6
The Command Modifier File . . + & ¢ ¢« ¢.¢c o« - o 3-8

APPLICATION PROCESS REQUIREMENTS &« « o o s o « » « 3=9
File Handling .« ¢ ¢ v o ¢ ¢ ¢ o o o o o o o o & 2=9
Program EXIC o ¢ o ¢ o ¢ 4 2 ¢ ¢ o o o o o o o I

COMMAND PROCEDURES « ¢ « o o o o s o o o o o o » :
IF/THEN/ELSE o « o o o ¢ o o o o o o o o o o »

GOTO 4 ¢ ¢ ¢ ¢ « o o o o ¢ o o o o o o o o o« 13

WW WN NN R -
.

o o o
. e s
N e w N -

WWWWwWwWww Wwwww
e @

L] []
N -

F ol

CHAPTER FUNCTION AND SUBROUTINE LIBRARIES
RLS REQUIRED LIBRARIES « & & o ¢ ¢ ¢ o o o o o o o 4=1
PLOTLIB ¢« & ¢ ¢ o o o o s ¢ o o o o o o » . 4=3
Directory Listing Of Plotlib Library . . . 4=5
RLSCLIB - RLS C FUNCTION LIBRARY « « o« .« & 4-17
Fortran Use Of C Language Subroutines .. 4-17
Directory Listing Of 'RLSCLIB Modules . . 4-18
MATH-,..-....o'lo.ooo-.o-oouoo4-56
PLOTDEV '+ 4+ 4 4 ¢ o ¢ o o o o o o o o o o o o o 4=56
TARGETLIB . St e .0 e'is ¢ o o e 8 o s 0+ o o 4=56

t

A4 L] L] . L
L] L]
N - —
L] B L] L] L]
L] L] L] . L]
. * ® L *

Rt S E R S R O S S A
e o
W WWND N
L]

CHAPTER 5 RLS COMMAND LIBRARY

501 RLS ORGANIZATION e & e & o e s e o+ o o 6 e & e 5_1
5 1.1 RLS COmmand Language S & & o o 5 s ¢ o o o e & @ 5-1

Page 2

2 RLS DeviceS « ¢ « o ¢ « o o ¢ ¢ 2 o o ¢ o o o o« 5=6
3 GC Applications « o« ¢« ¢« o o o o o ¢ s ¢ ¢ o &« » 58
4 RLS Graphics « o « ¢« ¢ ¢ ¢ o o ¢« ¢ ¢ o ¢ s o« &« 5=10
5 Math Routines .« ¢« ¢ ¢ ¢ ¢ 4o ¢ ¢« o o o o ¢ o o« 5=12
6 RLS Data ENtTY « « o « o o o s ¢ s s o o« s o o 520
7 RLS Simulated Distillation « « o ¢ o o ¢ o o o 5=22

CHAPTER 6 SYSTEM NOTES

PROGRAM DEVELOPMENT DIRECTORIES 4 « « ¢ o ¢ o o o 6=2
Run Areas . « « o ¢ o o o« « ¢« o 6=3
Library Areas . « « ¢ o & e o o b~4
Source Development Areas .

DOCUMENTATION + ¢ o ¢ & o o & « o o 6=6

BUILDING RLS FROM SOURCES . « & o« o o « ¢ o o « o« 6=7

1 Setting Up Target System Assignments 6-10

2 Building The RLS Libraries . « ¢ ¢« o« ¢« ¢« o o « 6-11

3 Generating Executable Tasks .« « « ¢ ¢« o o« o o 6-12

4

5

e o o o o
« o e
W N =
e o o

e o o @

e o o o

.
.

Generating Help Files .« 4 o o« ¢ ¢ o s s ¢« o« o« 6-14
System Peculiarities . « &« o « ¢ ¢ o ¢ ¢ « « o 6-14
STARTING NEW RLS USERS e e« o o s o o s ¢ s o s« b6b~-15
1 Installing RLS On The PDP=11 « « « o ¢« & +» » » 6~15
.2 Adding A New VAX USEBT + ¢ « « « ¢ ¢ o« ¢« ¢« » o« 6-16
RLS BUGS AND LIMITATIONS ¢ o o ¢ « o s o« ¢« o o &« 6-16

L e e e e e e e e e e e e
* L]
VA EWWWWWWN -

APPENDIX A RLS FILE FORMATS

RLS FILE DIRECTORY 4 ¢ ¢ & o ¢ o « « « s ¢ o ¢ o o A=1
COMMAND CATALOG FILE v o o o « o s ¢ o o o o o o o A=2
COMMAND DEFINTION FILE (CDF) & o o « o « s o o « o« A=3
COMMAND MODIFIER FILE (CMF) .+ &« & « & & A-5
ANALOG SIGNAL FILES =« « « o o o o o o & . A-6
PEAK DATA FILES .+ ¢ 4 ¢ o o ¢ ¢ o o o o . A-8
CALIBRATION FILES A-11
GRAPH DIRECTORY FILE (GRAPH.RLS) A-13
PLOT DESCRIPTOR FILE ¢ & o o o o o o o o A-14
MATH ROUTINES .« ¢ ¢ « o ¢ ¢ o s o o o & A-15
X-Y DATASET DIRECTORY (XYDATA.RLS) . . . A-16
X~Y DATA FILE RECORDS =+ & « ¢ o o ¢ o o « s o o A-17

L o S S
== O 0N W

N -

APPENDIX B RLS SYSTEM GENERATION FILES

1 INTRODUCTION ¢ o o o o« « o o 2.6 o o ¢ o o o o o o B=1
2 CONTROL FILES « o o« ¢ o o o o o o o o o o s o o o B=1
2.1 DEVELOPeCOM & « « « « o o o o o o o o o o « o o B=2
2.2 FOR.COM 4 o o ¢ ¢ o o o o o o o ¢ ¢ « o s o o« o« B=5
2.3 RSXLINK«COM o o o o o o o o o o o ¢ s o« ¢« o o o B=6
.3 RLS PRODUCTION SYSTEM BUILD .« « o« o o ¢« o o & « « B-8
3 [RLS.CALCOMP]BUILD.COM . . . « ¢« ¢ ¢ ¢« & & o o« o B-9
3 1 [RLS.CALCOMP,RSX]BUILD.COM &« &« « & « & &« o« « B=10
3 2 [RLS.CALCOMP.VMS]BUILD.COM . = & & « « » o o B=l11
3 [RLS.CLIB]JBUILD.COM =+ « &« ¢ ¢ « o« o o o « o o B-12

W e W

Page 3

B.3.3 [RLS.DEVICE]BUILD.COM =« + & o o o o ¢ o ¢« « « B-13
B.3.4 [RLS.ENTRY]BUILD.COM . . . « « ¢« o o s o o o s B=15
B.3.5 [RLS.GC]BUILDeCOM &« 2 2 ¢« ¢ o o« « s« o« « « o« s« DB=16
B.3.6 [RLS.MATH]BUILD.COM e o o o o o o o o o s s o B=17
B.3.7 [RLS.RELATION]BUILD.COM .« « « « « « « o« « « s B-19
B.3.8 [RLS.RLSIBUILDeCOM « ¢ + o o « o« o o« ¢« o o .o B=20
B.3.9 [RLS.RLSCLIB]BUILD. COM . . e o o ¢ o o o o o B=21
B.3.9.1 [RLS .RLSCLIB.RSX]BUILD. COM e o o o o o o o o B=22
B.3.9.2 [RLS.RLSCLIB.VMSIBUILD.COM « « &+ « o « o« B=-23
B.3.10 [RLS.SIGNAL]JBUILD.COM & « o o o « o ¢ o o » » B=24
B.3.11 [RLS.SIMDISIBUILD.COM &« o ¢ o o ¢ o o o « B=26
B.3.12 [RLS.XYPLOT]BUILD.COM =« & « « o o o o « s & o B=27
B.3.12.1 [RLS .XYPLOT.SPOOLER]BUILD.COM . « « « « « « B-28
B.3.12.1.1 [RLS.XYPLOT.SPOOLER.RSX]BUILD.COM B=29
B.3.12.1.2 [RLS.XYPLOT.SPOOLER.VMS]BUILD.COM B=30
B.4 DEVELOPMENT AREAS & ¢ ¢ ¢ o ¢ o« o o o o o o« o o B=31
B.4.1 CC.COM (ol30lete) =« o ¢« o o o« o o o« « o o » o B=31
B.4.2 [RLS.CLIB.:ESTJBUILD.COM e o o o s o s o o s o B=35
B.4.3 [RLS.DEVICE.RSX.ALSARC]BUILD.COM (obsolete) . B-36
B.4.4 [RLS.DEVICE.RSX.CHMARC]BUILD.COM (obsolete) . B=37
B.4.5 [RLS . RELATION.TESTIBUILD.COM . . « « « « « « » B—-38
B.4.6 [RLS.TRANSPORT]BUILD.COM « ¢ o o o o o« « o« « o B=39

ABSTRACT

- This document is the Programmer’s Manual for
the Real-time Laboratory System (RLS). This
manual is intended for advanced RLS users and
maintenance support staff, who are required to
enhance and support the system. After a brief
overview of the system, there is a step-by-step
description of how to interface additional
commands in the RLS system. A more detailed
description of the RLS system discusses the design
and operation, Support modules. and RLS commands
are summarized before the discussion of the system
support. Several appendices are given, describing
RLS file formats and the build procedures for the
system.

Page 4

Acknowledgments

The initiative for the RLS development came
from the Chemistry Department and the 0il Sands
Analytical group, mainly through the efforts of C.
Richmond and C. Reichert. An external
consultant, Lorne Bechtel, was hired to design and
write the software, and produce the user
documentation for the system. Testing of the
software has been done at both the Campus and
Clover Bar laboratories.

Page 5

CHAPTER 1

INTRODUCTION

1.1 LABORATORY SYSTEM REQUIREMENTS

When chemical 1laboratory systems for the Alberﬁa Research
Council’s Campus and Clover Bar sites were first being discussed, it
was decided that a number of features had to be available, whether the
resulting system was a purchased package, or an in~house development,
The following characteristics were considered to be essential:

l. The command language had to be common to many applications.
This would eliminate the training time and nuisance factor
involved for people using more than one data analysis method.
As well, it should remove the problem of requiring
researchers to familiarize themselves with different computer
systems.

2. There should be an easy mechanism to modify important
parameters. This would reduce the operator time, would
eliminate costly programming time and would allow technical
people control over their own processing.

3. It should be easy to modify the sequence and type of
processing applied to the experimental data, allowing the
user to tailor the data analysis to varying requirements and
conditions. A number of general modules could be used for
many different applications, thus reducing the programming
effort required to develop a comprehensive system.

4. There should be an easy interface mechanism for new program
integration. Since the system must evolve and expand to meet
the changing needs of a research establishment, it was
considered to be essential that 1t be easy to expand the
system, given limited manpower and money.

INTRODUCTION Page 1-2

5. The system had to be small and easy to maintain. Since the
software was to run on small real-time machines, size was
critical, Limited manpower required that the system be easy
to support. These requirements, plus some of those listed
previously, indicated that the system should be modular.

At that time, there were no commercial packages available which met
the above conditions and could be used in a data acquisition
environment. On the basis of that evaluation, 1t was decided to
proceed with in-house development of a Real-~time Lab System (RLS) to
meet user requirements. The software package, dev:loped by external

consultant Lorne Bechtel, 1is the property of the Alberta Research

Council.

1.2 RLS OVERVIEW

The RLS system provides an English-like laﬁguage to control a
library of laboratory oriented programs. To use the existing RLS
modules, the user interacts with the RLS command 1line interpreter,
using an English-like command. RLS parses this command, searching 1
command catalog for the command. Once found it reads a table of
defaults before initiating an appropriate application program. When
RLS has determined which default values are to be sent to the
application process, the "information 1s passed to the executing
program through a temporary file maintained by RLS. The executing
program interacts with the user’s input/output files and devices to
perform the required operations. RLS waits for the executing program
to- terminate before returning to the user for more command

instructions.

INTRODUCTION Page 1-3

The RLS core, which handles the command parsing, keyword value
control, and application processing control, also has a number of
commands which allow the user to interface programs, and check and
modify defaults without knowing a great deal about the operating

system on the computer in question.

In addition to the central RLS modules, a number of application
processes have been written. Some examples are real-time device

control and data acquisition, chromatography, and x~y plotting.

1.3 RLS STATUS

The RLS system, as it now stands, is a very good prototype. The
overall design 1is good, it is extremely flexible, and when used by
knowiedgable operators, it is a very powerful laboratory tool, With
over 80 program modules, it is a system that is comparable in size and
complexity to a computer operating system such as the DEC RSX
operating system itself. The system is currently in use in a number
of departments within the Alberta Research Council. Once the problems
discovered during the test phase have been resolved, RLS should be
ready for general distribution. RLS system limitations and problem

areas are discussed in detail in Section 6.5.

1.4 RLS DOCUMENTATION

Two volumes of RLS documentation have been prepared to provide
both user and system support. Volume I (1) is intended for the
laboratory user, using existing RLS comman&s. This volume, Volume 1I,

is designed for programmers, both at the user level and the system

INTRODUCTION Page 1-4

level. As well as describing how to interface high-level language
programs to the RLS system, information is also provided for system

maintenance and support.

For the casual user who wishes to incorporate a private program
intq the RLS system, Chapter 2 discusses program interfacing, using
examples where possible. For a detailed description of the RLS core
system and file interaction, read Chapter 3. This chapter 1is
recommende: reading for people involved in éystem upgrading and system
mainténanc RLS libraries are documented in Chapter 4. Chapte 5
gives a list of all the RLS commands (including applications,) as well
as the directories where the sources reside. RLS libraries are
documented 1in Chapter 5. System generation and maintenance 1is

discussed in Chapter 6.

INTRODUCTION Page 1-5
1.5 REFERENCES
1. Bechtel, Lorne. "Real-time Laboratory System (RLS). Volume

I: User Guide.," Alberta Research Council Open File Report,

1984.

CHAPTER 2

INTERFACING AN APPLICATION PROCESS WITH RLS

2.1 1IN :FACING NEW APPLICATION PROCESSES

Users can write new application programs, in languages such as
FORTRAN or C, and merge them with the existing RLS system. The steps

involved are straightforward, and can be done at two levels.

At the most trivial level, a command can be inserted 1in the
command catalog, and RLS will install and run the process without any

additional interaction. All processing instructions must be provided

by the user.

The more advanced level of interfacing will give the user access
to all the RLS processing featurgs. This method involves:

1. Inserting a command in the command catalog (CCF)

2. Creating a command definition file (CDF)

3. Writing the application process

4. Building an executable task

The remainder of this chapter steps through RLS program
interfacing. The program used for illustration purposes is a simple

integration application, written in ‘C’. Any user written program can

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-2

be added, using the same procedure.

2.2 ENTERING A COMMAND IN THE COMMAND CATALOG

The command catalog is a 1list of all the valid RLS commands,
along with the corresponding programs and command definition files.
Adding a new command requires that the user specify the context (user
determined), the identifier or command, the program or executable, and
thé keyword or command definition file. The user must also specify
whether or not the program is an executable task or an RLS command

procedure.

To insert a new command to the RLS command catalog, use the RLS
"ADD COMMAND® command., The following example shows how to include a

new command:

RLS<cr>

RLS>add command ?<crd>

CONTEXT GENERAL : example<cr>
IDENTIFIER : test integrallcr>
PROGRAM-FILE : 1ntegral<cr>
KEYWORD-FILE ¢ integral<cr>
PROGRAM NO : yes<cr>

The resulting command would be ‘TEST INTEGRAL’. It is not a
requirement that the task name and the command definition file have
the same name. However, system maintenance is much easier if this
convention 1is followed. By entering ‘yes’ to the ’program’ prompt,
the user is telliné RLS that the ‘program-file’ is an executable task
rather than a command procedure. If the user does not make an entry
for keyword file, RLS would assume that there isn’t a CDF for that

command.

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-3

If a mistake is made entering the command, 1t can be deleted

using the RLS “DELETE COMMAND’ command.

2.3 CREATING A COMMAND DEFINITION

The command definition file provides a description and default
values for all keywords associated with a given command. RLS reads
this file, extracts default values and prompts users for missing
values, The user can over-ride the values in this file by entering
thé keyword and an appropriate value after the keyword as part of the
command line. IThe integration program used for illustration purposes
expects to have the input filename, the output filename and the

stepsize for equidistant files as keyword parameters.

The RLS command language allows the creation of new command
definition files, using the command ‘CREATE DEFINITION’. An example

is given below:

RLS<cr>

RLS>create definition<cr>

ENTER FILE NAME: 1integral.rls<cr>

ENTER KEYWORD (or return to finish): input-file<cr>
ENTER DATA TYPE: file<cr>

ENTER INPUT/OUTPUT STREAM: inputicer> -

ENTER A HALF-LINE DESCRIPTION: input data set name<lcr>
ENTER DEFAULT VALUE: ?<cr>

ENTER KEYWORD (or return to finish): output-file<cr)>
ENTER DATA TYPE: file<cr>

ENTER INPUT/OUTPUT STREAM: outputl<cr>

ENTER A HALF-LINE DESCRIPTION: output data set name<cr>
ENTER DEFAULT VALUE: ?<cr>

ENTER KEYWORD (or return to finish): stepsize<er>
ENTER DATA TYPE: float<cr>

ENTER A HALF-LINE DESCRIPTION: stepsize for file<er>
ENTER DEFAULT VALUE: 0.0<cr>

ENTER A KEYWORD (or return to finish): <cr>

RLS creates a file called ‘integral.rls’, with the information

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-4

supplied, and writes the resulting file in the user’s disk area. The

actual file created by the above sequence of commands is listed below:

keyword input-file -
type file -
stream inputl -
help "input data set name" -
default ?
keyword output-file -
type file -
stream outputl
help "output data set name" -
default ?
keyword stepsize -
type float -
help "step size for equidistant data" -
default O.

2.4 CREATING SOURCE PROGRAMS

The general format of most programs within the RLS system 1is as
follows:
1) Title page
2) Declarations
3) Reading user parameters

4) Application processing
5) Return code

2.4,1 Title Page

The title page describes the use of the command, and is
maintained as a comment at the front of the program. Usually, the
following information wou}d be included:

1. The general command

2. Application function

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-5

3. Keyword list and description corresponding to CDF

4, Command example

This section ends with a formfeed, and can be extracted using the
‘makhlp’ program. It will be placed in ‘filename.hlp’ where
‘filename’ is the name of the application program. When .the user
requests RLS help, the system will display the information in the
corresponding .hlp file. The next example 1illustrates the type of

information to be included on the title page.

/*
COMMAND
TEST INTEGRAL
ACTION
This command generates the integral of x-y data
contained in an INPUT-FILE into an OUTPUT-FILE.
KEYWORDS
INPUT-FILE CHAR input file name
OUTPUT-FILE CHAR output file name
STEPSIZE REAL sample point interval
EXAMPLE
RLS>TEST INTEGRAL INPUT-FILE DATA.DAT OUTPUT-FILE INT.DAT
*/ . ; :

2.4.2 Declarations

The declarations would include any data type declarations
required by the program. An example of the typical declarations of a

C program are given below:

FIO infio, outfio,*fopen(),*fcreate();
char filnam[40], outnam{40],upfnam{40];

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-6

extern double getfloat();
double stpsiz, x, y, sum, delta, xl;
int equi;

2.4,3 Reading User Parameters

In this section of code, the user retrieves the file name of the
command modifier file, and using the functions available, reads the
file contents. The CMF is an intermediate file, maintained by RLS,
which contains the keyword values required by the applicafion program.
RLS creates this file after reading the command definition file and
~ the user command line. The following sequence of commands illustrates
how to retrieve the CMF file name, open the file, and read the keyword

values before closing the file.

cmfnam(upfnam,sizeof(upfnam));
fopen(&infio,upfnam,READ);

getstring (&infio, filnam, sizeof(filnam));
getstring (&infio, outnam, sizeof(outnam));
stpsiz = getfloat (&infio);

fclose (&infio);

For each parameter, one read -is required.. To read the ascii free

format files, the following éupport utilities have been developed:

type routine
integer getint()
floating point getfloat()
logical getlogical()

string getstring()

FORTRAN users wishing to use the C I/0 routines to read files should

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-7

refer to the chapter dealing with RLSCLIB for further instructions.

2.4.4 Application Processing

There is no restriction on the type of processing the user wishes
to perform. If the files created by the user are to be used by the
RLS core or other RLS application programs, they must adhere to the
following conventions:

1. The files must be ascii free format

2. A file header must appear at the start. The minimum file
header would be a data string (ie DATA) without a trailing
dash. The file header for the preceeding CDF example could
be the following:

title Data from EPR -
stepsize 1.0 -

data

0.0

In the above example, the first word would be a keyword, and
the value following it would be the value assigned to the
keyword. The trailing dash indicates that the header is
continued on the next line. If the user wishes to ignore the
file header, there are routines (xfrhdr(),skiphdr()) which
either transfer the header to the output file, or skip the
header completely. Additional keywords in the header will be
transferred in the case of a header transfer, or ignored
whenreading the header.

3. FORTRAN programs should use' the carriage control convention

‘logical record’ to read/write files that are used with other
commands implemented in the C language.

2.4.5 Return Code

The application program must return a suitable completion code,
indicating successful program termination. The table below indicates

the appropriate calls for the different completion codes.

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-8

EXIT STATUS FORTRAN ' o
Successful completion call exit(1l) exit(1l);
(suppresses STOP
message)
stop

(types STOP message
on terminal)

Returns ‘TRUE’ value call exst(1l) exit(1l);

Returns ’‘FALSE’ value call exst(0) ex1it(0);

2.5 BUILDING AN EXECUTABLE TASK IMAGE

To build an executable version of the program (C language), the

following sequence of instructions is issued:

$ cc integral
$ link /notrace integral,[rls.library.vms]rlsclib/libr,-
chdr,clib/1libr

An executable FORTRAN version of the ‘integral’ program, assuming that
the ’‘C’ library routines were used, would be built with the following

command sequence:

$ for integral

$ 1link /notrace integral,[rls.library.vms]rlsclib/libr,-
sys$library:chdr,[rls.library.vms]clib/1libr,sys$library:clib/1libr

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-9

For people wishing to build an RSX version, the general format

for the compile and task build would be:

C FORTRAN

COMPILE $ ccll integral $ mcr for integral = integral.for

TASK BUILD $ mcr tkb
TKB>integral/fp/cp=integral,{rls.library.rsx]rlsclib/1b,-
TKB>sys$library:chdr,clib/1b
TKB>/

ENTER OPTIONS:
TKB>reslib=sys$library:fesr /ro
TKB>units=10

TKB> ack=3000

TKB, 3=sy:1:2:3:4:6:7:8

//

2.6 PROGRAM EXAMPLE

Earlier sections described how to set up the command and
associated files for a program called INTEGRAL. The ‘integral’
program is now p.uct of the RLS system, and can be executed as just one
of the wmany RLS modules. To execute the program, either of the

following commands can be used:

RLS>test integrate input data.dat 6utput int.dat

OR
RLS>test integrate<er>
input-file ?: data.dat
output file ?: int.dat

In the second example, the user is prompted for the names of the’
input/output files since the default value is a question mark. The

stepsize, in both examples, is taken from the default table.

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-10

For user’s reference, the program listing ,as well as the input

and output files are listed in the following pages.

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-11

/*
COMMAND
TEST INTEGRAL
ACTION
This command generates the integral of x-y data
contained in an INPUT-FILE into an OUTPUT-FILE.
KEYWORDS
INPUT-FILE CHAR input file name
OUTPUT-FILE CHAR output file name
STEPSIZE REAL sample point interval
EXAMPLE
RLS>TEST INTEGRAL INPUT~-FILE DATA.DAT OUTPUT-FILE INT.DAT
*/
<FF>

#include <std.h)>
f#fdefine FALSE O
f#define TRUE 1

main ()
{
FIO infio, outfio,*fopen(),*fcreate();
char filnam[40], outnam[40],upfnam[40];
extern double getfloat();
double stpsiz, x, y, sum, delta, x1;
int equi;

/* read user parameters x/

cmfnam(upfnam,sizeof (upfnam));
fopen(&infio,upfnam,READ);

getstring (&infio, filnam, sizeof(filnam));
getstring (&infio, outnam, sizeof(outnam));
stpsiz = getfloat (&infio);

fclose (&infio);

equi = (stpsiz > 0.) ? TRUE : FALSE;
/* open files for input/output */

if (!fopen (&infio, filnam, READ))

{ .
putfmt ("I am unable to open the file %Zp\n", filnam);
exit(l);

}
if (!fcreate (&outfio, outnam, WRITE)
{ ‘

putfmt ("I am unable to create the file %p\n", outnam) ;

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-12

exit (1);
}
/* transfer file header from input to output file *x/

xfrhdr (&infio, &ohtfio);

/* integrate */
sum = 0,;
x = 0.3
x]1 = 0,;
while (leofon (&infio))
{
if (lequi)

x = getfloat (&infio);
else

X = X + stpsiz;
y = getfloat (&infio);
if (eofon (&infio))

break;
if (equi)

delta = stpsiz;
else

delta = x - x1;

sum = sum + (y * delta);

if (lequi)
putf (&outfio, "%12.5d\n", x);
putf (&outfio, "%12.5d\n", sum);

fclose (&infio);
fclose (&outfio);

exit(l);
}

INTERFACING AN APPLICATION PROCESS WITH RLS Page 2-13

The ~llowing file, DATA.DAT, was used as input.

t cle Data from EPR =
stepsize 1.0 -
data

—wooo~NOWMPWNDE-O

o

INTERFACING AN APPLICATION PROCESS WITH RLS

Page 2-14

The output, as a result of the RLS command, would be stored in a
data file called

below.

‘int.dat’.

title Data from EPR -

stepsize 1.0
data
0.00000e+00
1.00000e+00
3.00000e+00
6.00000e+00
1.00000e+01
1.50000e+01
2.10000e+01
2,.80000e+01
3.60000e+01
4,50000e+01
5.50000e+01

The

contents

of the file are listed

CHAPTER 3

RLS CORE SYSTEM

3.1 OVERVIEW

The RLS command line interpreter is the central program of the
system that interacts with the user. This program reads command lines
from the user, parses the line for commands and keyword/value pairs,

and then initiates the appropriate program.

Commands are entered as a string of words and/or numbers. The
blank character (space bar) is used as a separator between all words

and symbols. Commands are of the general form:
RLS>verb object keyword value keyword value ...

The ‘verb object’ implies that an action 1is to be performed on a
general object such as a device or data file.
eg. start analog
print report
The 'keyword’.indentifies the name of the parameter to be changed and
the ‘value’ specifies the new value to be used. The set of "keyword
value’ pairs do not have to be in any specific order. Some values,
such as titles, are represented as an arbitrary string of characters

with embedded blanks. The user encloses such sequences of characters

1

RLS CORE SYSTEM Page 3-2

within double quote marks in order to keep the words together as one
"value’, If keyword/value pairs are not specified, the value assigned

is taken from a default table.

Much of the RLS command parsing and information control is
handled through a system of files created and maintained by the RLS
core system. Thése files are invoked at different 1levels, to
interpret user commands, select default tables for specific commands
and to pass information on to the spawned task. The main files that
the RLS command line interpreter works with are:

1. The command catalog file (CCF)

2. The command definition file (CDF)

3. The command modifier file (CMF)

The interaction between the above files and the RLS command 1line

interpreter is indicated by the following diagrams:

RLS CORE SYSTEM Page 3-3

Valid

Yes Command

Read Appropriate ERROR
CDF File

Read Data File
eader Replacing
Defaults

Replace Non—initialized
keywords with User
supplied values

' {Write CMF /

Spawn Application
process

RLS CORE SYSTEM

APPLICATION
PROCESS

Find CMF

Read CMF for
Keyword Values

!

Application
Processing

Return completio
Code

Page 3-4

RLS CORE SYSTEM Page 3-5

3.1.1 The Command Catalog

The command catalog contains all valid RLS commands. Two levels
of the catalog are maintaine& - one global and one local. The global
file resides in a system area and 1s available on a read only basis éo
all users. The local catalog 1s located in the user’s area and can
only be changed or accessed by the owner. When executing a command,

RLS will scan the local catalog before searching the global catalog.

Whenever a command 1is added to the catalog, the following

information is required:

l. Context in which the application program is used. Examples
are chromatography, math routines, etc. The user can, of
course, specify any context.

2. Identifiers or command strings

3. Command definition file name

4. Application program file name

5. Indicate whether the program is an executable image or a
command file

For each valid RLS command, the following line will appear in the

catalog file:

context "command string" ‘cdf.file’ “task.name’
where:
"command string" - RLS command
‘cdf.file’ - Command definition file
X - no cdf file required
* - cdf file required, named ‘cdf.file’
‘task.name’ - process task to be executed
@ - process task a command program
$ ' ~ process task an executable image

The ‘x’,’*’,’@" and '$’ are determined by the RLS program, on the

‘bagis of the user response to the “ADD COMMAND’ prompts. RLS inserts

RLS CORE SYSTEM Page 3-6

these symbols, immediately preceding the ‘cdf.file’ or the

“task.name’, for later use during task spawning.

Regardless of the catalog level being modified (ie. global or
local), the ’‘ADD COMMAND’ feature of RLS is used. However, only a
person having access to the RLS area can modify the global catalog
file. When adding commands to the general catalog, "USERS:[RLS]’ must
be specified as part of the file name. On the VAX system, this is the
complete file specification. On the RSX system, RLS substitutes
'ei:[277,54]’, which is the RLS disk and UIC. This general file
specification 1is required for RLS to search the RLS area. If it was
not specified, RLS would search only the user’s UIC and disk area for

the file.

3.1.2 The Command Definition File

The command definition provides information to the RLS control
program regarding the input required by the application program. By
convention, the CDF information is stored in a data file with the
extension ‘rls’, in the RLS area. If, however, the user chooses to
change defaults for a given command using the RLS "SET command keyword
value’, then a modified copy of the command definition file will be
placed in the user’s area. The search order for the CDFfs is 1local,
then global, For each keyword to be processed by RLS, the command
definition file contains:

1. the keyword

2. the data type of the keyword(integer,floating point,string)

3. the stream ID for input/output files

RLS CORE SYSTEM Page 3-7

4.

5.

the description of the ke ord function

the keyword default value

An example of a command definition file is given below:

keyword raw-file -
type file -
stream inputl -
help "simdis file with additive" -
default simdis.raw
keyword rsimdis-file -
type file -~
stream outputl -
help "additive area removed" -
default simdis.dat .
keyword start -
type float -
help "start of additive peak" -
default 0.0
keyword stop -
type float -
help "end of additive peak" -
default 0.0

RLS interacts with the user in a very general style to obtain the

keyword

value pairs. It determines the defaults sent to the

application process using the following algorithm:

1.

2.

Reads the apbropriate command definition file

If there 1s an input file, it searches the file header of
that file for the keywords, substituting values where
appropriate. :

Replaces non-initialized keywords with keyword values
supplied by the user, either in the initial command line, or
through prompting.

Once all the keyword values requested by the wuser have been

determined, the values only, are written to the command modifier file.

RLS CORE SYSTEM Page 3-8
3.1.3 The Command Modifier File

The command modifier file (CMF), written by the RLS control
program, defines the keyword values to be read by the application
process. The values appear in the order they were defined in the
command definition file. The CMF file will be written in the user’s
disk area, and will be deleted once the process has successfully
terminated, The actual file name 1is system/process dependant and
apﬁlication processes should use the function/subroutine CMFNAM() to

retrieve the correct name.

The file contents are written in ascii free format, and can be

read using the following library subroutines and functions:

type routine
integer getint()
floating point getfloat()
logical getlogical()
string getstring()

Each variable to be read in is requested by an individual call to one
of these routines. Further documentation of these routines is given
in the Chapter discussing RLS libraries. As well, an ekample of an

RLS integrated program is given in chapter 2.

3.2 APPLICATION PROCESS REQUIREMENTS

The application process to be integrated with the RLS system must
follow certain internal conventions. Files to be used by other RLS
modules should adhere to the RLS standard. Completion codes must be

specified by the application process. Also, -Fortran programs wishing

RLS CORE SYSTEM Page 3-9

to use C language subroutines should refer to the Library sc¢ ion

dealing with RLSCLIB for detailed discussion o6n their use.

3.2.1 File Handling

The primary inter-program interfaces iﬁ the RLS system are the
input/output files of the programs. The files are used to pass
information among the programs, and should adhere to the following
convg“*ions:

Files are text/character (ASCII) éor

Z. Data appears in free format, rather than assuming fixed
column positions.

3. A file header must appear at the start of the file.

Detailed file format descriptions are given in Appendix A.

3.2,2 Program Exit

The exit status of an application program is returned to RLS by
the computer operating system. This exit status must be set by the
application program. If the program completes successfully, it should
return with an ‘exit’ code of 1. RLS command procedures using the
IF/THEN/ELSE feature require that the program return a TRUE/FALSE
value. Refer to the table below for the subroutine/function calls to

return suitable exit codes.

RLS CORE SYSTEM Page 3-10

EXIT STATUS FORTRAN . C
Successful completion call exit(1l) exit(1l);
(suppresses STOP
message)
stop

(types STOP message
on terminal)

Returns ‘TRUE’ value " call exst(l) exit(1);

Returns ‘FALSE’ value call exst(0) exit(0);

3.3 COMMAND PROCEDURES

In addition to the general command line parsing capability, RLS
handles rudimentary indirect command files and simple programming

features within the command procedures.

The indirect command processing features allows the user to
initiate a series of commands with the use of one command. Once the
process has been started, it can usually be left to complete without

additional user intervention.

To build a command procedure, use any text editor on the
computer, The commands are entered in to the data file exactly as
they would apbea; if they were entered §n the terminal directly. Any
valid RLS command can be used in the command procedure. On RSX
systems, system commands gfe passed on to MCR for proper processing. -
Therefore, any valid MCR command can also be used. An example of a

general command procedure would be:

START ANALOG CHANNEL 1 DURATION 5

RLS CORE SYSTEM Page 3-11

WAIT ANALOG CHANNEL 1
FIND PEAKS

ZERO BASELINE

PREPARE REPORT

When RLS executes this procedure, it samples channel 1 for a duration
of 5 minutes, before doing all the peak processing. The commands will

be executed sequentially, with one command completing before the next

one is initiated.

Once the command procedure has been created, an appropriate
command must be added to the command catalog, using the ‘ADD COMMAND’
feature. For example, to include the above procedure, using the

command line ‘DO CALIBRATION’, the following should be done:

RLS>add command ?

context general : command
identifier ¢ do calibration
program-ident ¢ calidb
identifier-ident : Ler>

program no : <Ler>

Since the command will be invoking an indirect command procedure,
rather than an executable task, a CDF will not be necessary for this
command., Defaults will be ‘'selected when the commands within the
procedure are initiated. The " user tells RLS that it is a command
procedure rather- than an executable image by .sta;ing that the
‘program-ident’ 1is not a program. The command procedure can now be

executed in exactly the same manner as any of the other commands.

Where specified in the command procedure, keyword values will be
substituted. Otherwise, all keyword values will be selected from the

correct command definition files. It is possible to pass values down

RLS CORE SYSTEM Page 3-12

into the command procedure. For example:

RLS>do calibration frequency 5
‘Frequency 5’ is passed down to any command which has the keyword
/frequency’. Some care should be taken when using this format for the
command. If one of the processes modifies ‘frequency’, the value will

be over-ridden by the user, possibly causing erroneous results.

For handling more complex command sequences, two control features

have been implemented, an IF/THEN/ELSE statement and a GOTO.

3.3.1 IF/THEN/ELSE

These stateﬁents allow certain sets of commands to be executed
conditionally, based on the results of some calculations. Each of
these words must appear as the FIRST WORD in front of the command.
For example, assume that a command called ‘NO STANDARD’ has been
written and installed in the chromatography applications section. It
checks that the standard peak was found in the analysis and returns
TRUE if it 1s and FALSE if it is not. Then the following sequence

would conditionally inject the next compound:

IF NO STANDARD
THEN INJECT STANDARD
ELSE INJECT NEXT

3.3.2 GOTO

The GOTO statement enables a non-sequential execution of program
statements., For example, assume that a program command called ‘COLUMN

0K’ checks whether the results from the analyses indicate that the

RLS CORE SYSTEM Page 3-13

column 1s still operative. Then the following sequence would enable
repeated 1injections unless the column was determined to be

- inoperative:

REPEAT: INJECT NEXT

do analysis

IF COLUMN OK
THEN GOTO REPEAT

Note that the target lab of the GOTO command is terminated by a

colon character and must have a space between it and the following

command.,

Programs still have to be written which will return TRUE/FALSE
values to the IF/THEN/ELSE. It is assumed that these will be written

on demand to satisfy user groups and their specific applications.

CHAPTER 4

FUNCTION AND SUBROUTINE LIBRARIES

4.1 RLS REQUIRED LIBRARIES

A number of libraries are required for the RLS system generation,
Some of the libraries were developed to support the RLS command line
interpreter and the application processes. The remairnder are either
standard RSX or VMS libraries required to build the processes for the

different operating systems. The required libraries are listed below:

Library File Name Description
RSX VMS

CLIB CLIB11 CLIB C compiler run-time library

EXELIB EXELIB N/A RSX executive library

EXEMC EXEMC N/A RSX - required for device
drivers and privileged tasks

MATH MATHI11 MATH Math support library

PLOTDEV PLOTDEV11 PLOTDEV Graphics support library

PLOTLIB PLOTLIB11 PLOTLIB CALCOMP compatible library

RLSCLIB RLSCLIB11 RLSCLIB RLS C language support library

TARGETLIB TARGETLIB N/A DEVICE I/0 for data collection.

' One for each node:

[RLS.LIBRARY.RSX.ALSARC]

[RLS.LIBRARY.RSX.CHMARC]

FUNCTION AND SUBROUTINE LIBRARIES Page 4-2

CLIB, EXELIB, and EXEMC are system libraries. Refer to the ‘C’
runtime library for more information on CLIB. EXELIB and EXEMC are
required for the RSX system builds. EXEMC.MLB provides code to allow
software to .refer to offsets within the Executive and system
definitions of the Executive data structures. This 1library 1is
required for building privileged tasks and for incorporating specially
written device drivers. EXELIB.OLB is the Executive library and
contains the definitions of the Executive symbols. Re“:r to the RSX
documentation for more information regarding these libra: ;. The two
target libraries are the actual data acquisition software. For Clover
Bar, part of this library, LPA.0BJ, comes with the LPA distribution

kit, and is incorporated in TARGETLIB.

The RLSCLIB library is an RLS C language support library. A
number of these modules have been written to remove inconsistencies

between the VMS and compatibility mode compiler. Others have been

written to support a number of features available in the RLS command
line interpreter. It should be noted, that although the VMS and RSX

libraries are similar, they are not identical.

The remainder of the libraries are application support libraries.
PLOTLIB and PLOTDEV are support for the RLS graphics. PLOTLIB
contains the CALCOMP compatible routines, and PLOTDEV the device
specific modules. MATH 1is the suppqrt fog the mathematics section.

Both the VMS and RSX systems are supported by the above libraries.

The libraries are described in more detail in the following

sections.

FUNCTION AND SUBROUTINE LIBRARIES Page 4-3
4.2 PLOTLIB

Plotlib is a set of subroutines which are compatible with the
typical CALCOMP plot library. These routines can be called by FORTRAN
and the following documentation assumes FORTRAN call conventions. C
language routines can call the routines by prepending a ‘¢’ character
to each name. For example:

FORTRAN CALL PLOT(FX,FY,IC)
c CPLOT(FX,FY,IC);

Although the routines are meant to be as CALCOMP compatible as
possible, there are some major differences. The major differences
are:
1. Pen movement commands are in centimeters rather than inches.
2. The SYMBOL() character set is somewhat different from the
usual CALCOMP set.
Please note that the unit number supplied as a parameter to the
PLOTS() subroutine is not the same as the RSX logical unit number.
Use the CRELOG() subroutine of the RLSCLIB library in order to assign
a file name to this unit number. For example, if you call PLOTS()
with unit number 8 as in (C language version):
CPLOTS (dummyl, dummy2, 8); then create a name for the file
with thé following call:

CALL CRELOG("FOR008",filename):

FUNCTION AND SUBROUTINE LIBRARIES Page 4-4
4.2.1 Directory Listing Of Plotlib Library

Since the documentation for the fortran version 1s similar to
that of the C versions, no attempt has been made to include both
versions. All the help information in the following section 1is for

the C version.

PLOTLIB PLOTLIB(cont’d)
AXIS LINE
CAXIS) MINMAX
CFACTOR NEWPEN
CLINE NUMBER
CNEWPEN PLOT
CNUMBER PLOTS
CODE ’ PLOTSYMB
CPLOTS SCALE
CSCALE SYMBOL
CWHERE S_FACTOR

FACTOR WHERE

FUNCTION AND SUBROUTINE LIBRARIES Page 4-5

/*
NAME
AXIS - draw an axis with tick marks and annotation
SYNOPSIS
CALL AXIS (FX, FY, TITLE, NTITLE, AXLEN, ANGLE, AXMIN, AXDELT)
REAL FX '
REAL FY
LOGICAL*]1 TITLE(NTITLE)
INTEGER NTITLE
REAL AXLEN
REAL ANGLE
REAL AXMIN
REAL AXDELT
FUNCTION
This routine draws an axis with tick marks and annotation.
The axis is drawn at any specified angle. Tick marks are
drawn at intervals along the axis and annotated with
the numeric value that they represent. A title may be
plotted along the axis. The tick marks and title may
be placed on either side of the axis. The numeric
values may be scaled by some power of ten. If they are
then this will be noted by placing the notation
‘*#10"n’ on the title line.
INPUT
FX REAL X coordinate of start of axis
FY REAL Y coordinate of start of axis
TITLE(NTITLE) LOGICAL*]1 axis title
NTITLE INTEGER number of characters in title
if NTITLE<Q then ticks and title
will be on the clockwise side of
the axis
AXLEN REAL length of axis
ANGLE REAL angle of axis in degrees
counter~clockwise from the.
positive X direction
AXMIN REAL value for first tick mark of axis
AXDELT REAL units per tick mark
OUTPUT
none
RETURNS
none

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-6

/*
NAME
FACTOR - scale the plot
SYNOPSIS
CALL FACTOR (FACT)
REAL FACT
FUNCTION
This routine scales further plotting by an
arbitrary amount. Initially FACT=1.0 so that
the plotting units are in centimeters.
INPUT
FACT - REAL scaling factor
OUTPUT
none
RETURNS
none

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-7

/*
NAME

LINE ~ draw (scaled) line and/or symbols

SYNOPSIS

CALL LINE (FX, FY, N, IREP, ICHREP, ICHAR)
REAL X(IREP,N)

REAL Y(IREP,N)

INTEGER N

INTEGER IREP

INTEGER ICHREP

INTEGER ICHAR

FUNCTION

INPUT

OUTPUT

RETURNS

*/

This routine draws a line using the two REAL arrays

X and Y. These arrays must be scaled before calling
LINE() by the SCALE() subroutine. The scaling

parameters MIN and SCALE are assumed to be contained

as two members of each array at locations X(N+1),X(N+2),
and Y(N+1),Y(N+2). Under control of the parameter

ICHREP the lines only, lines and symbols, or symbols only
may be plotted at each of the locations.

X(IREP,N) REAL new X coordinate
Y(IREP,N) REAL new Y coordinate
N INTEGER number of data points in X and Y
IREP INTEGER repetition count, if X and Y
are dimensioned X(IREP,N) and Y(IREP,N)
then the I°th data elements will be at
X(1,I) and Y(1,I).
ICHREP INTEGER control parameter such that:
=0, only straight lines are plotted
> 0, line is plotted and then symbol given by
ICHAR will be plotted
<0, only symbol given by ICHAR will be plotted
ICHAR INTEGER symbol number :

none

none

FUNCTION AND SUBROUTINE LIBRARIES

/*
NAME
NEWPEN - select new pen
SYNOPSIS
CALL NEWPEN (INP)
INTEGER INP
FUNCTION
This routine selects a new pen for further plotting
on plotters supporting automatic pen changes.
The number is device dependent and usually in
the range from 0-4,
INPUT
INP INTEGER new pen number
OUTPUT
none
RETURNS
none

*/

Jage 4-8

LIBRARIES

NUMBER = plot floating point number

CALL NUMBER (FX, FY, HEIGHT, FNUM, THETA, NN)

This routine plots a floating point number at
the location specified. The precision of the
number is controlled by the parameter NN.

FUNCTION AND SUBROUTINE
/*
NAME
SYNOPSIS
REAL FX
REAL FY
REAL HEIGHT
REAL FNUM
REAL THETA
INTEGER NN
FUNCTION
INPUT
FX REAL
FY REAL
HEIGHT REAL
FNUM REAL
THETA REAL
NN INTEGER
> 0,
= 0’
=] .
<~1,
OUTPUT
none
RETURNS
none

*/

new X coordinate

new Y coordinate

height of number

number to be plotted

angle of inclination in degrees
precision of number:

NN digits will be plotted after
the decimal point.

only integer portion and decimal
are plotted. '
only integer portion is plotted
ABS(NN)-1 digits are truncated from
the integer portion

Page 4-9

FUNCTION AND SUBROUTINE LIBRARIES

/*
NAME

SYNOPSIS

PLOT ~ draw a line (and other things)

CALL PLOT (FX, FY, IC)
REAL FX

REAL FY

INTEGER IC

FUNCTION

INPUT

OUTPUT

RETURNS

*/

This routine moves or draws a line from the
current position to a new position depending

on the value of the control parameter IC.

The origin of the plot (0.,0.) may also be changed
to the new position if IC is given as a negative
number., Note that a call with IC=999 terminates
the plot and should be used at the end of

every plotting program. .

FX REAL new X coordinate in centimeters
FY REAL new Y coordinate in centimeters
IC INTEGER control argument

= 2, draw a line to new position
= 3, move to new position
= -2, draw a line to new position
and move origin to new position
= =3, move to new position and
move origin to new position
999 terminate the plot

none

none

Page 4~10

FUNCTION AND SUBROUTINE LIBRARIES
/*
NAME
PLOTS - initialize plotting
SYNOPSIS
CALL PLOTS (DUMMYl, DUMMY2, UNIT)
INTEGER DUMMY1
INTEGER DUMMY2
INTEGER UNIT
FUNCTION
This routine initializes the plotting and must
be made before any call to PLOT. The plot description
will be written to a file with the name FORx.DAT
where UNIT=x. The unit number 1is not the logical
unit number as used in most of RSX, but is
the equivalence name as used in VMS., If the
file name FORx.DAT 1s assigned to a physical file
name then the new physical name will be used.
The RSX version of this library always uses logical
unit number 1 for the I/0.,
INPUT
DUMMY1 INTEGER
DUMMY2 INTEGER
UNIT INTEGER unit number
RETURNS
none

*/

Page 4~11

FUNCTION AND SUBROUTINE LIBRARIES Page 2

/*
NAME
SCALE - produce scaling parameter for vectors
SYNOPSIS
CALL SCALE (VA, AXLEN, N, IREP)
REAL VA(IREP,N)
REAL AXLEN
INTEGER N
INTEGER IREP
FUNCTION
This routine produces the scaling parameters
MIN and SCA"E at the end of the vector provided.
The scalin arameters are calculated so as to
produce ‘n’ :’ values for the tick marks.
INPUT
VA(IREP,N) REAL vector of data points to be scaled
AXLEN REAL maximum length to scale data
N INTEGER number of data points
IREP INTEGER repetition count such that if VA
is declared VA(IREP,N) then the I‘th data
point 1is at VA(l,I).
OUTPUT
none
RETURNS

none

*/

FUNCTION AND SUBROUTINE LIBRARIES

/*
NAME

SYMBOL - plot text or symbols
SYNOPSIS

CALL SYMBOL (FX, FY, HEIGHT, ICHAR, THETA, NCHARS)
REAL FX

REAL FY

REAL HEIGHT

INTEGER ICHAR

REAL THETA

INTEGER NCHARS

FUNCTION

This routine plots either a line of text or a
special symbol starting at a specified location.

In order to plot a line of text ICHAR should be
the usual name of the character array and NCHARS
should contain the number of characters in the
line of text. The text will be plotted with the
coordinates (FX,FY) determining the bottom, left
position of the first character in the string.

In order to plot a single symbol from the set

of special characters, ICHAR should contain

the symbol number (see following figure) and
NCHARS should be —=1. In this case if NCHARS=-2
then a line will also be drawn from the previous
pen position to the new position.

Note that the first 14 symbols are centered symbols
for which the coordinates will define the center

of the symbol plot. The rest of the symbols

will be drawn with the coordinates defining

the bottom, left of the symbol.

INPUT

FX REAL new X coordinate
FY REAL new Y coordinate
HEIGHT REAL height of characters in centimeters
ICHAR INTEGER symbol number or text address
THETA REAL angle of inclination of characters
NCHARS INTEGER number of characters or

= -1, draw a single symbol

= =2, draw a line to new position

and then draw symbol

OUTPUT

none

Page 4-13

FUNCTION AND SUBROUTINE LIBRARIES Page 4-14

RETURNS

none

*/

FUNCTION AND SUBROUTINE LIBRARIES
/*

NAME
WHERE - find current pen position

 SYNOPSIS
CALL WHERE (FX, Fy, FACT)
REAL FX :
REAL FY
REAL FACT

FUNCTION
This routine returns the current X and Y coordinates
of the pen position and the current scaling factor
as set by the last call to FACTOR().

INPUT

none

OUTPUT
FX REAL receives current X coordinate
FY REAL receives current Y coordinate
FACT REAL receives current scale factor

RETURNS
none

*/

Page 4~15

FUNCTION AND SUBROUTINE LIBRARIES Page 4-16
4.3 RLSCLIB - RLS C {CTION LIBRARY

RLSCLIB provides ‘C’ language support functions not available in
the ‘C’ runtime library, but required by the RLS system. Two versions
of the library are available, one the RSX version in
[RLS.LIBRARY.RSX], and the VMS version in [RLS.LIBRARY,VMS]. Wherever
possible, the two versions have the same functionality. In some
cases, this has not been possible, given the different systems. Users
should'chegk the 1ibr ries before using. The libraries can be used
from FORTRAN programs, using . the instructions 1in the following
section., The directory listing for the RLSCLIB library given, is the

VMS version.

4.3.1 Fortran Use Of C Language Subroutines

Most of the subroutines supporting RLS have been written in the C
language. Those application processes written in Fortran, wishing to
call these routines must use the following conventions:

1. declare all C subroutines to be used as EXTERNAL

2. declare the C Interface subroutines:

REAL*8 CDOUBLE
INTEGER CINT
LOGICAL CLOGICAL
INTEGER*4 CLONG

3. to call the C routine, call the appropriate interface
subroutine with the first argument being the name of the C
routine, and subsequent arguments as documented in the C
library manual. Use ZREF() and %ZVAL() for each argument to
‘call-by-reference’ or ‘call-by-value’ as necessary. Note
that the use of the % symbol in the PDP-11 FORTRAN will cause
many warning diagnostics in the output 1isting, however, the
linkage will execute correctly.

FUNCTION AND SUBROUTINE LIBRARIES Page 4-17
eg, CALL CDTOE(ZREF(buf),value,%VAL(1),%VAL(3))
Note that the double or long argument 1is not invoked with

either ZVAL() or ZREF().

4. The C FIO data structure should be declared in a FORTRAN
program as:

INTEGER*2 fio(262)
where the longest FIO type in use is the 262. word structure

for the VMS C compiler. For example, to call the C fopen()
function for a data file:

EXTERNAL FOPEN

INTEGER CINT

INTEGER*2 INFIO(262)

CALL CINT(FOPEN,ZREF(INFIO),ZREF('TEST.DAT'),ZVAL(O))

4.3.2 Directory Listing Of RLSCLIB Modules

The RLSCLIB library modules are in the following table. All the
module names with ‘*° 1indicate modules for which there 1is no
documentation. For those files for which there 1is help information

available, the help information follows the directory listing.

FUNCTION AND SUBROUTINE LIBRARIES

RLSCLIB RLSCLIB(cont’d)
ADDEXT GETTUPLE
ALOG* GTTY
ASSIGN HOST
CDTOE* INSTUPLE
CDTOF* IORAL*
CHAIN IOWAL*
CHK_TYPE LGE*
CLNFLNAM* OPENR
CLOSER POLAR*
CLSEEK* POLY_LSQ¥*
CMFNAM* POLY_NORM*
CMPSTR* PREFXD*
CNVSTR PROMPT
CREATR PUTTUPLE
CRELOG QUEUE
DASSGN* READHDR
DELTUPLE RENAME
DEQUEUE* RLSUIC*
DRUM* RLS_PROMPT*
EOFON RPLTUPLE
FILEXPND SKIPHDR
FILL* STTY

FTOC* SUBPRC*
GETCPD TRANSLATE
GETFLOAT TRNLOG
GETINT WALT*
GETLOGICAL WAIT ABS*
GETPID WAIT REL*
GETSTRING XFRHDR

Page 4-18

FUNCTION AND SUBROUTINE LIBRARIES Page 4-19
/*
NAME
addext - add extension
FUNCTION

This routine adds the given extension to a file name.

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-20
/*
assign assign
NAME
assign - assign a device
FUNCTION
This function assigns the named device to a channel.
SYNOPSIS

assign (name)
char *name;

RETURNS
The channel number assigned.

*/

FUNCTION AND SUBROUTINE LIBRARIES

/*
chain
NAME
chain - chain to an external program
SYNOPSIS
int chain(task)
char task[];
FUNCTON
This' routine starts up the external program, task,
and waits for the program to complete execution.
INPUT
task the name of the target program
RETURNS

exit status code of the target program

*/

Page 4-21

chain

FUNCTION AND SUBROUTINE LIBRARIES Page 4-22

*
éhk_ﬁype chk type
NAME
chk_type - check type
FUNCTION
This routine checks a character string for valid type.
SYNOPSIS
int chk_type (type, value)
char type[];
char valuel[];
INPUT
type string specifying type check to be performed
value string specifying value to be checked
OUTPUT
none
RETURNS
TRUE if value is of correct type
FALSE ‘ if value is not correct

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-23
/*
NAME
closer - close relation
FUNCTION

This routine closes the specified relation.

*/

FUNCTION SUBROUTINE LIBRARIES Page 4-24

/*
NAME

CNVSTR - convert string
SYNOPSIS

int cnvstr(output, format)
char output(], format[];

FUNCTION

cnvstr() converts a FORMAT string to an OUTPUT

string. This 1is primarily a copy of the FORMAT string
to the OUTPUT but also handles non-printing characters.
A non-printing character can be output by entering
them enclosed in angle brackets eg.<>. Several.
non-printing characters can be handled by separating
them with commas.

The character set is:

"NUL" ,
"SOH" ,
" STX" ,
"ETX" ,
IIEOT" ,
" \1]
"igg" :
"BEL" . ,
"BsS", 010,
"HT", Oll,
"LF", 012,
"yT", 013,
"FF", Ol4,
"CR", 015,
"so"; 016,
"sSI", 017,
"DLE", 020,
"DC1", 021,
"DC2", 022,
"DC3", 023,
"pCa", 024,
"NAK", 025,
"SYN", 026,
"ETB", 027,
"CAN", 030,
e oL
"ESC": 033:
g oge;
"RS": 036:
"gs", 037,
"DEL", 377,

LI T

NoOUnprLNN-~=O

FUNCTION AND SUBROUTINE LIBRARIES

Harn
"“gl" ;’
"Acl': 3:
1HAantt . :
IIAED“: 15‘:
"*F"’ 6’
"AG"’ 7
"~H", 010,
"I", 011,
won® o1
"‘K", 013,
".L"’ 014,
M", 015,
:“N", 016,
~o", 017,
w929,
IIAQ", 021’
R", 022,
. "AS"’ 023,
o
nAUn’ 025’
vt, 026,
llAw"’ 027’
naxn’ 030,
"“Y", 031,
nazu’ 032,

*/

Page 4-25

FUNCTION AND SUBROUTINE LIBRARIES Page 4-26
/*
NAME
creatr - create relation
FUNCTION

This function creates a new relation for writing.

*/

FUNCTION AND SUBROUTINE LIBRARIES

/%
NAME
CRELOG - create logical name
SYNOPSIS
crelog (logical, physical)
char *logical;
char *physical;
FUNCTION
This routine creates an assignment of the
physical name in the NULL terminated string
at *physical to the logical name given
by the NULL terminated string at *logical.
INPUT
logical char * logical name
physical char * physical name
OUTPUT
none
RETURNS
none

*/

Page 4-27

FUNCTION AND SUBROUTINE LIBRARIES Page 4~-28
/*
NAME
deltuple - delete tuple
FUNCTION

This function deletes a tuple from a relation. All tuples
matching the specified key are deleted.

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-29

/*

eofon eofon
NAME

eofon - check for EOF on file
SYNOPSIS

int eofon(filfio)
FIO *filfio;

FUNCTION

This routine checks to see if there is an EOF condition
on the file,

INPUT

filfio pointer to the file fio
OUTPUT

none
RETURNS

TRUE if file is at EOF
FALSE otherwise

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-30

/*
NAME
FILEXPND - file name expand
SYNOPSIS
LISTELT *filexpnd(filename)
char *filename;
FUNCTION
To expand a file name with wild card characters into a list
of file names. A pointer to the list is returned.
A list element is defined as two longwords. The first is the
pointer to the next element. The second points
to a character string.
INPUT
filename character string (null terminated) containing the
filename to expand.
OUTPUT
none
RETURNS
Success pointer to a list of file names.
Failure a null pointer is returned (0).
NOTE

Th=: list elements and the strings they point to are dynamically
& 'ocated by the C storage allocator.

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-31
/*
getcpd _ getcpd
NAME

getcpd - get command definition sequence
FUNCTION

This routine reads in the command parameter definitions.

*/

FUNCTION AND SUBROUTINE LIBRARIES

/*
NAME

GETFLOAT - get floating point number (double)'
SYNOPSIS

double getfloat (filfio)

FIO *filfio;

FUNCTION

This routine scans the input stream of the specified

file for the next valid floating point number.
INPUT

filfio a pointer to the FID of th file
OUTPUT

none
RETURNS

the double floating point value of the
next number in the stream

*/

Page 4-~32

FUNCTION AND SUBROUTINE LIBRARIES Page 4-33

/*
NAME
GETINT - get integer number
SYNOPSIS
int getint(filfio)
FIO *filfio;
FUNCTION
This routine scans the input stream from the specified
file for the next valid integer number.
INPUT
filfio a pointer to the FIO of the file
OUTPUT
none
RETURNS

the integer value of the
next number in the strean

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-34

/%
NAME
GETLOGICAL - get logical variable
SYNOPSIS
int getlogical(filfio)
FIO *filfio;
FUNCTION
| This routine scans the input stream from the specified
file for the next valid logical variable.
INPUT
filfio a pointer to the FIO of the -ile
OUTPUT
none
RETURNS

the logical value of the
next variable in the stream

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4~-35

/* :

getnewline getnewline

NAME |
getnewline - get new line

SYNOPSIS

int getnewline(filfio)
FIO *filfio;

FUNCTION

This function scans the input stream for the file
controlled by filfio for the next newline character.

INPUT

filfio .a pointer to.the FIO of the file
OUTPUT

none

RETURNS

*/

FUNCTION AND SUBROUTINE LIBRARIES Page

/* ,
getoctal ge~actal
NAME

getoctal - get octal number
SYNOPSIS

int getoctal(filfio)

FIO *filfio;
FUNCTION
. This routine scans the input stream from the specified

file for the next valid octal numbér.
INPUT

filfio a pointer to the FIO of the file
OUTPUT

none
RETURNS

the octal value of the
next number in the stream

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-37
/*
NAME
GETPID -.get process identification number
FUNCTION
Gets the processes id number via the getjpl system service.
INPUT
none.,
OUTPUT
none.
RETURﬁS
Returns longword containing the process id. number.

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-38

/*
NAME
GETSTRING - get string of characters
SYNOPSIS
int getstring(filfio, str, nchars)
FI0O *filfio;
char *str;
int nchars;
FUNCTION
This routine reads in a text string from the specified input file.
If the string is delimited by quote marks, ’"’, then whitespace
inside the quotes is also read in.
Otherwise only the next symbol on the file is read in.
INPUT
filfio the FIO pointer for the file
str pointer to where the string is to be stored
nchars number of characters in the str buffer
OUTPUT
str this string receives the character string read in
RETURNS

the length of the string

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-39
/*
NAME
gettuple - get a tuple
FUNCTION

This function returns the next tuple from a relation
that matches a specified key.

*/_

FUNCTION AND SUBROUTINE LIBRARIES Page 4-40

/*
NAME
GITY - get terminal status
SYNOPSIS
gtty (£fd, buf)
FILE fd;
TTY_STATUS *buf;
FUNCTION
GTTY() returns information on the current status
of the terminal associated with file pointer FD
into the TTY_STATUS record pointed at by BUF.
A record of type TTY STATUS is defined as:
typedef {
: char _raw;
char _wrap;
char _escape;
} TTY_STATUS;
where:
_raw = TRUE for raw char I/0
_wrap = TRUE for computer generated wrap around
_escape = TRUE for escape sequence generation
RETURNS
none

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-41
/*
NAME
HOST - execute a host system command
SYNOPSIS

int host(cmdlin)
char cmdlin[];

FUNCTON

This routine submits a command line to the host system,
and waits for execution to complete.

INPUT
| cmélin command for the host system
RETURNS
exit status code of the target program

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-42
/*
NAME
instuple -~ insert a tuple
FUNCTION
This function inserts a new tuple into a relation.

The new record is sorted into the relation.

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4~43
/*
NAME
openr - open relation
FUNCTION

This function opens an existing relation for reading.

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-44

/*
NAME
PROMPT - prompt user
SYNOPSIS
int prompt (keyword, def, resp)
char *keyword;
char *def;
char resp(];
FUNCTION
This routine prompts the user to enter the value
for a keyword. If the user replies with a <RETURND
(ie. no value) then this routine returns the
default string specified by the calling routine.
INPUT
keyword keyword identifier
def default string
OUTPUT
resp response string to be returned
RETURNS
TRUE if user entered a value

FALSE otherwise

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4~45
/*
NAME
puttuple - put tuple
FUNCTION

This function writes a new tuple to a relation. The write
is performed sequentially to the next record.

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4~46

/*
NAME
QUEUE - queue a file to a spooler
SYNOPSIS
queue(filnam, quename)
char * filnam;
char *quename;
FUNCTION
To queue the file opened and connected on the rab pointed to by
file. The associated fab must have a nam block. This is all set up
by the RMS C interface.
The file is queued to queue <{quename>. The delete modifier is used
so that the file is deleted when the symbiont has dealt with it.
The reply of the symbiont manager is returned, so that errors
may be checked for,
The file is closed before it is queued, so that no symbiont errors
will occur.
RETURNS

*/

FUNCTION AND SUBROUTINE LIBRARIES
/*
readhdr
NAME
readhdr - read RLS header
SYNOPSIS
int readhdr (usrfio, inpbuf, maxchrs)
FIO *usrfio;
char inpbuf(];
int maxchrs;
FUNCTION
This routine reads an RLS header into a buffer.
Lines of user input are accepted until a line without
a terminating ’-’ character is found.
A NULL is stored after the last character.
INPUT
usrfio the FIO for the input device
OUTPUT
inpbuf the character buffer filled with user input
maxchrs the size of the input buffer
RETURNS

*/

int the number of characters put into the buffer

Page 4=47

FUNCTION AND SUBROUTINE LIBRARIES

/*
NAME

rename — rename a file.
SYNOPSIS

BOOL rename (fname, tname)

TEXT *fname, *tname;

FUNCTION

rename() renames the file from fname to tname.
RETURNS

TRUE if ok

FALSE 1if not ok
EXAMPLE

if (!rename ("templ.c", "temp2.c"))
errfmt ("can’t rename templ.c\n");

*/

Page 4-48

FUNCTION AND SUBROUTINE LIBRARIES
/*
NAME

rpltuple ~ replace tuple
FUNCTION

This function replaces tuples in a relation with new
tuples. All tuples matching the specified key are
replaced. Only specific fields from the tuple are
modified. All NULL fields are left alone.

*/

Page 4-49

FUNCTION AND SUBROUTINE LIBRARIES Page 4-~50
/*
skiphdr skiphdr
NAME

skiphdr - skip header
SYNOPSIS

skiphdr(filfio)
FIO *filfio;

FUNCTION

This routine skips over the ‘RLS header’ at the front of
a data file,

INPUT

filfio pointer to the FIO of the file
OUTPUT

none
RETURNS

none

*/

FUNCTION AND SUBROUTINE LIBRARIES

/*
NAME
STTY - set terminal status
SYNOPSIS
stty (fd, buf)
FILE fd;
TTY_STATUS *buf;
FUNCTION
STTY() sets the status of the terminal associated
with file pointer FD to the values specified by
TTY STATUS record pointed at by BUF. A TTY_STATUS
record is defined as:
typedef {
char _raw;
char _wrap;
char _escape;
} TTY_STATUS;
where:
_raw = TRUE raw char I/0
_wrap = TRUE computer generate wrap around
_escape = TRUE recognize escape sequences
RETURNS
none

*/

Page 4-51

FUNCTION AND SUBROUTINE LIBRARIES
/*
NAME
TRANSLATE - translate logical name
SYNOPSIS
translate (name, physname, size)
char *name;
char *physname;
int size;
FUNCTION
This routine searches for the logical name specified
by NAME and returns the physical device name actually
assigned in the string PHYSNAME.
RETURNS

number of chars placed into *physname

*/

Page 4-52

FUNCTION AND SUBROUTINE LIBRARIES
/*
NAME
TRNLOG - tramnslate logical name
SYNOPSIS
trnlog (name, physname, size)
char *name;
char *physname;
int size;
FUNCTION
This routine searches for and returns the physical
name assigned to a logical name.
INPUT
name char * logical name
size int max number of chars to place
into *physname
OUTPUT
physname char * address of string to receive
physical name
RETURNS

number of chars placed into *physname

*/

Page 4~53

FUNCTION AND SUBROUTINE LIBRARIES Page 4~-54

/*
NAME
XFRHDR ~ transfer rls header
SYNOPSIS
xfrhdr(infio, outfio)
FIO *infio;
FIO *outfio;
FUNCTION
This function transfers an RLS header from one file to another.
INPUT
infio pointer to the FIO of the input file
outfio pointer to the FIO of the output file
OUTPUT
none
RETURNS
none

*/

FUNCTION AND SUBROUTINE LIBRARIES Page 4-55
4.4 MATH

The Math library consists of the library support routines for the
statistical analysis and signal processing sections of RLS. It is
built as part of the math section, without user intervention. During
the build of the signal processing, some modules are added. It is
important, though, that the math subdirectory be built before the
signal processing whenever a new RLS generation is being done, to
insure that the task builds are being done with the most up-to-date

modules,

4,5 PLOTDEV

The PLOTDEV library 1s the device support 1library for the
graphics devices in the RLS system. Some of the devices supported are
the tektronics 4014, tek4662, vt100, vtl25, lxy, and benson plotters.
As this 1library 1s generated during the course of the =xyplot
generation, it 1s always the current 1library being used for the
generation, This 1is necessary, since some of the software is site

specific, and therefore must be replaced for each generation.

4.6 TARGETLIB

TARGETLIB is ;he library required for the device supbort for the
data acquisition for the lpa and lps. Again, modules are added to the
library at the time of the build for the RLS device generétion. The
Chemistry system does not rely on any external libraries, so during
the build of the [.device] subdirectory, the necessary modules are

automatically replaced.

FUNCTION AND SUBROUTINE LIBRARIES Page 4-56

For the Clover Bar system, this is not the case. Whenever there
has been a new sysgen, it 1s necessary to update the target library to
include the most current lpa object modules. Lpa.ij can be copied
from the Clover Bar system, after the sysgen, and can be used to

replace the existing version.

CHAPTER 5

RLS COMMAND LIBRARY

5.1 RLS ORGANIZATION

In the_Usef’s Manual, the RLS ‘commands’ have been described
under the different application sections, rather than in alphabetical
order. This organization is strictly for documentation purposes, as
most experiments will wutilize modules from different sections. An
example of this would be the GC analysis., For a typical run, programs
from the device control, the math, the GC and the graphics sections
could all be used., All of the modules are completely compatible, in
that they can read and wriée files that can be used by all other
applications within the RLS system. In the remainder of this chapter,
the commands available, the programs which execute the commands, and

any support modules, are identified.

5.1.1 RLS Command Language

RLS has in its command language a number of commands used for
system maintenance and modification. When used in the RLS area, they
can modify or tailor the system to suit the site requirements. When
use& in the wuser’s area, they can further modify the RLS system to

suit an individual’s needs. The general commands are:

RLS COMMAND LIBRARY Page 5-2

1.
2.
3.

4.

ADD COMMAND - adds a command to the command catalog.
DELETE COMMAND - deletes a command from the command catalog.
CREATE DEFINITION - creates a command definition file.

SET ‘command keyword value’ - changes defaults in the command
definition file.

The remaining RLS commands are used either for device control or for

different data analysis. The different applications are documented in

the RLS User’s Manual,

VERB

OBJECT

SET

SHOW

SHOW

(IDENTIFIER)

- (VERB OBJECT KEYWORD)

COMMANDS

AYVIEIT ANVWWOD STI

¢-¢ 93eq

VERB

OBJECT

KEYWORDS

ADD

COMMANDS

CONTEXT

IDENTIFIER
PROGRAM-FILE
KEYWORD-FILE

PROGRAM

DELETE

- (VERB OBJECT KEYWORD)

CONTEXT
IDENTIFIER

CREATE

DEFINITION

AIVEEIT ANVHHWOD STd

-G °8ed

RLS COMMAND LIBRARY

Page 5-5

COMMAND/DESCRIPTION PROGRAM
ADD COMMAND ADDCOMM, *
CREATE DEFINITION CRECDF.*
DELETE COMMAND DELCOMM, *
HELP ‘command’ RLSHLP, *
RLS command language interpreter. RLSCLI.*
SET ‘command’ RLSSET,.*
SHOW ‘identifier”’ RLSSHO . *
SHOW COMMANDS SHOCOMM. *
ADD COUNTER CTRADD, *
DECREMENT COUNTER CTRDECR.*
DELETE COUNTER CTRDELETE.*
CTRSHOW.*

SHOW COUNTERS

NOTE: The following modules are required during the operation of the

RLS command line interpreter:

MODULE FUNCTION

ASK.* return TRUE/FALSE value from a user
GETCPD.* read command definition

OPNCDF.* open command definition file

PRCNAM, * determine if a program is

running as an RLS subprocess
PROMPT, * perform RLS prompting operations

READHDR. * read an RLS command line

VERB
PULSE READ WALT WRITE MONITOR SHOW START STOP WAIT WALT READ RING WALT WRITE
OBJECT
DIGITAL ANALOG CLOCK TERMINAL
KEYWORDS
POINT POINT POINT POINT CHANNEL CHANNEL CHANNEL CHANNEL CHANNEL | DURATION PROMPT (NONE) (NONE) MESSAGE
DURATION WIDTH WIDTH THROUGH THROUGH TIME REPLY
VALUE FREQUENCY FREQUENCY DEFAULT

DURATION DURATION

POINT POINT

GAIN GAIN

SIGNAL-FILE SIGNAL-FILE

DESCRIPTION DESCRIPTION

890TAS(Q STd T°1°S

IVIEIT ANVHROD STY

9-¢ 38eq

RLS COMMAND LIBRARY

Page 5-7

COMMAND PROGRAM
READ TERMINAL TRMREAD. *
RING TERMINAL TRMRING.*
WAIT TERMINAL TRMWAIT.*
WRITE TERMINAL TRMWRITE.*
PULSE DIGITAL DIGPULSE.*
READ DIGITAL DIQREAD.*
WAIT DIGITAL DIGWAIT.*
WRITE DIGITAL DIGWRITE.*
MONITOR ANALOG ANAMONITR.*
SHOW ANALOG ANASHOW,. *
START ANALOG ANASTART . *
STOP ANALOG ANASTOP.*
WAIT ANALOG ANAWAIT.*
CLKWAIT.*

WALIT CLOCK

NOTE: The modules listed below are required for the execution of the

above RLS commands:
MODULE

BDDRV.*
CDIGIO.*
LPACM.*
LPAEMU.*

LPARDA.*

LSDRV.*
WAIT.*

FUNCTION

DR-11K (BD:) device driver for the ALSARC PDP-11/34
C digital input/output subroutines.

the analog channel start sampling program
subroutines to interface the LPARDA

program to either the LPA-1ll device

or to the LPS-11 device.

Data acquisition program which interfaces to the
drivers.

modified LPS~11 (LS:) driver used.on CHMARC PDP-11/24
subroutine to put a program into a

sleep state for a specified duration,

VERB
D&,‘ o FIND ANALYZE FIND PREPARE
OBJECT
BASELINE CHN-PEAKS PEAKS REPORT
KEYWORDS
PEAK FILE SIGNAL-FILE | PEAK-FILE SIGNAL-FILE | PEAK-FILE
PEAK-FILE CALIB.NAME PEAK-FILE OUTPUT-FILLE
STEPSIZE SMP-AMT GATE FORMAT
STD-AMT SLOPE METHOD
REF-RTW DENSITY TITLE
ID-LVL WIDTH SUBTITLE
X RTW FREQUENCY UNITS
RF-UNK SUP-UNK
DVT TIME
DIL-FTR STD-AMT
SMP-AMT
MISC
ADD CHANGE DELETE ENTER EXTRACT SHOMW UPDATE
ADD
STANDARD
TICS
CALIB.NAME CALIB.NAME CALIB.NAME CALIB NAME X-Y NAME OUTPUT-FILE CALIB.NAME
PEAK PEAK PEAK PEAK-FILE CALIB.NAME CALIB.NAME PEAK-FILE PEAK-FILE
AMOUNT AMOUNT AMOUNT PEAK X WINDOM GRAPH-NAME
i 3 RT-FTR
S1ZE-FTR

suo13edyTddy 09 ¢€°1°¢

AVIEIT ANVWWOO STY

8-¢ 238eg

RLS COMMAND LIBRARY Page 5-9

COMMAND PROGRAM

ADD STANDARD CALIBINS.*

ADD TICS TICKS.*

ANALYZE PEAKS POSTRﬁN.*

CHANGE STANDARD CALIBCHG.*

CONVERT LPS-FILE DABFILE.*

DELETE STANDARD CALIBDEL.*

ENTER STANDARD CALIBENT.*
CALIBRATE.*(obsolete)

EXTRACT STANDARD CALIBEXTR.* |

FIND CHN-PEAKS CONCRTCHN, *

FIND PEAKS LPSPKP.*

GENERATE PEAKS GENDAT.*

PREPARE REPORT GCREPORT. *

SHOW STANDARD CALIBSHOW,.*

UPDATE STANDARD CALIBUPD.*

ZERO BASELINE BASCOR, *

NOTE: The following routines are required by the programs
listed above:

MODULE FUNCTION

GETTUPLE.* _data file. access routine
NEWPROMPT ., * RLS standard prompt subroutine
REL.* data file access routine

RPLTUPLE, * data file access routine

VERB

PREPARE

OBJECT

PLOT

KEYWORDS

X-Y.NAME
GRAPHw»NAME
AXIS

TITLE
DESCRIPTION
X LABEL

Y LABEL

up
- AUTO

X MIN

X MAX

Y MIN

Y MAX
SYMBOL

PEN

FACTOR
STEPSIZE
POINTS
X~TRANSFORM
Y-TRANSFORM

SEND DELETE SHOW

GRAPHeNAME GRAPH-NAME GRAPHeNAME
DEVICE OUTPUT-FILE

FACTOR

PREPARE

Texr”

INPUT-FILE
GRAPH.NAME
HEIGHT

PEN

soTyderd STE %°1°¢

AAVIEIT ANVWROD STH

01-¢ 98eq

RLS COMMAND LIBRARY Page 5-11

COMMAND . PROGRAM
DELETE PLOT GRAPHDEL. *
PREPARE PLOT PLOT.*
PREPARE TEXT TEXT.*
SEND PLOT PLOTTR.*

SHOW PLOTS GRAPHSHOW, *

NOTE: The following routines are required during the execution
of the above commands:

MODULE FUNCTION

CLIP.* performs clipping to graph boundaries
SYMSET.* produces figure of current symbol set

RLS COMMAND LIBRARY Page 5-12

5.1.5 Math Routines

The math routines require that the dataset named be in the xydata
directory. At the present time, there is no way to enter an éxisting
dataset into the directory except through the use of an editor. To
get a description of how to add the data file name to the directory,
refer to Appendix A, to the section dealing with the ‘xydataset

directory’.

VERB

ADD DELETE SHOW

OBJECT

FUNCTION

KEYWORDS

COEFFICIENT.NAME COEFFICIENT,NAME COEFFICIENT,NAME
FORM FORM -
OUTPUT-FILE

FIT

COEFFICIENT.NAME COEFFICIENT.NAME

CONVERT GENERATE
UNILTS CURVE
SIGNAL.FILE

NEWK FORM
NEWY X~Y .NAME
XUNITS XMIN
YUNITS YMIN
STEPSIZE npoints

FORM
X-Y.NAME

GENERATE

RESIDUALS

COEFFICIENT.NAME
FORM

X-Y.NAME
RESIDUAL .NAME
VERSUS

SHOW

EiiilﬂS’tcs

COEFFICIENT.NAME
FORM

X-Y.NAME
OUTPUT-FILE
FULL

AYVELIT ONVWHOD STd

€1-¢ @8eg

VERB

OBJECT

KEYWORDS

AMPLITUDE
SPECTRUM

input-file
output-file
nyquist
npoints
stepsize

AUTO BACKWARD
CORRELAT ION FFT
input-file input-file
output-file output-file
nyquist npoints
npoints stepsize
stepsize

BUNCH

AAVEEIT ANVHHOD STH

DATA

signal-file
average
stepsize

%1~ 93eq

VERB

OBJECT

KEYWORDS

EXTRACT |

DATA

input-file
output-file
xmin

Xmax
stepsize

EXTRACT

RESIDUALS

coefficient-name
form

X-y.name
residual.name
versus

FORWARD
FFT

input-file
output-file
normalize
npoints
stepsize

GENERATE

RESIDUALS

coefficient-name
form

X-y.name
residual.name
versus

AAVIEIT ONVWHOD STd

GT1-G @8ed

VERB

OBJECT

KEYWORDS

GENERATE GENERATE
INTEGRAL NYQUIST
input-file input-file
output-file output-file
stepsize npoints
stepsize

MAKE

EQUIDISTANT PHASE POWER
SPECTRUM SPECTRUM

X-y.name input-file input-file
output-file output-file
continuous nyquist
nyquist npoints
npoints stepsize
stepsize

XIVIL9IT AONVWHOD STd

91~ 28ed

VERB

OBJECT

KEYWORDS

SHOW

input-file

REMOVE

input-file
stepsize

REMOVE

|

input-file
output-file
window
width
npoints

AAVEEIT ANVWHOD STH

L1-¢ °3eq

RLS COMMAND LIBRARY Page 5-18

COMMAND - PROGRAM
ADD FUNCTION ~ FNADD.*
AMPLITUDE SPECTRUM AMPLITUDE . *
AUTO CORRELATION AUTOCORR. *
BACKWARD FFT FFTB.*
BUNCH DATA BUNCH, *
CONVERT EPR-FILE CNVEPR, *
CONVERT UNITS CONVERT. *
DELETE FUNCTION FNDEL . *
EXTRACT DATA EXTRACT. *
EXTRACT RESIDUALS RESIDUAL.*
FIT CURVE RLSLSQFIT.*
FORWARD FFT FFTF.*
GENERATE CURVE RLSEVAL. *
GENERATE DERIVATIVE DERIVATIV.*
GENERATE INTEGRAL INTEGRAL. *
GENERATE NYQUIST NYQUIST.*
GENERATE RESIDUALS | RESIDUAL.*
MAKE EQUIDISTANT EQUI.*
PHASE SPECTRUM PHASE. *
POWER SPECTRUM POWER. *
SHOW NPOINTS NPOINTS.*
SHOW STATISTICS RLSANOVA., *
REMOVE MEAN _ RMVMEAN., *
REMOVE TREND RMVTREND ., *

.NOTE: The following support routines are inserted in the math library
when the [.math] and [.signal] directories are built, and are support
routines for the above commands.

RLS COMMAND LIBRARY

MODULE
BASIS.*
CFFIB.FOR
CFFTF.FOR
CFFTI.FOR
DOTPR.*
DRUM.C
EVALUATE.*
EXP.*
FFTB.MAC
FFTF.MAC
FFTIL.MAC
FNCTYPE.*
LOG.*
LSQFIT.*
MATINV.*
ML1DECOMP . *
ML1NORM. *
ML1SOLVE.*
MMUL.*
MTRANS.*
NORM.*
POLAR.C
PWR.*
SVEMG.*
UXFCOEFFS.*
VPOLY.*
VSMUL.*
VSWAP . *
XFCOEFFS.*
XFDATA.*

AUXILIARY FILES:

MATHLIB.H

FUNCTION

generates basis vectors

vector dot product

evaluate function
exponential function

encode function type

log base 10 function
least squares curve fit
matrix inverse

matrix LU decomposition
generate normal equations
solve linear system
matrix multiply

matrix transpose

generate normal equations

exponential operator

sum of vector element magnitudes
untransform function coefficients
evaluate polynomial

multiply vector elements by scalar
swap to vectors

transform function coeffiecients
transform data vectors

C symbol definition file

Page 5-19

VERB

ADD

OBJECT

KEYWORDS

X-Y.NAME

CHANGE

[DATASET|

DELETE

X~-Y.NAME

SHOW

X-Y .NAME
OUTPUT-FILE

£a3ud e3eq STI 9°1°S

AIVILIT ANVRHOO ST

07-S 98®qg

RLS COMMAND LIBRARY

Page 5-21

COMMAND PROGRAM

;DD DATASET XYADD.* i
CHANGE DATASET XYCHANGE . *

DELETE DATASET XYDEL.*

SHOW DATASET

XYSHOW.*

VERB
CONVERT [corrEecT | [PREPARE] | rReMOVE] | rePorT]
OBJECT
{ TiME-TO-TEMP] | BASELINE | { caL1BraTION] [abpITIVE } | p2ss7 |
KEYWORDS
pcarea-file rsimdis-file xyfile raw-file temp-file
temp-file blank-file calib-file rsimdis-file output-file
calib-file area-file title start lreport
units stop title
subtitle

Lstrce] |write |

| peak-area] [rus-riie]

area-file ge-file

pcarea~file raw-file
stepsize subtitle
title

subtitle

rtime

UOTIBTTIISTA PoIBTNUWIS ST [L°1°S

AAVIEIT GNVRHOD STd

¢T-¢ 93ed

RLS COMMAND LIBRARY

Page 5-23

COMMAND PROGRAM
CONVERT TIME-TO-TEMP SCALE.*
CORRECT BASELINE SIMBAS,.*
PREPARE CALIBRATION CALIBSIM,*
REMbVE ADDITIVE REMOVE.*
REPORT D2887 REPORT. *
SLICE PEAK~AREA PCAREA.*
WRITE RLS-FILE WRTFILE,*

CHAPTER 6

SYSTEM NOTES

RLS Program development has been done on the VAX/VMS system, and
as a result, all archival and system documentation is on the VAX.
With a system as large as the current kLS system, it has become
necessary to catalog the files/programs in different logical areas.
This has been done through the use of VAX/VMS subdirectories. The
first part of the chapter describes the RLS directory organization.
Documentation standards and generation are discussed briefly, with the
assumption that the user 1is able to use DEC RUNOFFF. A complete
description of the task generation is given, although attempts have
been made to simplify the process through the use of indirect command
procedures. System peculiarities which have had a minor impact on RLS
development are mentioned. The very last section describes how ‘to get

a user étarted on either the VMS ‘or RSX systems.

6.1 PROGRAM DEVELOPMENT DIRECTORIES

Logically, all the files in the RLS directories fall into one of
three catagories - the run areas, the source development areas or the
" system support or library areas. A number of subdirectories have been

created in the RLS directory to accommodate this cataloguing of files.

SYSTEM NOTES Page 6~2

The three different catagories are described {n detail 1in the

following sections,

SYSTEM NOTES Page 6~3
6.1.1 Run Areas

The run areas have all_the executable tasks. All general tasks
are located in the [.VMS] or [.RSX] areas. The only exceptions to
this are the ‘help’ and ‘command definition files’, all of which are
stored 1in the main [RLS] directory. Any site or system specific
modules will be located in a directory designated with the site or

system name,

RUN AREAS
[.RSX] [.VMS] [.DOC]
[.ALSARC] [.CHMARC]

DIRECTORY TARGET SYSTEM MODULES

[RLS] - ALL SYSTEMS * ,COM, *.RLS
(SYSTEM INDEPENDENT) * HLP

[.RSX] ' —ALL RSX SYSTEMS * ,EXE

[.vMS] = VAX SYSTEM DEPENDENT * ,EXE

[.DOC] - ALL SYSTEMS * ,RNO, *,MEM

[.ALSARC] - CLOVER BAR SiTE DEPENDENT * EXE, *,TSK

[.CHMARC] — CHEMISTRY SITE DEPENDENT * ,EXE, *,TSK

SYSTEM NOTES Page 6-4
6.1.2 Library Areas

The 1ibraries required for RLS support are in three
subdirectories =~ [,LIBRARY], [.RLSCLIB}, and [.CLIB]. Again, site
specific tasks are found in the site specific subdirectories within
these directories. |

LIBRARY AREAS

[RLS

[-Lj;;xigT—_,———””::::EzflﬁgLIB] ///////]
[.RSX]\'MS] [.RSX] Nzl [.RSX] [.VMS]

[.TEST]

[.ALSARC] [.CHMARC]
DIRECTORY TARGET SYSTEM MODULES
[.LIBRARY] —ALL SYSTEMS *,H, STD.H
(COMPILE TIME LIBRARY) SYS.H(RSX,VMS)
[.RLSCLIB] ~ALL SYSTEMS *.,C,*.FOR,* ,MAC
(SOURCE)
[.CLIB] =ALL SYSTEMS *,C,*.FOR,*.MAC

(C LIBRARY)

SYSTEM NOTES

6.1.3 Source Development Areas

subdirectory with the application name. Site

Page 6-5

All of the applications within the RLS system aré located in a

or system specific

modules are located in appropriately marked subdirectories, within the

application directory.

SOURCE DEVELOPMENT AREAS

[.CALCOMP] [.RLS] [. TRANSPORT] [.XYPLOT]
[.DEVICE] [.EPR] [.MATH] [.SIGNAL] [.SIMDIS] [.VVDRV]

i DIRECTOR;—— ————— APPLICATION MODULES e
- [?EALCOMP] T -CALCOMP PLOTTING T *.FOR,;.;— —————
[.DEVICE] =DEVICE CONTROL *,FOR,*.C,* .MAC

[.ENTRY] =DATA ENTRY *,FOR,*.C
[.EPR]* -EPR SPECTROMETER * ,FOR,*.CMD
[.GC] ~GAS CHROMATOGRAPHY * ,FOR,*.C

[.MATH] ~MATH ROUTINES *.C

[.RLS] —RLS CONTROL MODULES *.C

[.SIGNAL]* ~SIGNAL PROCESSING *.C,*.FOR,* ,MAC
[.SIMDIS] ~D2887 SIMDIS *.C

[.TRANSPORT] * ~TRANSPORTATION *.C

[.VVDRV]* -VIRTUAL DISK *.COM,* MAC
[.XYPLOT] =PLOTTING *.C

* - undocumented development work,

SYSTEM NOTES Page 6-6

6.2 DOCUMENTATION

The RLS documentation has been divided into two volumes. Both
documents are located on-line, in the [RLS.DOC] area. The two files
are written using DEC standard runoff, and all or parts of the

documents can be regenerated as required.

Volume I, The User’s Manual, describes the.end user applications.
Each chapter or major application of this document has a separate
runoff file, describing that application. The runoff files are named
after their application subdirectories. The different chapters are
included in the main RLS document using the ‘.REQUIRE’ feature of

runoff.

The format for each of these chapters is similar. The initial
section is text, discussing the theory, followed by the program
documentation. Program documentation is maintained in the source code
at the front of the program, to facilitate documentation updates when
there are program modifications. A <FF> at the end of the flag page
allows a program, called MAKHLP to strip off the documentation page
and put it into a ‘.hlp’ file. These ‘help’ files are included in the

application chapters with the ‘.REQUIRE’ command.

The second volume, the Programmer’s Manual is intended for those
users who wish to maintain or extend the capabilities of the RLS
system. Unlike the first volume, the text of the Programmer’s Manual
is completely contained within the one runoff file. Only the

appendices are to be included during the runoff procedure.

f

SYSTEM NOTES Page 6-7

The ‘.mem’ files should be created on the VAX and printed on the
qume printer. Before printing, the print wheel should be changed to

the ‘prestige elite’ wheel, to obtain the correct character set.

6.3 BUILDING RLS FROM SOURCES

Building RLS from sources is done on the VAX/VMS system, As
there are a number of different target systems, all requiring specific
compilers, libraries, and task:. builders, a number of logical
assignments must be made to insure that the correct task building
software 1s being wused during RLS generation. Once the proper
assignments have been made, the support libraries should be rebuilt,

after which the applications can be generated.

Because the VAX system does not require that executables are
contiguous, it may be necessary to re-copy the files once they are on
the RSX system, to force this. Also, creating RSX libraries is often
a problem on the VAX, as there is often not enough contiguous disk
space. If this happens, an open error will occur on the library file.
To get around this. problem, 1library files should be created with
*/size=blocks:1.” It is not mecessary for the library to be

contiguous, for the task build to be successful.

Some of the RSX libraries which must be moved to the VAX system,
after a system generation are: FCSRES, SYSLIB, and the lpa object
modules. The executive libraries for the RSX systems .are no longer
being wused, since the drivers for the lps and lpa are now being built

as part of the sysgen.

SYSTEM NOTES Page 6-8

To simplify the build procedure, a number of indirect command
files have been developed. A control command procedure accepts the
target name before setting up the appropriate assignments. RLS

‘legal’ target names are:

TARGET NAME SITE/SYSTEM
RSX SYSTEM NAME
VMS SYSTEM NAME
ALSARC SITE NAME
CMPARC SITE NAME
CHMARC SITE NAME

System names are those which build software which can fun on any of
the systems with that operating systems. Site names are used when
software 1s being built which is intended to run on only that machine.
Once the general control procedure has completed, the build file
located in the application area directory can be used to build the
application software within that subdirectory, and any of it’s

subdirectories.

Due to some qirks in the RLS development, some of the directories
must be built before other directories, as library modules required
for some of the applications are inserted or replaced in the course of
another application build. The correct build sequence is:

1, Library areas:

1. [rls.rlsclib]
2, ([rls.clib]
3. [rls.relation]

4, [rls.calcomp]

SYSTEM NOTES Page 6-9
2. Applications dependent on other directory builds require that
the following build order be observed:
1. [rls.math]
2. [rls.rls]
3. [rls.device]
4, [rls.xyplot]
5. [rls.signall]
3. The remaining applications only require that the RLSCLIB
library has been regenerated:
1. [rls.gcl
2. [rls.entry]
3. [rls.epr]

4, [rls.simdis]

The general build procedure is as follows:
1. Set up target assignments

2. Build appropriate libraries

3. Generate executable files

4, Generate help files

At the completion of the system build, the only files which
should be left in the source area are the source programs (one
version) and the build command files. All other files should either

be moved to other areas, or deleted.

SYSTEM NOTES Page 6~10
6.3.1 Setting Up Target System Assignments

The logical assigments for correct libraries, coﬁpilers and task
builders are made in the ﬁain RLS area, using the indirect command
file DEVELOP.COM. At the start of this command file, a number éf
commands are defined, allowing commands within the build files to
invoke either the VAX or RSX version of the C or FORTRAN compilers.
Logical RLS required disk assignments are made before the procedure
skips through to the correct target name, at which point it makes a
number of logical assignments to specified 1libraries and task
builders. Also, during this part of the procedure, the target
definitions for conditional compiles are made. For the RSX task
build, a foreign command is set up, as defined by the file
RSXLINK.COM, This was necessary to select correct task builder
switches for the RSX system. For the listings of the indirect command

discussed here, refer to Appendix B.

When DEVELOP.COM is executed, a number of messages regarding
previous logical assignments will be written to the terminal, as

indicated-below:

$ @develop ‘targetname’<cr>
Previous logical assignment replaced

Once DEVELOP.COM completes, the RLS system generation can proceed.

SYSTEM NOTES Page 6-11
6.3.2 Building The RLS Libraries

RLS libraries are rebuilt at the start of the generation,
replacing all the site specific modules and including all the current

versions of the library modules.

Building RLSCLIB requires that the user access three different
build files, in the following order:

[RLS.RLSLCIB]BUILD.COM —-creates and inserts general
modules

[RLS.RELATION]BUILD.COM ~inserts all the pseudo database
" modules

[RLS.CLIB}BUILD.COM -inserts some CLIB I/0 modules

which replace those in the
Whitesmith C library

The CALCOMP library, PLOTLIB, is built from the [RLS.CALCOMP]
directory. All the routines in this library are general routines.

Site specific modules are replaced as part of the graphics generation.

The remaining libraries, PLOTDEV, MATH, and TARGETLIB are all
built during the appropriate applications generation, since they have
either site specific or system specific modules which must be replaced
with each generation. As this' is done automatically by the‘build
files, there are no additional instructions required on the part of

the user.

6.3.3 Generating Executable Tasks

Generation of common executable tasks is to be done from the
appropriate directory, using as a target system either ‘VMS’ or ’“RSX’.

The executable tasks must be transferred to the appropriate run area

SYSTEM NOTES Page 6~12

by the wuse of the VAX ‘rename’ command. Site specific software must
be built with a target name of “ALSARC’, ‘CHMARC’, or "CMPARC’, then
moved to the appropriate site specific subdiréctories, to avoid

confusion regarding the target system,

The majority of tasks should be built using the general system
names. The following applications/libraries should be generated using

the general target names of either RSX or VMS:

VAX RSX

RLSCLIB RLSCLIBI11
PLOTLIB PLOTLIBI1
MATH MATH

GC GC

RLS RLS
ENTRY ENTRY
SIGNAL SIGNAL
SIMDIS SIMDIS

Applications which should be built specifying one of the legal site

specific names are in the [.device] and [.xyplot] subdirectories.

During the task build a number of diagnostic/error messages will
be generated, as indicated in the example. The messages regarding the
‘multiply defines’ of ‘onexit’ and ‘exit’ can be ignored. They are

caused by the RLSCLIB version of the ‘C’ exit routine.

SYSTEM NOTES Page 6-13

$ @develop rsx
Previous logical name assignment replaced

$ set def [.gc].

$ @build

ees FHDR multiply defines ONEXIT
eee FHDR multiply defines EXIT

$ rename [rls.gcl*.exe [rls.rsx]*

The complete build consists of building all the
libraries/applications indicated earlier in this chapter, in the order
specified. All the build files Qill “clean’ the directories once they
are finished the task build. This includes purging any old program
versions and deleting all object modules. The user has to go into the
library areas to purge all old 1libraries, as this 1is not done

automatically,

6.3.4 Generating Help Files

After the initial generation of the help files, they need only be
recreated when there are program changes affecting the user and thus
the documentation. The flles are- generated using the ‘makhlp’
program, which extracts the title page from the program file, and
creates a file called ‘prgname.hlp’. An example of the ‘makhlp’

execution 1is:

SYSTEM NOTES Page 6-14

$ run [rls.doclmakhlp
enter filename ?
integrate.c

enter filename ?
cntrl z

$

Once generated, these files should be moved to the general [RLS] area.

6.3.5 System Peculiarities

.RSX sysfem peculiarities havg made it n;cessary to specifically
include the name of the TEK4662 being used as the main plotter in the
source code for the program CMPARC::[USERS:[RLS.XYPLOT]PLOTTR.C. The
o function [RLS.XYPLOT.SPOOLER]TEK4662.C has some ‘open()’ and
‘create()’ routines that must be conditionally compiled for the
different systems. The main program PLOTTR is then rebuilt with this
function and the executable image 1s maintained in site specific

directories USERS:[RLS.RSX.*]

6.4 STARTING NEW RLS USERS
6.4.1 1Installing RLS On The PDP-11

To install the RLS software on the PDP-11/RSX system, do the
following:

l. Create an account RLS/password on the PDP-11 with the UIC
[277,54]. The account may be on any disk.

2., Copy all of the files in the disk area CMPARC::USERS:[RLS] to

3. Copy all of the files ' in the disk area
: CMPARC: : [USERS: [RLS.RSX] to the PDP-11.

NFT>=cmparc/account/password::users: [rls.rsx]*.*

SYSTEM NOTES Page 6-15

4. In the RSX STARTUP.CMD command file include the following
statements:

ASN Dxx:=EI/GBL
@EI:[277,54] STARTRLS
where Dxx 1s the physical disk containing
the RLS UIC [277,54]
5. Make up a command file EI:[277,54] STARTRLS.CMD that 1includes:
ASN TTyy:=PLO:/GBL
.IFINS PLTTER ins ei:[277,54]plotter.exe/task=pltter/slv=yes/ckp=yes/pri=55.
«IFINS ...rls ins ei:[277,54]rlscli.exe/task=,..rls/pri=75./ckp=yes
«IFNACT PLTTER RUN PLTTER
«IFNACT LPARDA RUN LPARDA
where Tyy is the physical terminal for the
TEK4662 plotter.

.6. After running the command files wusers can invoke RLS by
entering ‘RLS’ at the MCR prompt.

6.4.2 Adding A New VAX User

For new VAX users, their login command procedure should be edited
to include the following symbol definition:

RLS:==@USERS: [RLS]RLS

6.5 RLS BUGS AND LIMITATIONS

Although éurrently being used in a number of departments, there
are problems with the RLS system which can cause difficulties during
it’s use. The list of problems have been broken into two list, those
which must be fixed, and those which should be fixed. Of immediate
concern are those problems which must be fixed or better documented to

allow trouble free operation. The changes discussed in this catagory

SYSTEM NOTES Page 6-16

are bugs which can be fixed within individual program modules and
therefore in a reasonable time frame. Those which should be fixed
tend to deal with the limitations of the system and require that
additional development work be done, or that major changes be made to
the system. This may require a modification in the original design
philosophy. However, once these limitations have been resolved, the

result should be a commercial equivalent system.

For adequate trouble free operation, the following changes are

recommended to correct the minor problems:
1. Improve the quality of the graphics:
l. The axis lettering touches the axis.

2., Capitals are forced to lowercase when titles are entered

through prompt mode.
3. The 0’s at the origin run into each other.
4, It should be possible to enclose the plot in a box.

5. The user should_be able to set the size of the plot

label.

6. There should be increased documentation on the use of the

‘auto’ keyword.

7. The overlay feature does not work if the graph descriptor

is too long. There is no warning message in this case.

SYSTEM NOTES Page 6-17

8. The factor parameter increases the size of the graph, but
also 1increases the space at the bottom. This results in
the description at the top being forced off of the page

and a large blank space at the bottom,
9. The labels and titles are not centered on the axis.

10. When doing a SEND PLOT to the TEK terminals the device is
slaved and it is not possible to abort the operation in

the middle of a long plot.

2. ’ZERO BASELINE’ aborts if there are too many peaks. It
should be rewritten to correct this, and to convert it from

FORTRAN to ‘C’.
3. Fix the ‘FIND PEAKS’:

1. The program does not print the last peak value if the run
terminated immediately after the peak finished. It
should be modified to print the peak area, with a special

flag.
2. The data filtering logic should be checked.
3. This module should be converted to ‘C’,
4. ’ANALYZE PEAKS’ should have a provision for amount of sample

injected. - (CHN analyzer requires that calculations of mg.

of each of C, H and N be made)

SYSTEM NOTES Page 6-18

5. There are a number of inconsistencies within the RLS file
system, which are an annoyance to frequent users and a source
of considerable coﬁfﬁsion to naive users. Although all the
difficulties cannot be easily fixed, improved documentation

may help.

1. File extension requirements vary from program to program,
and this can cause problems when the output from one
program is being used in some way by another progranm.
For example, in the graphics section, the output file

_ from the ‘PREPARE PLOT’ command is also thé output file
for the ‘ADD TICS’ command. The ’‘PREPARE PLOT’ command
will force an extension of ‘.plt’, The ‘ADD TICS’
command not only does not force the extension, it does
not print an error message when it cannot find the plot
file. Either all the programs should force extension, or

none of the programs should.

2. File handling is not consistent from process to process.
At the present time, some of the files are being handled
by a mini data handling system within RLS, while others
are standard RSX/VMS files. This duality would be
expensive to change, so improved documentation should be

written.

3. The contents of some of the files are destroyed when
certain commands are executed, others are not. There
should be consistent logic for this, as well as improved

documentation to indicate which 1s the case for the

SYSTEM NOTES Page 6~-19

different commands.

4. The ‘ADD DATASET’ command will destroy an existing file
in the directory if the user tries to create another file
with the same name. It should give the wuser another
chance to specify a new name or at least create a new
version. As well, the user should be able to add an
existing file to the database directory without adding

all the information again.

Handling the ‘C’ subroutines through FORTRAN calls 1{is
confusing, messy, and given resource limitations, too time
consuming to support. The remaining RLS FORTRAN modules

should be rewritten in ‘C’, and the support dropped.

The RLS system generation is slow and tedious. It could be
cleaned up so that it would be somewhat easier. To have a
good generating method (such as a computer system generation)

would require substantial effort.

Poor document generation and poor qgality of the document
appearance. For in-house documentation, another revision of
both the User’s manual and the Programmer’s Manual is
probably sufficient. Both manuals should be re-organized in
such a manner that only the sections which have been changed
need to be regenerated. This would reduce the effort

required on the part of support staff.

SYSTEM NOTES Page 6-20

It would be desirable to make more extensive changes to the RLS
system, to include features commonly available in commercial systems,
Before proceeding, another evaluation on the long term direction of
the RLS develbpment would have to be made. Some of the obvious

changes which would have to be considered are the following:

1. Make the corrections specified in the first three points

above,

2, Drop the ‘C’ support through FORTRAN calls, as in point 6

above.

3. Improve the documentation as specified above. In addition,
send the completed documents to ‘an editing group for
modification and then to a professional printing group for

high quality documents.

4., Automate the RLS system generation to Simplify the procedure,
and to allow the easy generation of only selected sections

for different sites.,

5. Increased data management capability. To compete with
commercial systems in terms of capability and ease of use,
additional data management should be included. This would
fix tﬁe current problems with file handling that RLS now has.
Improved data management should make it easier to handle more

complex data manipulationms,

SYSTEM NOTES Page 6-21

6.

10.

11.

Increased use of error messages. Currently, when a process
aborts, the wuser does not get diagnostic messages, to help
resolve the problem. This, with the data management, would

make RLS a much more ‘user friendly system’.

Improve RLS response time. Because of the method RLS uses
for the parameter passing, the initial response time for task
start up is poor - approximately 3 seconds to set a digital
point. Other methods should be checked into in an attempt to

improve the start-up time.

Improve RLS command language syntax and command handling to
remove ambiguity. By making the language more structured,

fewer problems should arise due to mis-use of the system.

There should be a STOP or ABORT command, to allow the user to

interrupt a command sequence, and start over or restart the

interrupted sequence.

There should be improved editing capabilities, or the ability

to use system-editors on the data files.

Improve the quality control and testing of new or modified

modules,

APPENDIX A

RLS FILE FORMATS

A.1 RLS FILE DIRECTORY

The RLS files being created and maintained are
Detailed file formats are given in following sections.

10.

11.

Command Catalog (catalog.rls)
Command definition file (CDF)
Command modifier file (CMF)
Analog Signal File

Peak Data File

Calibration files

1. Calibrl.rls

2. Calibr2.rls

3. Calibr3.rls

Graph Directory File

Plot Descriptor file

Math Function Files
1. Fnnames.rls

2. Fncoeffs.rls

X-Y Data set directory (xydata.rls)

X~-Y Data file values

listed below.

RLS FILE FORMATS Page A-2

A.2 COMMAND CATALOG FILE

The catalog file contains all the valid RLS commands. Written in
ASCII free format, each record has the RLS command line, the command
definition file name and the program name. Immediately preceding the
program name and the command definition file name are control
characters, indicating the type of files. The records within the file
are of the following form:

Field Variable Type Size Description
#
1 context char <=40 RLS keyword
2 ' identifier char <=80 command line
3. control.cdf cﬁar 1 control command

definition file

4 cdf .name char <=128 cdf file name
5 control.prg char 1 control program type
6 program,.,name char {=128 program name

where: T

control.cdf - can be elther:

x = no keyword definition file, field #4 will
be blank

* - keyword defintion file specified, field #4
will contain file name. There should not
intervening blanks between fields 3 & 4.

control.prg = can be either:
$ - executable program, field #6 will contain
task.exe (no blanks between #5 & #6)
@ - command procedure, field #6 will contain
task.dat. (no blanks between #5 & #6)

Field #4 and #6 should have the form:
device:[UIC]filename

RLS FILE FORMATS Page A-3

A.3 COMMAND DEFINTION FILE (CDF)

The command defintion files, used to define the keyword values to
be wused as input, are ASCII free format. They can be on one line, or
continued on subsequent lines if they have the dash ‘=’
indicating that the record is to be continued on the next line. There
are two general formats for the records in these files: -

a) Record #1

All variables written in capitals are RLS keywords.

Fi;ld Variable Type Size Description
1 KEYWORD char 7 RLS keyword
2 user-keyword char vl user specified keyword
3. TYPE char 4 RLS keyword
4 user-type char vl user specified type
(int,float,string,octal
logical)
5 HELP char 4 RLS keyword
6 user~descr char vl ‘user description
7 DEFAULT char 7 RLS keyword
8 user—-default char vl user spécified default

corresponding to ‘type’

RLS FILE FORMATS

b) Record #2

Page A-4

Field Variable Type Size Description
#
1 KEYWORD char 7 RLS keyword
2 user—-keyword char vl user specified keyword
3 TYPE char 4 RLS keyword
4* FILE char 4 Keyword triggering
record type #2
5 STREAM char 6 RLS keyword
6 user—stream char vl user specified input/output
7 HELP char 4 RLS keyword
8 user-help char vl user keyword description
9 DEFAULT char 7 RLS keyword
10 user—-default char vl user default

(inputn/outputn)

RLS FILE FORMATS Page A-5

A.4 COMMAND MODIFIER FILE (CMF)

The CMF files contain the default values required by the
application program. The data is in ascii free format, in the order
specified by the command definition file. There will be one value for
each keyword defined in the command definition file.

Field Variable Type Size Description
#
1 Valuel char vl as defined in CDF
2 Value2 char vl as defined in CDF
n Valuen char vl as defined in CDF

NOTE: The values in the CMF can be any of the data types specified in
the command definition file (ie int,float,string,octal, logical) The
size will be dependent on the data type.

RLS FILE FORMATS Page A-6

A.5 ANALOG SIGNAL FILES

The analog signal files are produced by the ‘monitor analog’ plus
switches or the ‘start analog’ command. The files consist of two
record types, the RLS header, followed by a stream of floating point
values representing voltages read at the computer a/d converter.

a) RLS header

Fi;ld Variable Type Size Description
1 SUBTITLE char 8 RLS keyword
2 user-title char <=30 user-title
3 CHANNEL char 7 RLS keyword
4 user-channel int 4 channel number
5 FREQUENCY char 9 RLS keyword
6 user-frequency float 4 user requested frequency
7 TIME char 4 RLS keyword
8 sample-start char vl time at sample start
9 STEPSIZE char 8 RLS keyword
10 user-stepsize float ‘4 user requested stepsize
11 XUNITS char 6 RLS keyword
12 x~-units _ char vl user specified units for x-axis
13 YUNITS char 6 RLS keyword
14 y-units char vl user specified units for y-axis

15 DATA char 4 RLS end of header flag

RLS FILE FORMATS

b) Data Record

Page A-7

Size

Fields Variables Type Description
i
1 voltage float 4 voltage reading from
a/d converter
n voltage float 4 voltage reading

RLS FILE FORMATS Page A-8

A.6 PEAK DATA FILES

Peak data files contain information on the peaks that have been
detected 1in the signal file. The two record types are the RLS header
followed by the peak data records. The files are in ascii free
format.

a) RLS header

Field Variable Type Size Description
i
1 GATE char 4 RLS keyword
2 gate-value int 4 user specified persistent

change threshold

3 SLOPE char 5 RLS keyword

4 slope-value float 4 slope sensitivity

5 DENSITY char 7 RLS keyword

6 density-value float 4 smoothing parameter

7 WIDTH char 5 RLS keyword

8 peak-width int 4 used to determine peak stop

9 SUBTITLE char 8 RLS keyword

10 user-title char vl user specified éubtitle

11 CHANNEL char 7 RLS keyword

12 channel-no int 4 user specified channel number
13 FREQUENCY char 9 RLS keyword

14 user~freq float 4 user specified sampling frequency
15 TIME ' char 4 RLS keyword

16 sample-time char vl sample start time

17 STEPSIZE char 8 RLS keyword

1& stepsize float 4 sampling.time interval

19 XUNITS char 6 RLS keyword

20 x~-units char vl x—-axis units

RLS FILE FORMATS Page A-9

21 YUNITS char 6 RLS keyword

22 y-units char vl y~axis units

23 DATA char 4 RLS flag - end of header

RLS FILE FORMATS Page A-10

b) Peak Data Records (one for each peak)

Field Variable Type Size Description

#

1 area float 4 peak area

2 height float . 4 peak height)
3 rt-time float 4 peak retention time

4 st-height float 4 standard height

5 st-time float 4 standard retention time
6 width float 4 peak width

7 end-height float 4 ?

8 end-time float 4 peak finish

9 sep-code char vl separation code

10 conc float 4 concentration
11 type char vl peak type
12 name char vl peak name

13 id-time float 4 peak identification time

14 resp-factor float 4 response factor

RLS FILE FORMATS Page A-11

A.7 CALIBRATION FILES

There are three calibration files, created and maintained by the
calibration programs.

a) Calibrl.rls

This file describes the peak method.

Fi;ld Variable Type Size Description
1 name ;;;r <=20 Calibration name
2 method char 4 calibration method (APCT,ESfD,
ISTD,NORM)
3 using ' char | <=7 using areas or ﬁeights
4 | units char <=10 units for report concentrations

5 description ~char <=40 user description of calibration

RLS FILE FORMATS

b) Calibr2.rls

This file describes the peaks in the various methods.

Page A-12

one record in the file for each peak in all the calibration files.

There is

Fi;ld Variable Type Size Description
1 calib-name char <=20 calibration name
2 rt-time float 4 retention time
3 peak-name char <=20 peaﬁ name
4 type char vl peak type
5 poly-order int 4 poly order
6 x**3 float 4 1st poly order (high order)
7 x**2 float 4 2nd poly order
8 x**3 float 4 3rd poly order
9 x**4 float 4 4th ploy order

[

c) Calibr3.rls

calibration peak defined.

This file defines the points in the calibration curves for each

calibration point.

There is a record in this relation for each

Field Variable Type Size Descriﬁtion
#
1 Calib-name char <=20 Calibration name
2 Peak-name char <=20 peak name
3 amount float 4 peak amount
4 size float 4 peak size (area or height)

RLS FILE FORMATS

A.8 GRAPH DIRECTORY FILE (GRAPH.RLS)

The graph directory file contains information on the current
of plots. This includes the minimum and maximum x and y values that
the graph has been scaled to, and the legend number for the next graph

overlay., The file is written in ascii free format.

Fi;ld Variable Type Size Description

1 graph—~name char <=20 graph file name

2 x-min float 4 minimum x-axis value
3 - X-max float 4 maximum x-axis value
4 y-min floét 4 minimum y-axis value
5 y=-max float 4 maximum y-axis value
6 . legend-number int 2 graph legend numbgr
7 graph~descr char <=40 graph description

Page A-13

RLS FILE FORMATS Page A-14

A.9 PLOT DESCRIPTOR FILE

For each graph there is a plot descriptor file (PDF) with the
extension ‘.plt’. The plot descriptor files are a set of (x,y) pen
moves.

Field Variable Type Size Description
#
1 code int 4 pen codes (valid codes listed
below)
2 X-cor float 4 x~-coordinate im cms or new pen
number
3 y=-cor float 4 y=-coordinate in cms

Valid Pen codes:

1 Draw

2 Move

3 New Pen
-13 End Plot

~-14 Init Plot

RLS FILE FORMATS Page A-15

A.10 MATH ROUTINES

The math routines access three RLS created files. The XYDATA.RLS
(directory file for x-ydata files) 1s described in the following
section., It 1is created and maintained by RLS as part of the data
entry portion. The files created and modified by the RLS math
routines are FNNAMES.RLS and FNCOEFFS.RLS.

a) Fnnames.rls

Description of the function data.

Field Variable Type Size Description
'
1 fnc-name char <=20 function name
2 fnc-form char <=20 function form
3 fnc-descr char <=40 function description (user’s)

b) Focoeffs.rls

Description of the function form and coefficients.,

Field Variable Type Size Description
#
1 fnc-name char <=20 function name (user specified)
2 fnc~form char <=20 function form
3 coef-name int 4 | coefficient number

4 fnc~-coef floa;l 4 function coefficient

RLS FILE FORMATS Page A~-16

A.11 X-Y DATASET DIRECTORY (XYDATA.RLS)

The data entry directory maintains file information for the files
created or modified using the data entry routines. Both the data
entry commands and the math routines use this directory for data file
information. Files can be entered into this directory only through
the data entry and the math routines.

Fi;ld Variable Type Size Description
_—1. dataset-name char <{=20 dataset or file name
2 user-descr char <=40 user description for dataset
3 x=units char <=10 x—-axis units
4 - x—label char <=80 x-a#is label
5 y-units char <=10 y—-axis units
6 y-label char <=80 y—-axis label
7 n-rows int 4 number of rows

8 n~-columns int 4 number of columns

——— =

RLS FILE FORMATS Page A-17

A.12 X-Y DATA FILE RECORDS

The x-y data files are of the format of the other RLS files, with
the RLS header, followed by the stream of x-y data points.

APPENDIX B

RLS SYSTEM GENERATION FILES

B.1 INTRODUCTION

The RLS system generation is done through a series of command
files. The main RLS area contains all the indirect command files for
setting logical assignments, and assigning compilers and task
builders. Each subdirectory contains a build file, which will build
the contents of that directory, as well as initiating the build of any
appropriate subdirectories.

As not all of the subdirectories are part of the RLS production
system, the description of the build files has been divided into two
different sections. The RLS production build files should be error
free. Those in the second section are those used for development
work, and may require further corrections.

B.2 CONTROL FILES

The RLS control files, located in the main directory are those
files required to set logical assignments, and to assign compilers and
task builders for the different systems. They are an essential part
of any task build, whether production or development.

DEVELOP.COM accepts one argument, the name of the site or system
for which the software is being generated. Using this argument, the
correct library assignments, ‘C’ header files, and conditional compile
assignments are made.

FOR.COM and RSXLINK.COM are foreign commands which replace the
VMS commands. This allows the build files to issue one command, and
depending on the target system, invoke the appropriate utilities. In
the case of the linking, it also allows the correct switches to be set
for the RSX system, since the link/rsx switch does not do this.

RLS SYSTEM GENERATION FILES Page B-2

B.2.1 DEVELOP.COM

LD U >y D > A < D DD DAy DD DD DDA A W L Uy > > U DU D DDA DU A

! Modifications:

! 3 March 1983 Alan Covington

! Changed sys$library:fcsres to sys$sysroot:[sysmgr.newsyslib]fcsres
! so that V4.0 development will work.

! 9 March 1983 Karin Tremaine

! Changed FCSRES assignment to read sys$library:fcsresnew fesres

! 14 FEB 1984 Karin Tremaine

! Changed ‘C’ compiler command, so that it no longer references

! CC.COM file

! 22 JUN 1984 Karin Tremaine

! Cleaned up the command file to reflect the changes in C compiler
! and changes in the library requirements

develop:==Qusers:[rls]develop
for:==@users:[rls]for

assign sys$disk sy

assign users ei

if pl .eqs. "" then inquire pl target node name

! RSX with FPP and FCSRES

if pl .nes. "RSX" then goto s9

target :=="RSX"

cc:== $cc /def=(RSX, target’)/incl=users:[rls.library]/member
macro:==macro /rsx

libr:== libr /rsx

link:== @users:[rls]rsxlink ! 1ink /rsx/tkb=users:[rls]tkb
assign sys$sysroot:[sysmgr.wpascal.rsxllm]fhdr.obj chdr
assign sys$sysroot:[sysmgr.wpascal.rsxllm]pflib.olb clib
assign users:[rls.library.rsx]exemc.mlb exemc

assign users:[rls,library.rsx]exelib exelib

assign users:[rls.library.rsx]mathll math

assign users:[rls.library.rsx]plotdevll plotdev

assign users:[rls.library.rsx]plotlibll plotlib

assign users:[rls.library.rsx]rlsclibll rlsclib

assign sys$library:£f77ots f770ots,

assign sys$library:fcsresnew fcsres

assign sys$library:syslib syslib

89:

! VMS

if pl .mes. "VMS" then goto slO

target:=="VMS"

cc:== $cc /def=(VMS, target’)/incl=users:[rls.library]/member
macro:==macro

libr:== libr

link:==1ink

assign users:{rls.library.vms] 1b:

‘assign sys$sysroot:[sysmgr.wpascal.vaxvms]chdr.obj chdr

assign sys$sysroot:[sysmgr.wpascal.vaxvms]plib.olb clib

RLS SYSTEM GENERATION FILES Page B-3

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

L R4 Ly K> K> > D> LD U D > D D > A DD <

assign users:[rls.library.vms]math math
assign users:[rls.library.vms]plotdev plotdev
assign users:[rls.library.vms]plotlib plotlib
assign users:[rls.library.vms]rlsclib rlsclib
sl0:

1 ALSARC

if pl .nes. "ALSARC" then goto sl

target :=="ALSARC"

cc:== $cc /def=(RSX, target’)/ineél=users:[rls.library]/member
macro:==macro /rsx

1ibr:== 1libr /rsx

link:== @users:[rls]rsxlink ! 1ink /rsx/tkb=users:[rls]tkb
assign users:[rls.library.rsx.alsarc] 1b:

assign sys$sysroot:[sysmgr.wpascal.rsxllm]fhdr.obj chdr
assign sys$sysroot:[sysmgr.wpascal.rsxllm]pflib.olb clib
assign users:[rls,library.rsx]exemc.mlb exemc

assign users:[rls.library.rsx.alsarc]rsxmc.mac rsxmc
assign users:[rls.library.rsx.alsarc]rsxllm.stb rsxllm
assign users:[rls.library.rsx]exelib exelib

assign users:[rls.library.rsx]mathll math

assign users:[rls,.library.rsx]plotdevll plotdev

assign users:[rls.library.rsx]plotlibll plotlib

assign sys$library:£f77ots f770ots

assign users:[rls.library.rsx]rlsclibll rlsclib

assign users:[rls.library.rsx.alsarc]targetlib targetlib
assign sys$library:fcsresnew fcesres

assign dba0:[1,1])syslib syslib

sl:

! CMPARC

if pl .nes. "CMPARC" then goto s2

target:==""CMPARC"

cc:== $cc /def=(RSX,’target’)/incl=users:[rls.library]/member
macro:==macro .

libr:== 1libr

link:==11ink _

assign users:[rls.library.vms] 1b:

! assign users:[rls.library.vms]chdr chdr

! assign users:[rls.library.vms}clib clib

assign sys$sysroot:[sysmgr.wpascal.vaxvms]chdr.obj chdr
assign sys$sysroot:[sysmgr.wpascal.vaxvms]plib.olb clib
assign users:[rls.library.vms]math math

assign users:[rls.library.vms]plotdev plotdev

assign users:[rls.library.vms]plotlib plotlib

assign users:[rls.library.vms]rlsclib rlsclib

assign users:[rls.library.rsx.cmparc]targetlib targetlib
s2:

! CHMARC

if pl .nes. "CHMARC" then goto s3
target:=="CHMARC"

RLS SYSTEM GENERATION FILES Page B-4

> > 2> D>y U DU DD DD

cci== $cc /def=(RSX, target’)/incl=users:[rls.library]/member
macro:==macro /rsx

libr:== 1ibr /rsx

link:== Qusers:[rls]rsxlink" !1ink /rsx/tkb=users:[rls]tkb

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
s3:

users:[rls.library.rsx.chmarc] 1b:

sys$sysroot: [sysmgr.wpascal.rsxllm]fhdr.obj chdr
sys$sysroot: [sysmgr.wpascal.rsxllm]pflib.olb clib
users:[rls.library.rsx.chmarc]lrsxmc.mac rsxmec
users:[rls,library.rsx.chmarc]}rsxllm.stb rsxllm
users:[rls.library.rsx}exemc.mlb exemc
users:[rls.library.rsx]exelidb exelib
users:[rls.library.rsx]mathll math
users:[rls.library.rsx]plotdevll plotdev
sys$library:f77ots f77ots
users:[rls.library.rsx]plotlibll plotlib
users:[rls.library.rsx]rlsclibll rlsclib
users:[rls.library.rsx.chmarc]targetlib targetlib
sys$library:fcsresnew fcsres

dba0:[1,1])syslib syslib

RLS SYSTEM GENERATION FILES

B.

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

2.2 FOR.COM

if target .nes. "ALSARC" then goto
mcr £77 ‘pl’=’pl’.for

goto exit

sl:

if target .nes. '"CHMARC" then goto
mer £77 ‘pl’=’pl’.for

goto exit

82:

if target .nes. "CMPARC" then goto
fortran ‘pl’

goto exit

s3: '

if target .nes. "VMS" then goto s4
fortran ‘pl’

goto exit

s4:

if target .nes. "RSX" then goto s5
mer £77 ‘pl’=‘pl’.for

goto exit

s5:

exit:

sl

s2

s3

Page B-5

RLS SYSTEM GENERATION FILES Page B-6

B.2.3 RSXLINK.COM

This file does a RSX task build from a VMS linker command
line (excluding switches). This is necessary so that the
appropriate TKB switches (/fp/cp) can be set.

This file accesses the new FCSRES (sys$library:newfcsres).
Thus the tasks produced will only run on V4.0 of RSX.

When the Version 4.0 TKB and FCSRES become standard, change
sys$library:newfcsres in develop.com to sys$library:fcsres

K. Tremaine 29-Feb=84 Removed the reference to FCSRES
as there are problems with GLIB/FCSRES
compatability

G Guh Ve tB G G tew S=b Gut Gem s

if pl .eqs. "" then goto ERROR

comma = ‘f$locate(",”, pl)
first file := "’’f$extract(0, comma, pl)‘"

! Switch all the /LIBR switches for /LB switches

BRI ROE GG ROR R RT IO ECRO R RO, RTINS

$ newpl :=
SNEXTLBSW:
$ 1lbsw = “f$locate("/LIBR", pl)

$ 1if(lbsw .eq. ‘f$length(pl)) then goto NOLBSW

$ newpl := ‘newpl’’f$extract(0, lbsw, pl)’/LB
$ pl := ‘fSextract(lbsw + 5, f$length(pl), pl)
S goto NEXTLBSW

SNOLBSW:

newpl := “newpl’‘pl’

! Now create the TKB command file and put in the appropriate
! TKB commands and options

open tkbecmd tkbtmp.cmd /write /error=CREATE_ERROR

write tkbemd "’“first file’/fp/cp=""newpl’"
write tkbemd "/"

write tkbemd "units=10"

write tkbemd Mactfil=10"

write tkbemd "stack=3000"

write tkbemd "asg=sy:1:2:3:4:6:7:8"

! write tkbemd “"reslib=fesres/ro"

write tkbemd "//"

close tkbemd

! Now do task build
mer tkb @tkbtmp.cmd

! clean up

> U > 0 DU DU D U > D >

RLS SYSTEM GENERATION FILES Page B-7

$ delete tkbtmp.cmd;*

$

$ exit

$

SERROR:

§ write sys$output "RSX task builder requires a file to build"
$ exit

$

$CREATE_ERROR:

$ write sys$output "RSX task builder. Cannot create temporary command file."
$ exit

RLS SYSTEM GENERATION FILES Page B-8

B.3 RLS PRODUCTION SYSTEM BUILD

The following files listed here are all the build files required
to build the RLS production system. The files are 1listed in
alphabetical order, based on directory names. The actual order in
which the build must occur is quite different. To insure that all the
programs execute properly, it 1s important that the following sequence
for the actual build is followed:

1. Library areas:

1. [rls.rlsclib]
2. [rls.clib]

3. ([rls.relation]
4. {rls.calcomp]

2. Applications which depend on modules being inserted in the
course of another directory build require that the following
directories are built in the order specified below:

1. [rls.math]
2. [rls.rls]
3. [rls.device]
4, [rls.xyplot]
5. [rls.signal]

3. The remaining areas can be built any time after the initial
libraries are . built,
1. [rls.entry]

2. [rls.epr]
3. [rls.gc]

4., ([rls.simdis]

RLS SYSTEM GENERATION FILES

B.3.1 [RLS.CALCOMP]BUILD.COM

D> LD DAy DD DAL AL DD AD DDA U DD W

savedef:="f$directory()’

set def [rls.calcomp]

1ibr /create=blocks:1 plotlib

!

! subdirectories

!

if target .eqs. "VMS" then @[.vms]build
if target .eqs. "RSX" then @[.rsx]build
!

! non~CALCOMP functions

!

cc clip

libr /rep plotlidb clip

!

! CALCOMP functions

! .

cc axis

cc calglb

cc factor

cc line

cc newpen

cc number

cc plot

cc plots

cc scale

cc symbol

cc where

1libr /rep plotlib axis,calglb,factor,line,newpen

libr /rep plotlib number,plot,plots,scale,symbol,where
1

! cleanup
1

del *,0bj.*
purge
set def ‘savedef’

Page B-9

RLS SYSTEM GENERATION FILES Page B-10

savedef:="f$directory()’

set def [rls.calcomp.rsx]

1

! system dependent functions

!

macro faxis

macro fline

macro ffactor

macro fnewpen

macro fnumber

macro fplot

macro fplots

macro fscale

macro fsymbol

macro fwhere

1ibr /rep plotlib faxis,fline,ffactor, fnewpen
libr /rep plotlib fnumber,fplot,fplots,fscale
1ibr /rep plotlib fsymbol,fwhere

!

! cleanup
1

del *,0bj.*
purge
set def ’“savedef’

Ly A0y A > D> DU DDA D AD DD DD DDy

RLS SYSTEM GENERATION FILES

B.3.1.2

!
macro
macro
macro
macro
macro
macro
macro
macro
macro
macro

1

purge

D> D> LD > DA D> AU D AD D DD DD DD

[RLS.CALCOMP.VMS]BUILD.COM -

savedef:='f$directory()’
set def [rls.calcomp.vms]

! system dependent functions

faxis
ffactor
fline
fnewpen
fnumber
fplot
fplots
fscale
fsymbol
fwhere

libr /rep plotlib faxis,ffactor,fline,fnewpen
libr /rep plotlib foumber, fplot,fplots,fscale,fsymbol,fwhere

! eleanup
del *.0bj.*

set def ’‘savedef’

Page B-11

RLS SYSTEM GENERATION FILES

B.

L L L > DD D Uy D A

3.2 [RLS.CLIB]BUILD.COM

savedef:="f$directory()’
set def [rls.clid]

!

!

! subroutines/functions
!

cc exit

cc main

libr /rep rlsclib exit, main
!

! cleanup

!

del *.,obj.*

purge

set def ‘savedef’

Page B-12

RLS SYSTEM GENERATION FILES Page B-13
B.3.3 [RLS.DEVICE]BUILD.COM

savedef:='f$directory()’

set def [rls.device]

set noon

1

subdirectories

22-jun-84 K. Tremaine
This subdirectories are no longer part of the RLS generation
This function has been included as part of the SYSGEN

if target .eqs. "ALSARC" then @[.rsx.alsarc]build
if target .eqs. "CHMARC" then @[.rsx.chmarc]build

functions

G G P 8 s G Sem s um s o

if target .nes. "ALSARC" .and. target .nes. "CHMARC" then goto s20
cc cdigio

cc lpaemu

cc voltage

1libr /rep targetlibd cdigio,lpaemu,voltage

s20:

cc waitabs

cc waitrel

libr /rep rlsclib waitrel,waitabs

1

! programs

1

cc anamonitr

link anamonitr,rlsclib/libr,chdr,clib/1ibr

cc anashow

link anashow,rlsclib/1libr,chdr,clib/1libr

cc anastart

link anastart,rlsclib/libr,chdr,clib/libr

cc anastop

link anastop,rlsclib/libr,chdr,clib/libr

cc anawait

link anawait,rlsclib/libr,chdr,clib/1ibr

cc clkwait

link clkwait,rlsclib/libr,chdr,clib/libr

cc digpulse

link digpulse,targetlib/libr,rlsclib/libr,chdr,clib/1ibr
cc digread

link digread,targetlib/libr,rlsclib/1libr,chdr,clib/libr
cc digwait .
link digwait,targetlib/libr,rlsclib/1libr,chdr,clib/1libr
cc digwrite

link digwrite,targetlib/libr,rlsclib/libr,chdr,clib/1libr
cc lparda

if target .nes. "ALSARC" then goto next

$ mcr tkb

lparda/fp/cp,lparda/-sp=1lparda

targetlib/1b,rlsclib/1b

chdr,clib/1b

> >0 mmmmmmmmmmmm-m-(nm-mmmmmmmmmmmmmmmmmmmmmmmmmmm
o

RLS SYSTEM GENERATION FILES

/

stack=1500

units=32

actfil=8

"pri=100

//

$ next:

$ if target .nes. "CHMARC" then goto exit
$ mcr tkb

lparda/fp/cp,lparda/-sp=lparda
targetlib/1b

rlsclib/1b

chdr,clib/1b

/

stack=3000

units=32

actfil=32

pri=100

//

exit:

cc trmread

link trmread,rlsclib/libr,chdr,clib/1libr
cc trmring

link trmring,rlsclib/libr,chdr,clib/11ibr
cc trmwait

link trmwait,rlsclib/libr,chdr,clib/libr
cc trmwrite

link trmwrite,rlsclib/libr,chdr,clib/libr
!

! cleanup

1

del *,0bj.*

set on

purge

set def ’‘savedef’

LD DDA LDy W0

Page B-14

RLS SYSTEM GENERATION FILES
B.3.4 [RLS.ENTRY]BUILD.COM

savedef:="f$directory()”’
set def [rls.entry]
!

! programs

cc xyadd

link xyadd,rlsclib/libr,chdr,clib/libr

cc xychange

link xychange,rlsclib/libr,chdr,clib/libr
cc xydel

link xydel,rlsclib/libr,chdr,clib/libr

cc xyshow

link xyshow,rlsclib/libr,chdr,clib/libr
%

! cleanup

!

del *.0bj.*
purge

set def ‘savedef’

L DD DD Uy DD DD
-

Page B-15

RLS SYSTEM GENERATION FILES Page B-16

B.3.5 [RLS.GC]BUILD.COM

savedef:='f$directory()’

set def [rls.gc]

set noon

for bascor

link bascor,rlsclib/libr,chdr,clib/libr,f770ts/libr
cc calibchg

link calibchg,rlsclib/1libr,chdr,clib/1libr

cc calibdel

link calibdel,rlsclib/libr,chdr,clib/1libr

cc calibent

link calibent,math/libr,rlsclib/libr,chdr,clib/1libr
cc calibextr

link calibextr,rlsclib/libr,chdr,clib/libr

cc calibins

link calibins,rlsclib/1libr,chdr,clib/1ibr

cc calibshow

link calibshow,rlsclib/libr,chdr,clib/1ibr

cc calibupd

link calibupd,math/1ibr,rlsclib/1libr,chdr,clib/1libr
cc convrtchn

link convrtchn,rlsclib/libr,chdr,clib/1libr

cc gereport

link gcreport,rlsclib/libr,chdr,clib/libr

for 1pspkp

link 1lpspkp,rlsclib/libr,chdr,clib/libr

cc postrun

link postrun,math/libr,rlsclib/libr,chdr,clib/libr
cc ticks

link ticks,plotlib/libr,rlsclib/libr,chdr,clib/1libr
1

! clean up

1

delete *,obj.*
purge

set on

DD DD DD DD DL DD DD AD DD AN DD DD WO

set def ‘savedef’

RLS SYSTEM GENERATION FILES

B.3.6 [RLS.MATH]BUILD.COM

savedef:=’f¢directory()’

set def [rls.math]

set noon

1

! subroutines

!

cc basis

cc dotpr

cc evaluate

cC exp

cc fnctype

cc log

cc 1lsqfit

cc matinv

cc mllfndlsq

cc mlldecomp

cc mllnorm

cc mllsolve

cc mmul

cc mtrans

cc norm

cc pwr

cc sin

cc svenmg

cc uxfcoeffs

cc vpoly

cc vsmul

cc vswap

cc xfcoeffs

cc xfdata

1libr /create=blocks:1 math _

1libr /rep math basis,dotpr,evaluate,exp,fnctype,log,lsqfit
libr /rep math matinv,mllfndlsq,mlldecomp,mllnorm
1ibr /rep math mllsolve,mmul,mtrans .
1libr /rep math norm,pwr,sin,svemg,uxfcoeffs,vpoly,vswap
libr /rep math vsmul,xfcoeffs,xfdata

; :

! programs

1

cc bunch

link bunch,rlsclib/libr,chdr,clib/1libr

cc convert

link coavert,rlsclib/libr,chdr,clib/libr

cc fnadd

link fnadd,math/libr,rlsclib/libr,chdr,clib/1libr
cc fndel

link fndel,math/libr,rlsclib/libr,chdr,clib/libr
cc fnshow

link fnshow,math/1ibr,rlsclib/libr,chdr,clib/libr
cc residual

link residual,math/libr,rlsclib/libr,chdr,clib/1libr

Page B~17

RLS SYSTEM GENERATION FILES Page B-18

cc rlsanova

link rlsanova,math/libr,rlsclib/libr,chdr,clib/libr
cc rlseval

link rlseval,math/libr,rlsclib/libr,chdr,clib/1libr
cc rlslsqfit

link rlslsqfit,math/libr,rlsclib/libr,chdr,clib/1ibr
!

! clean up

!

delete *.,0bj.*

purge

set on

L L L > Iy 0 A0 D DD A

set def ‘savedef’

RLS SYSTEM GENERATION FILES Page B-19
B.3.7 [RLS.RELATION]BUILD.COM

savedef:=’f$directory()’ .

set def [rls.relation]

!

! subroutines/functions

1

cc addext

cc closer

cc creatr

cc deltuple

cc gettuple

cc instuple

cc openr

cc puttuple

cc rel

cc rpltuple

1libr /rep rlsclib addext,closer,creatr,deltuple,gettuple,instuple
libr /rep rlsclib openr,puttuple,rel,rpltuple
\ .

! cleanup
1

del *,0bj.*
purge
set def ‘savedef’

RLS SYSTEM GENERATION FILES

B.

Ly DDA LD Ur Uy DD WD DWW

3.8 [RLS.RLS]BUILD.COM

savedef:='f8directory()’

set noon

set def [rls.rls]

!

! subroutines

1

cc getcpd

cc opncdf

cc prenam

cc prompt

cc readhdr

1ibr /rep rlsclidb getcpd,opncdf,prenam,prompt,readhdr
! '

! programs

1

cc addcomm

link addcomm,rlsclib/libr,chdr,clib/libr
cc crecdf

link crecdf,rlsclib/libr,chdr,clib/libr
cc ctradd

link ctradd,rlsclib/libr,chdr,clib/1ibr
cc ctrdecr

link ctrdecr,rlsclib/libr,chdr,clib/1libr
cc ctrdelete

link ctrdelete,rlsclib/libr,chdr,clib/libr
cc ctrshow

link ctrshow,rlsclib/libr,chdr,clib/1libr
cc delcomm

link delcomm,rlsclib/libr,chdr,clib/libr
cc rlscli

link rlscli,rlsclib/libr,chdr,clib/libr,£770ts/1libr
cc rlshlp

link rlshlp,rlsclib/libr,chdr,clib/1libr
cc rlsset

link rlsset,rlsclib/libr,chdr,clib/1libr
cc rlssho

link rlssho,rlsclib/libr,chdr,clib/libr
cc shocomm

link shocomm,rlsclib/libr,chdr,clib/libr
!

! clean up
!

delete *,0bj.*
purge

set def ’“savedef’

Page B-20

'RLS SYSTEM GENERATION FILES Page B-21
B.3.9 [RLS.RLSCLIB]BUILD.COM

savedef:='f¢directory()”’

set def [rls.rlsclib]

!

! create the object library

!

1ibr /create=blocks:1 rlsclib

!

! subdirectories

1

if target .eqs. "VMS" then @[.vms]build

if target .eqs. "RSX" then @[.rsx]build

!

! subroutines/functions

! i

cc assign,chain,chktype,cmfnam,crelog

cc cnvstr,dassgn,date,dequeue

cc eofon,filexpnd,filnam,getoctal,gtty

cc getpid,getfloat,getint,getlog,getstring,host

cc ioral,iowal,newprompt,queue,rename,skiphdr,symbol
cc. stty,time,translate,trnlog,xfrhdr

1libr /rep rlsclib assign,chain,chktype,cmfnam,crelog
1libr /rep rlsclib cnvstr,dassgn,date,dequeue

1libr /rep rlsclibd eofon,filexpnd,filnam,getoctal,gtty
libr /rep rlsclib getpid,getfloat,getint,getlog,getstring,host
libr /rep rlsclid ioral,iowal,newprompt,queue,rename,skiphdr,symbol
1ibr /rep rlsclib stty,time,translate,trnlog,xfrhdr
1

! cleanup

1

del *,0bj.*

purge

set def ’‘savedef’

A D> D> > DA DD DDA D DD DDA DA DDA A AD DD

RLS SYSTEM GENERATION FILES Page B-22

savedef:="f$directory()’

set def [rls.rlsclib.rsx]

!

! assemble functions

!

macro c5ta

macro cdtoe

macro cdtof

macro clseek

macro csi

macro filesll

!macro frenam

macro ftoc

macro rcall

macro rdfui

!macro renam

macro wfown

1

! put into object library

!

libr /rep rlsclib c5ta,cdtoe,cdtof,clseek,csi
1ibr /rep rlsclib filesll,ftoc
libr /rep rlsclib rcall,rdfui,wfown
!

! cleanup

!

del *.o0bj.*

purge

set def ‘savedef’

L D Ly > DD DD A DA DL D DD AD LD DA DD

RLS SYSTEM GENERATION FILES Page B-23

savedef:='f$directory()’
set def [rls.rlsclib.vms]
!

! assemble functions

!

macro cdtoe

macro cdtof

macro clseek

macro ftoc

!

! put into object library
!

1ibr /rep rlsclib cdtoe,cdtof,clseek,ftoc
!

! cleanup

1

del *,0bj.*

purge

set def ‘savedef’

> > > > > DA DD D AN AN DD

RLS SYSTEM GENERATION FILES

B.3.10 [RLS.SIGNAL]BUILD.COM

savedef:=’f$directory()”’
set def [rls.signal]
set noon

1

! subroutines

!

for cfftb

for cfftf

for cffti

cc drum

macro fftb

macro fftf

macro ffti

cc polar

1libr /rep math drum,cfftb,cfftf,cffti,fftb,fftf,ffti,polar
! - :
! programs

P

cc amplitude

link amplitude,math/libr, rlscllb/libr chdr,clib/libr

cc autocorr

link autocorr,math/libr,rlsclib/libr,chdr,clib/1ibr,£770ts/
cc derivativ

link derivativ,math/libr,rlsclib/libr,chdr,clib/1libr
cc equi

link equi,math/libr,rlsclib/libr,chdr,clib/1libr

cc extract

link extract,math/libr,rlsclib/libr,chdr,clib/1libr

cc fftb

link fftb,math/libr,rlsclib/libr,chdr,clib/1libr,f770ts/1libr
cc fftf

link fftf,math/libr,rlsclib/libr,chdr,clib/libr,f770ts/1libr
cc integral

link integral,math/libr,rlsclib/libr,chdr,clib/libr

cc npoints

link npoints,math/libr,rlsclib/libr,chdr, clib/libr

cc nyquist

link nyquist,math/libr, rlsclib/libr chdr,clib/libr

cc phase

link phase,math/libr,rlsclib/libr,chdr,clib/libr

cc power

link power,math/libr,rlsclib/libr,chdr,clib/11ibr

cc rmvmean

link rmvmean,math/libr,rlsclib/libr,chdr,clib/1libr

cc rmvtrend

link rmvtrend.math/libr,rlsclib/1libr,chdr,clib/1libr

!

! clean up

|

delete *.,o0bj.*

purge

set on

Page B-24

1libr

RLS SYSTEM GENERATION FILES Page B-25

$ set def ‘savedef’

RLS SYSTEM GENERATION FILES Page B-26

B.

L L > LD DAY U D A Uy DD DD DD

$
$
$
$
$

s tma s

3.11 [RLS.SIMDIS]BUILD.COM

savedef:=’f$directory()’

set def [rls.simdis]

set noon

ce wrtfile

link wrtfile,rlsclib/1libr,chdr,clib/1libr
cc' remove

link remove,rlsclib/libr,chdr,clib/1libr
cc simbas

link simbas,rlsclib/libr,chdr,clib/libr
cc pcarea ’

link pcarea,rlsclib/libr,chdr,clib/1libr
cc scale

link scale,rlsclib/libr,chdr,clib/1libr
cc report

1ink report,rlsclib/libr,chdr,clib/libr
cc calibsim

link calibsim,rlsclib/libr,chdr,clib/libr

clean up

delete *,0bj;*
purge
set on

set def ‘savedef’

RLS SYSTEM GENERATION FILES Page B-27

B.

LD D> DDA A LD Iy D> Y > D D DD DD A D

3.12 [RLS.XYPLOT]BUILD.COM

savedef:="f$directory()”’

set noon

set def [rls.xyplot]

!

! subdirectories

!

@[.spooler]build

!

! programs

!

cc graphdel

link graphdel,rlsclib/libr,chdr,clib/libr

cc graphshow

link graphshow,rlsclib/libr,chdr,clib/libr

cc plot

link plot,plotlib/libr,math/libr,rlsclib/libr,chdr,clib/libr
lcc pdmp

'1ink pdmp,chdr,clib/libr

cc plottr

link plottr,plotdev/libr,rlsclib/libr,chdr,clib/libr,f770ts/1libr
cc text

link text,plotlib/libr,math/libr,rlsclib/libr,chdr,clib/libr
!

! cleanup

!

del *.0bj.*

set on

purge

set def ‘savedef”’

RLS SYSTEM GENERATION FILES Page B-28

B.3.12.1 [RLS.XYPLOT.SPOOLER]BUILD.COM -

savedef:='f$directory()’

set noon

set def [rls.xyplot.spooler]

1ibr /create=blocks:1 plotdev
.1f target .eqs. "VMS" then @[.vms]build
if target .eqs. "VMS" then @[.rsx]build
1

! functions

!

cc’ bensoni

cc calcomp

cc eprplot

ce 1lxy

cc ploti

cc tek4006

cc tek40l4

cc tek4662

cc vtl00

cc vtl25

1libr /rep plotdev bensoni,calcomp,eprplot,lxy
libr /rep plotdev ploti,tek4006,tek4014,tek4662
libr /rep plotdev vt100,vtl25

1

! cleanup

1

del *,0bj.*
purge

set def ’‘savedef’

> > DD D> > DDA AN DA

RLS SYSTEM GENERATION FILES Page B-29

B.3.12.1.1 [RLS.XYPLOT.SPOOLER.RSX]BUILD.COM -

savedef:='f$directory()’
set def [rls.xyplot.spooler.rsx]
1

! functions

!

for copyfll .
libr /rep plotdev copyfll
!

! cleanup

!

del *,0bj.*

purge

set def ‘savedef’

R AR R A i g I AR, 7 T 7 R AR 7Y

RLS SYSTEM GENERATION FILES Page B-30

savedef:=’'f$directory()’

set def [rls.xyplot.spooler.vms]

1

for benson

for copyfile

macro nargs

1libr /rep plotdev benson,copyfile,nargs
1

! cleanup
!

del *.,0bj.*
purge
set def ‘savedef’

L0 L DD DD DD

RLS SYSTEM GENERATION FILES Page B-31

B.4 DEVELOPMENT AREAS

The remaining areas are those which are still under development

or which have become obsolete due to changes in operation, or changes
in software requirements.,

B.4.1 CC.COM (obsolete)

A LD D LD DAL DU AL U202 > DD DD DD A0 U D0 <0 U 0 U A0 DD AD DD

ver = ‘f$verify(0)
exitstatus = 1

Vs tw b S st ot sem tem Sew

This 1s a test version. To make it present rather than new all
references to sys$new: should be replaced with the appropriate
directory.

To be executed as a command procedure the following command line
should be executed:

cc :== @sys$system:cc c

Modification history:

1982-Aug=-13 ARC

Made into ordinary c compiler. references to sys$new: changed and
appropriate files copied over.

if target .nes. "CMPARC" .and. target .nes. "VMS" then goto RSX
cpp := syssystem:cpp

cpl := syssystem:cpl

cp2 := $sysSsystem:cp2

goto L1

RSX:

cpp := §syssystem:cppll -x

cpl := syssystem:cplll
cp2 := syssystem:cp2ll

1 10
o o

Ll:

!

compilé C programs.,

on CONTROL Y then goto CLEANUP

on SEVERE ERROR then goto CLEANUP
libnam := [rls.library]

cppflags := ""

cplflags :=

syslibflag := 0
paramindex = 0
paramlimit = 9 ! [sic]

LOOP:

paramindex = paramindex + 1

if paramindex .eq. paramlimit then goto COMPILE
if p’paramindex .eqs. "" then goto COMPILE

pn := "‘p’’paramindex’’"

pn := ‘pn

if paramindex .ne. 1 then goto NOFUDGE

This is because this proc. allows has one parameter of length 1.

len = “f$length(pn)

RLS SYSTEM GENERATION FILES . Page B-32

if len .eq. 1 then goto LOOP
pn := ‘f$extract(l, len, pn)
NOFUDGE:

if ‘f$locate("/", pn) .ne. "f$length(pn) then goto FLAGS
files := ‘pn
goto LOOP

FLAGS:
len = “f$length(pn)
if len .eq. O then goto LOOP

! extract the flag letter and any filenames and dispatch to appropriate place

slash = ‘f$locate("/", pn)

if slash .ne. O then files := ‘f$extract(0, slash, pn)
slash = slash + 1

pn := ‘f$extract(slash, len, pn)

slash = ‘f$locate("/", pn)

flag := ‘f$extract(0, 1, pn)

if flag .eqs. "M" then goto CP1FLAGS

if flag .eqs. "D" .or. flag .eqs. "I" .or. flag .eqs. "P" .or. flag-
.eqs. "S" then goto CPPFLAGS

write sys$error "Unknown switch at \", pn, "\"
exitstatus = 4

goto LEAVE

cplflags := "-m
goto ENDFLAG

CPPFLAGS:
flagstr := “f$extract(0, slash, pn)
flagstr := “f$extract(l, slash, flagstr)
if flag .eqs. "I" then goto CPPIFLAG .
CPPLOOP:
if “f$length(flagstr) .eq. 0 then goto ENDFLAG
comma = ‘f$locate(",", flagstr)
cppflags := “cppflags’" -""flag’’f$extract(0, comma, flagstr)’
comma = comma + 1 .
flagstr := ‘fgextract(comma, len, flagstr)
goto CPPLOQP

CPPIFLAG:
if syslibflag .eq O then cppflags := ‘cppflags’" -I"‘libnam’
syslibflag := 1
CPPILOOP:
if ‘f$length(flagstr) .eq. O then goto ENDFLAG
comma = “f$locate(",", flagstr)
cppflags := ‘cppflags’"|"’f$extract(0, comma, flagstr)
comma = comma + 1 .
flagstr := “f$extract(comma, len, flagstr)
goto CPPILOOP

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$ CP1FLAGS:
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$ ENDFLAG:

RLS SYSTEM GENERATION FILES

pn := ‘f$extract(slash, len, pn)
goto FLAGS

COMPILE:
if syslibflag .eq. 0 then cppflags :
COMPILELOOP:
len = “f$length(files)
if len .eq. 0 then goto CLEANUP
comma = ‘f$locate(",", files)
pn := ‘fSextract(0, comma, files)
comma = comma + 1
files
dot = “f$locate(".",pn)

basename := ‘f$extract(0,dot,pn)
1

1
cnam := ‘basename’.c
if dot .eq. “f$length(pn) then pn :=
marnam := ‘basename’.mar
write sysSoutput pn
DISPATCH:
on SEVERE ERROR then goto NOTE_ERROR
if pn .eqs. cnam then goto DOTC
if pn .eqs. marnam then goto DOTMAR
DOTC:

marnam := cp2.tmp)
macro/object="basename’ ‘marnam’
on SEVERE ERROR then goto CLEANUP
goto COMPILELOOP

NOTE_ERROR:
exitstatus = 4
goto COMPILELOOP

CLEANUP:
open/error=NOCPP tmpfi: cpp.tmp
close tmpfi:
del cpp.tmp;*
NOCPP:
open/error=NOCPl tmpfi: cpl.tmp

close tmpfi:
del cpl.tmp;*
NOCP1:

mmmmmmmmmmmmwwmmmmwmmmmmmmmmmmmmmmmwmmmmmmmmmmmmmmmmmmm

Page B-33

"cppflags’" -I"‘1libnam’

:= “f8extract(comma, len, files)

! errorout’ is expanded to ">>filename" or null (default)

‘cnam’

if target .nes. "CMPARC" .and. target .nes. "VMS" then goto RSX2
cpp -x —=dVMS -d”target’ -dvax$vms ‘cppflags’ -o cpp.tmp ‘pn’ ‘errorout’
! use -n32 in cpl for calling vms system functions
cpl ‘cplflags’ -n3l -1b0 -o cpl.tmp cpp.tmp

‘errorout’

cp2 -0 cp2.tmp cpl.tmp ‘errorout’
goto RSX3
RSX2:
cpp ~x “cppflags’ -d RSX -d “target’ -o cpp.tmp ‘pn’ ‘errorout’
cpl ‘cplflags’ -n6 -o cpl.tmp cpp.tmp ‘errorout’
cp2 -f -0 cp2.tmp cpl.tmp ‘errorout’
RSX3: .
DOTMAR:

RLS SYSTEM GENERATION FILES Page B-34

$ open/error=NOCP2 tmpfi: cp2.tmp
$ close tmpfi:

$ del cp2.tmp;*

$ NOCP2:

$ LEAVE:

RLS SYSTEM GENERATION FILES Page B-35
B.4.2 [RLS.CLIB.TEST]BUILD.COM

!

! data conversion

!

cc btod,btoi,btol,btos

clibr /repl {.’pl’]clib btod,btoi,btol,btos

cc decode,dtento,dtoe,dtof '
clibr /repl [.’pl’]clib decode,dtento,dtoe,dtof
cc encode,errfmt

clibr /repl [.’pl’]lclib encode,errfmt

!

! file 1/0 routines

!

cc fclose,fcreate,fill

c¢ finit,fopen,fread

cc getc,getch,getf,getfmt,getl,getlin

cc putc,putch,putf,putfmt,putl,putlin,putstr
clibr /repl [.’pl’]clib fclose,fcreate,fill
clibr /repl [.’pl’]clib finit,fopen,fread

clibr /repl [.”pl’]clib getc,getch,getf,getfmt,getl,getlin
clibr /repl [.’pl’]clidb putc,putch,putf,putfmt,putl,putlin,putstr
!

! string parsing
!

cc cmpbuf,cmpstr

cc inbuf,instr,itob,itols

cc notbuf,notstr,prefix

clibr /repl [.’pl’]clib cmpbuf,cmpstr

clibr /repl [.’pl’]elib inbuf,instr,itob,itols
clibr /repl [.’pl’]clib notbuf,notstr,prefix

1

! buffer manipulation

!

cc cpybuf,cpystr

cc lenstr,lower,lstoi,ltob

clibr /repl [.’pl’]clib cpybuf,cpystr _
clibr /repl [.’pl’]clib lenstr,lower,lstoi,ltob
1

low level i/o

!
!
!
! program control
!

cc main

clibr /repl [.’pl’]lclib main
cc scnbuf,scnstr,squeeze

cc stdin,stdout

cc stob,subbuf,substr

cC uname

programs

W v vm s DD DD DD DD DDA WD DD DD -(I)-(h'-(l)-(h-(h-(h-(h-(h-(h‘(h-(h‘(h'(D'(D-(h-(h-(h{h-(h{f)ﬁ)-(hm-(h

cc clibtst

RLS SYSTEM GENERATION FILES

B.4.3 [RLS.DEVICE.RSX.ALSARC]BUILD.COM (obsolete)

$ savedef:="f$directory()’

$ set def [rls.device.rsx.alsarc]

$!

$! BD: driver for the DR-11K digital 1/o board
$!

$ mer mac bddrv=exemc/ml,rsxmec/pa:l,sy:bddrv
$ mcr tkb

bddrv.tsk/~hd/-mm, ,bddrv=bddrv

rsxllm/ss

exelib/1b

/

stack=0

par=drvpar:120000:20000

//

$!

$! cleanup

$!

$ del *,0bj.*

$ purge

$ set def ’‘savedef’

Page B-36

RLS SYSTEM GENERATION FILES Page B-37
B.4.4 [RLS.DEVICE.RSX.CHMARC]BUILD.COM (obsolete)
$ savedef:="fsdirectory()’

$ set def [rls.device.rsx.chmarc]

1
! LS: driver for LPS-11
!

U

$ mcr mac lsdrv=exemc/ml,rsxmc/pa:l,sy:lsdrv
$§ mecr tkb
lsdrv.tsk/-hd/-mm,,lsdrv=1sdrv
rsxllm/ss

exelib/1lb

/

stack=0
par=drvpar:120000:20000

//

$!

$! cleanup

$!

$ del *.0bj.*

$ purge

$ set def ‘savedef’

RLS SYSTEM GENERATION FILES Page B-38

B.4.5 [RLS.RELATION.TEST]BUILD.COM

savedef:=’'f$directory()”’

set def [rls.relation]

!
. ! subroutines/functions

1

cc addext

cc closer

cc creatr

cc deltuple

cc gettuple

cc Instuple

cc openr

cc puttuple

cc rel

cc rpltuple

1libr /rep rlsclib addext,closer,creatr,deltuple,gettuple,instuple
1ibr /rep rlsclib openr,puttuple,rel,rpltuple
1

! cleanup

!

del *,0bj.*
purge

set def “savedef’

A 2 Iy A D > L D> LY LY D LD DA D

RLS SYSTEM GENERATION FILES Page B-39
B.4.6 [RLS.TRANSPORT}BUILD.COM

$ develop chmarc

$ cc binary

$ mcr tkb
binary/fp/cp=binary,voltage
rlsclib/1b

chdr,clib/1b

/

stack=3000

units=10

actfil=10
asg=sy:1:2:3:4:6:7:8
reslib=fcsres/ro

//

$ cc lparda

$ mcr tkb
lparda/fp/cp,lparda/-sp=1parda,lpaemu,cdigio
rlsclib/1b
chdr,clib/1b

/

stack=2000

units=32

actfil=32
reslib=fcsres/ro
pri=100

//

