DETAILED SOIL SURVEY

of

THE COCHRANE AREA

M. Scheelar

ALBERTA RESEARCH COUNCIL
TABLE OF CONTENTS

SECTION I

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Use of Report</td>
<td>2</td>
</tr>
<tr>
<td>The Soils</td>
<td>2</td>
</tr>
<tr>
<td>Soil and Land Use</td>
<td>8</td>
</tr>
</tbody>
</table>

SECTION II

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochrane Area</td>
<td>19</td>
</tr>
<tr>
<td>Location and Extent of Area</td>
<td>20</td>
</tr>
<tr>
<td>Physiography</td>
<td>20</td>
</tr>
<tr>
<td>The Soils</td>
<td>21</td>
</tr>
<tr>
<td>Soil Unit Descriptions</td>
<td>23</td>
</tr>
<tr>
<td>Soil Interpretations</td>
<td>31</td>
</tr>
<tr>
<td>Glossary</td>
<td>37</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td>45</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Guides for Assessing Soil Limitations for Road Location 10
Table 2. Guides for Assessing Soil Limitations for Permanent Buildings 11
Table 3. Guides for Assessing Soil Limitations for Sewage Lagoons 12
Table 4. Guides for Assessing Soil Limitations for Camp Areas 13
Table 5. Guides for Assessing Soil Limitations for Picnic Areas 14
Table 6. Guides for Assessing Soil Limitations for Playing Fields 15
Table 7. Suitability Ratings of Soils as Sources of Gravel 16
Table 8. Suitability Ratings of Soils as Sources of Roadfill 16
Table 9. Suitability Ratings of Soils as Sources of Topsoil 17
Table 10. Engineering and Chemical Soil Data 35
Table 11. Limitations and Suitability of the Soils for Selected Uses 36
Table 12. Canadian Soil Classification System 41
Table 13. Definition of Soil Horizon Symbols 42

LIST OF FIGURES

Figure 1. Diagram of a Soil Profile 3
Figure 2. Guide for USDA Soil Textural Classification 6
SECTION I

PREFACE

This report is one of a series describing detailed soil surveys of areas found within the jurisdiction of the Calgary Regional Planning Commission. These soil surveys are conducted at sufficiently large scale to be useful for local planning.

The report contains information that can be used to evaluate soil properties for urban and recreational development, to evaluate the engineering properties of soils for construction materials and sites and to assess the agricultural capability of the land. The suitabilities or limitations of the soils for selected uses are described in tabular form in the report. These tables can easily be used to make interpretive maps for specific land uses.

There were seven areas surveyed in this program in 1974. These areas are adjacent to the following towns:

- **Strathmore** (5,800 acres)
- **Okotoks** (6,000 acres)
- **Airdrie** (6,800 acres)
- **Black Diamond** (7,700 acres)
- **Cochrane** (10,000 acres)
- **High River** (11,000 acres)
- **Canmore** (15,000 acres)

Total acreage surveyed – 62,300.

There is a separate report for each area. A standard explanatory section which is pertinent to all areas is presented at the beginning of each report. Specific results and interpretations for a particular area are presented in the second section of the report.

INTRODUCTION

Soil is one of our most important natural resources. Man bases his activities on soils and depends on their productivity. Misuse of land can have drastic environmental, economic and social effects. Soil surveys provide baseline data on the soil resources of an area. This information is essential to land characterization and evaluation which is
the natural basis for effective land use and land management policies.

Soils vary widely in their properties and as such their suitability or limitations for different uses also varies. A soil with low agricultural capability may be suitable for road construction and a soil that is unsuitable for road location due perhaps to periodic flooding hazard or high water table may be excellent pasture land. However soils often are suitable for several uses. For example, well drained, level soils that have a high capability for agriculture also are excellent locations for airports, highways and urban development. Soil surveys provide the planner with information useful for making decisions based on predicted soil performance and soil suitability for multiple uses.

USE OF THE REPORT

This report consists of a written text and a map. The written part includes introductory and background information on soils, soil mapping, and soil interpretations in the first section and descriptions of the soils, analytical results, and interpretations for various uses in the second section.

The soil map is presented on an aerial photo-mosaic base. The photo base aids in identification and location of areas, however the linear and spatial distortion inherent in a photo mosaic must be appreciated. The soil-landscape units delineated on the map are described briefly in the map legend and in greater detail in the written report. The map and the report should be used together.

THE SOILS

Soil Formation

Soils are natural bodies present on the earth's surface that are an integral part of the environment. Soils display variation both vertically and horizontally and by examining these variations soil individuals may be recognized. Soils have evolved from their geological parent material through the action of a combination of
soil forming processes, which are controlled by environmental parameters or "soil forming factors". These soil forming factors are commonly listed as being the parent material, climate, biotic agents and topography all acting through time. The variations in relative importance or dominance of one or more of the soil forming processes such as addition and removal of organic matter, translocation of clays or iron and aluminum, and chemical and physical transformations result in the formation of horizons or layers of various kinds within the soil body. These horizons differ from one another in such properties as color, texture, structure, consistence, and chemical and biological activity. The major, or master horizons are designated O for organic layers developed mainly from mosses, rushes, and woody materials; L, F and H for organic layers developed mainly from leaves, twigs, woody materials, and a minor component of mosses; and A, B and C for mineral horizons. Subdivisions of the master horizons are denoted by suffix letters appended to the master horizon symbol (see Figure 1, Table 13, and glossary).

FIGURE 1. DIAGRAM OF A SOIL PROFILE

--- Organic layer which may be subdivided into L, F, H or Of, Om, and Oh

--- A mineral horizon at or near the surface. It may be a dark colored horizon in which there is an accumulation of humus (Ah), or a light colored horizon from which clay, iron, and humus have been leached (Ae).

--- Mineral horizon that (1) may be altered to give a change in color or structure (Bm) or (2) may have an enrichment of clay (Bt) or (3) may have significant amounts of exchangeable Na and exhibit a columnar structure with pronounced stainings (Bn).

--- Mineral horizon comparatively unaffected by the soil forming process operative in the A and B horizons except for the process of gleying (Cg). or the accumulation of carbonates and soluble salts (Cca, Csa, Ck, Cs, Csk).
Through observation of soil characteristics it is possible to classify soils into taxonomic units. In this report the System of Soil Classification for Canada (Canada Soil Survey Committee, 1973) is used (see Soil Unit Descriptions). The criteria used for making the taxonomic separations are significant for understanding soil genesis and for land use applications.

Soil Mapping

When mapping soils the fieldman examines the soil at points in the landscape to characterize landscape units. Since soil is a continuum, and adjacent soils seldom have sharp boundaries, soil map units are defined as having a certain range of properties. These soil map units are based on geologic materials and landforms, soil development, and soil moisture conditions. The soil and land attributes recognized in mapping are important for various land uses.

The notations on the soil map consist of number and letters: for example

\[
\text{1 - 3} \quad c
\]

The first digit in the number represents a geologic landform or material (for example an alluvial fan or a glacial till); the second digit denotes soil profile development, moisture conditions, and sometimes textural differences; and the letter denotes the topographical class. The topographical classes are those used by the Canada Soil Survey Committee, which are as follows:

<table>
<thead>
<tr>
<th>Simple topography</th>
<th>Complex topography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single slopes</td>
<td>Multiple slopes</td>
</tr>
<tr>
<td>(regular surface)</td>
<td>(irregular surface)</td>
</tr>
<tr>
<td>A depressional to level</td>
<td>a nearly level</td>
</tr>
<tr>
<td>B very gently sloping</td>
<td>b gently undulating</td>
</tr>
<tr>
<td>C gently sloping</td>
<td>c undulating</td>
</tr>
<tr>
<td>D moderately sloping</td>
<td>d gently rolling</td>
</tr>
<tr>
<td>E strongly sloping</td>
<td>e moderately rolling</td>
</tr>
<tr>
<td>F steeply sloping</td>
<td>f strongly rolling</td>
</tr>
<tr>
<td>G very steeply sloping</td>
<td>g hilly</td>
</tr>
<tr>
<td>H extremely sloping</td>
<td>h very hilly</td>
</tr>
<tr>
<td>Slope %</td>
<td></td>
</tr>
<tr>
<td>A 0 to 0.5</td>
<td></td>
</tr>
<tr>
<td>B 0.5+ to 2</td>
<td></td>
</tr>
<tr>
<td>C 2+ to 5</td>
<td></td>
</tr>
<tr>
<td>D 5+ to 9</td>
<td></td>
</tr>
<tr>
<td>E 9+ to 15</td>
<td></td>
</tr>
<tr>
<td>F 15+ to 30</td>
<td></td>
</tr>
<tr>
<td>G 30+ to 60</td>
<td></td>
</tr>
<tr>
<td>H over 60</td>
<td></td>
</tr>
</tbody>
</table>
The soils were mapped in the field by making observations at selected sites using available exposures or digging with a shovel or coring with a truck-mounted coring machine. These point observations are extrapolated to an area basis through the use of aerial photograph interpretation and field checking. The principal soils were sampled to depths of six feet for physical, chemical and engineering analyses.

Soil Classification

The soils have been classified according to the System of Soil Classification for Canada (Canada Soil Survey Committee, 1973). This scheme classifies the soils in their natural state and thus indicates relationships between soils and their environment.

These relationships are often important for assessing limitations of soils for various uses. The classification system is described briefly in Table 12.

Soil Texture

Throughout the report reference is made to soil texture and to soil drainage classes. Soil texture is according to the United States Department of Agriculture (USDA) textural classification which is described below. The soil drainage classes, according to the Canada Soil Survey Committee (1970) are outlined following the textural classification.

Soil Separates (Particle Size) on which Textural Classes are Based.

<table>
<thead>
<tr>
<th>Separates</th>
<th>Diameter in Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Coarse Sand (V.C.S.)</td>
<td>2.0 - 1.0</td>
</tr>
<tr>
<td>Coarse Sand (C.S.)</td>
<td>1.0 - 0.5</td>
</tr>
<tr>
<td>Medium Sand (M.S.)</td>
<td>0.5 - 0.25</td>
</tr>
<tr>
<td>Fine Sand (F.S.)</td>
<td>0.25 - 0.10</td>
</tr>
<tr>
<td>Very Fine Sand (V.F.S.)</td>
<td>0.10 - 0.05</td>
</tr>
<tr>
<td>Silt (Si)</td>
<td>0.05 - 0.002</td>
</tr>
<tr>
<td>Clay (C)</td>
<td>less than 0.002</td>
</tr>
</tbody>
</table>
FIGURE 2. GUIDE FOR USDA SOIL TEXTURAL CLASSIFICATION.

Using Materials Less Than 2.0 mm. in Size. If Approx. 30% or more of the soil material is larger than 2.0 mm, the texture term includes a modifier. Example: gravelly sandy loam.

Example of Use:
A soil material with 35% clay, 30% silt and 35% sand is a clay loam.
The soil textural classes are grouped according to the Canada Soil Survey Committee as follows:

Very coarse textured: sands, loamy sands.
Moderately coarse textured: sandy loam, fine sandy loam.
Medium textured: very fine sandy loam, loam, silt loam, silt.
Moderately fine textured: sandy clay loam, clay loam, silty clay loam.
Fine textured: sandy clay, silty clay, clay (40 - 60% clay).
Very fine textured: heavy clay (more than 60% clay).

The gravelly class names are added to the textural class names according to the following rule:

<table>
<thead>
<tr>
<th>% gravel by volume</th>
<th>Use textural class only.</th>
<th>gravelly and texture.</th>
<th>very gravelly and texture.</th>
<th>cobble land type</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 - 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>more than 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in surface 8 inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soil Drainage Classes

Soil drainage classes are defined in terms of (a) actual moisture content in excess of field moisture capacity, and (b) the extent of the period during which such excess water is present in the plant root zone.

Rapidly drained - soil moisture content seldom exceeds field capacity in any horizon except immediately after water additions.

Well drained - soil moisture content does not normally exceed field capacity in any horizon except possibly the C, for a significant part of the year.

Moderately well drained - soil moisture in excess of field capacity remains for a small but significant period of the year.

Imperfectly drained - soil moisture in excess of field capacity remains in subsurface horizons for moderately long periods during the year.

Poorly drained - soil moisture in excess of field capacity remains in all horizons for a large part of the year.

Very poorly drained - free water remains at or within 12 inches of the surface most of the year.

Specific reference to surface drainage may be designated in terms of run-off and described as high, medium, low or ponded. Similarly, specific reference to the characteristics of horizons within the profile may be designated in terms of permeability or percolation and described as rapid, moderate, slow, very slow, and none.
SOIL AND LAND USE

Engineering Use of Pedological Information

Both the report and the map contain information of use to engineers and land use planners. A pedological soil classification, which describes the soil in its natural setting, describes not only the soil material but also the effects of soil climate, drainage, permeability and topography. When planning the construction of roads, airports, residential and other developments which are based on the soil this information can be very useful in predicting performance. Highway engineers make use of soil maps in planning materials investigations and for predicting sub-grade and pavement performance (Allemeier, 1973). A recent soil survey in the Mill Woods area of Edmonton indicated areas where concrete corrosion due to sulfate attack was a potential problem (Lindsay, et al, 1973).

Several terms, such as soil, texture, structure, and consistence differ in usage between pedology and engineering. The pedological meanings are intended in this report and many of the terms are defined in the glossary.

Engineering Properties of the Soils

Engineering properties including particle size distribution, Atterberg limits, and the Unified and AASHO classification are reported for the major soils. These data are derived from laboratory testing of samples representative of the soil map unit. The philosophy of pedology is involved here in extrapolating from a site to an area. These data are not intended to be site specific and do not substitute for on-site inspection and soil testing but do provide a basis for area planning and further soil investigations.

Soils and Urban Development

In selecting sites for housing, schools, parks, shopping centres, sewage disposal and other community developments, soil suitability must be considered so as to avoid costly errors and to prevent waste, abuse and loss of valuable agricultural soils.
The soils have been evaluated for limitations to roads, buildings, and sewage lagoons and as suitability as a source of gravel, roadfill and topsoil. The soils have also been assigned ARDA capability ratings for agriculture in order to evaluate the loss of agricultural production potential.

These evaluations consider such soil properties as texture - which affects stability and bearing strength for roads and foundations, shrink-swell, risk of frost heaving, and rate of infiltration and internal drainage; soil moisture conditions - which affect location of buildings, roads, services and sewage disposal; topography - which affects drainage and site location; and flooding hazard - which affects location of buildings, roads and sewage lagoons.

Soil interpretations are included so that soils information may be more easily understood. These interpretations should be treated as evaluations of performance of soils not as recommendations for the use of soils. Many other factors are involved in the recommended use of soils. Also, because soil boundaries are not precise, soil survey interpretations do not eliminate on-site investigations. They are, however, intended as an aid in planning further investigations, to reduce the amount of investigation and minimize the cost.

For each use, the soils are rated in terms of degree of limitation - slight, moderate or severe, or in terms of suitability as a source of material - good, fair or poor.

A slight soil limitation is the rating given soils that have properties favourable for the use. Good performance and low maintenance can be expected.

A moderate soil limitation is the rating given soils that have properties moderately favourable for the use. This limitation can be overcome or modified by planning, design or maintenance.

A severe soil limitation is the rating given soils that have one or more properties that are seriously unfavourable for the use. This limitation generally requires major soil reclamation, special design or intensive maintenance. In most situations, it is difficult and costly to alter the soil or to design a structure so as to compensate for the severe degree of limitation but using these soils without employing corrective measures could result in failure.
TABLE 1. GUIDES FOR ASSESSING SOIL LIMITATIONS FOR ROAD LOCATION

Properties that affect design and construction of roads are (1) those that affect the load supporting capacity and stability of the subgrade; and (2) those that affect the workability and amount of cut and fill. The AASHO and Unified Classification, and the shrink-swell potential give an indication of the traffic supporting capacity. Wetness and flooding affect stability. Slope, depth of bedrock, stoniness, rockiness, and wetness affect the ease of excavation and the amount of cut and fill to reach an even grade.

Soil limitation ratings do not substitute for basic soil data or for onsite investigations.

<table>
<thead>
<tr>
<th>Item Affecting Use</th>
<th>Degree of Soil Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil drainage class</td>
<td>NONE TO SLIGHT</td>
</tr>
<tr>
<td>Rapidly(^1), well and moderately well drained.</td>
<td>Imperfectly drained</td>
</tr>
<tr>
<td>Flooding</td>
<td>None</td>
</tr>
<tr>
<td>Slope</td>
<td>0 to 9% (AD).</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>More than 40 inches</td>
</tr>
<tr>
<td>Subgrade(^2)</td>
<td>0 to 4.</td>
</tr>
<tr>
<td>a. AASHO Group Index(^3)</td>
<td></td>
</tr>
<tr>
<td>b. Unified soil classes</td>
<td>GW, GP, SW, GM, SM, and GC(^4) and SC(^4).</td>
</tr>
<tr>
<td>Shrink-swell potential</td>
<td>Low (PI(^5) less than 15).</td>
</tr>
<tr>
<td>Susceptibility to frost heave(^7)</td>
<td>Low (F1, F2).</td>
</tr>
<tr>
<td>Stoniness</td>
<td>Stones greater than 5' apart.</td>
</tr>
<tr>
<td>Consolidated Bedrock exposures</td>
<td>Rock exposures greater than 300' apart and cover less than 2% of the surface</td>
</tr>
</tbody>
</table>

1. For an explanation of soil drainage classes see page 7.
2. This item estimates the strength of a soil as it applies to roadbeds. When available, AASHO Group Index values from laboratory tests were used; otherwise the estimated Unified classes were used. On unsurfaced roads, rapidly drained, very sandy poorly graded soils may cause washboard or rough roads.
3. Group Index values were estimated from information published by the Portland Cement Assn.1962, pp 23-25.
4. Downgrade to moderate if content of fines (less than 200 mesh) is greater than about 30%.
5. PI means plasticity index.
6. Inherent swelling capacity is estimated as low when the plasticity index is less than 15, medium when the plasticity index is 10 to 15 and high when the plasticity index is greater than 20 (Terzaghi and Peck, 1967). Gravelly and stony soils may not exhibit shrink-swell as estimated by the plasticity index because of dilution of the fines with coarse fragments. In these situations decrease a severe limitation to moderate and a moderate limitation to slight.
7. Frost heave is important where frost penetrates below the hardened surface layer and moisture transportable by capillary movement is sufficient to form ice lenses at the freezing front. The susceptibility classes are taken from the United States Army Corps of Engineers (1962), pp.5 - 8.
TABLE 2. GUIDES FOR ASSESSING SOIL LIMITATIONS FOR PERMANENT BUILDINGS

This guide provides ratings for undisturbed soils evaluated for single storey buildings and other structures with similar foundation requirements. The emphasis for rating soils for buildings is on foundations; but soil slope, and susceptibility to flooding and other hydrologic conditions, such as seasonal wetness, that have effects beyond those related exclusively to foundations are considered. Also considered are soil properties, particularly depth to bedrock, which influence excavation and construction costs, both for the building itself and for the installation of utility lines. Excluded are limitations for soil corrosivity, landscaping and septic tank absorption fields. On site investigations are needed for specific placement of buildings and utility lines, and for detailed design of foundations. All ratings are for undisturbed soils based on information gained from observations to a depth of 4 to 6 feet.

<table>
<thead>
<tr>
<th>Item Affecting Use</th>
<th>Degree of Limitation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetness</td>
<td>Slight</td>
<td>Moderate</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>With basements:</td>
<td>With basements:</td>
<td>With basements:</td>
</tr>
<tr>
<td></td>
<td>Rapidly drained and well drained.</td>
<td>Moderately well drained.</td>
<td>Imperfectly, poorly & very poorly drained.</td>
</tr>
<tr>
<td></td>
<td>Without basements:</td>
<td>Without basements:</td>
<td>Without basements:</td>
</tr>
<tr>
<td></td>
<td>Rapidly, well and moderately well drained.</td>
<td>Imperfectly drained.</td>
<td>Poorly & very poorly drained.</td>
</tr>
<tr>
<td>Depth to seasonal water table</td>
<td>With basements:</td>
<td>With basements:</td>
<td>With basements:</td>
</tr>
<tr>
<td>(seasonal means 1 month or more)</td>
<td>Below 60 inches</td>
<td>Below 30 inches</td>
<td>Above 30 inches</td>
</tr>
<tr>
<td></td>
<td>Without basements:</td>
<td>Without basements:</td>
<td>Without basements:</td>
</tr>
<tr>
<td></td>
<td>Below 30 inches</td>
<td>Below 30 inches</td>
<td>Above 20 inches</td>
</tr>
<tr>
<td>Flooding</td>
<td>None</td>
<td>None</td>
<td>Subject to flooding</td>
</tr>
<tr>
<td>Slope</td>
<td>0 to 9% (AD)</td>
<td>9 to 15% (E)</td>
<td>More than 15% (>E)</td>
</tr>
<tr>
<td>Shrink–swell Potential</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Potential frost action</td>
<td>Low (F1, F2)</td>
<td>Moderate (F3)</td>
<td>High (F4)</td>
</tr>
<tr>
<td>Stoniness</td>
<td>Stones greater than 25' apart</td>
<td>Stones 5 to 25' apart</td>
<td>Stones less than 5' apart</td>
</tr>
<tr>
<td>Potential Concrete Corrosion</td>
<td>0.00 to 0.10% sulphate</td>
<td>0.10 - 0.50% sulphate</td>
<td>greater than 0.50% sulphate</td>
</tr>
<tr>
<td>Depth to Bedrock</td>
<td>With basements:</td>
<td>With basements:</td>
<td>With basements:</td>
</tr>
<tr>
<td></td>
<td>More than 60 inches.</td>
<td>40 to 60 inches.</td>
<td>Less than 40 inches.</td>
</tr>
<tr>
<td></td>
<td>Without basements:</td>
<td>Without basements:</td>
<td>Without basements:</td>
</tr>
<tr>
<td></td>
<td>More than 40 inches.</td>
<td>20 to 40 inches.</td>
<td>Less than 20 inches.</td>
</tr>
</tbody>
</table>

1. By reducing the slope limits by ½, this table can be used for evaluating soil limitations for buildings with large floor areas but with foundation requirements not exceeding those of ordinary 3-storey dwellings.
2. Some soils rated as having moderate or severe limitations may be good sites from an aesthetic or use standpoint but require more preparation or maintenance.
3. For an explanation of soil drainage classes see page 7.
4. Reduce slope limits by ½ for those soils subject to hillside slippage.
5. This item estimates the strength of the soil, that is its ability to withstand applied loads.
6. The potential frost action classes are taken from the United States Army Corps of Engineers.
TABLE 3. GUIDES FOR ASSESSING SOIL LIMITATIONS FOR SEWAGE LAGOONS.

A sewage lagoon (aerobic) is a shallow lake used to hold sewage for the time required for bacterial decomposition. Soils have two functions, (1) as an impounding vessel and (2) as material for the impounding embankment. When the lagoon is properly constructed it must be capable of holding water with minimum seepage.

<table>
<thead>
<tr>
<th>Item Affecting Use</th>
<th>Degree of Soil Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SLIGHT</td>
</tr>
<tr>
<td>Depth to water table <sup>1</sup> (seasonal or year round)</td>
<td>more than 60 in.</td>
</tr>
<tr>
<td>Flooding <sup>2</sup></td>
<td>none</td>
</tr>
<tr>
<td>Depth to Consolidated Bedrock</td>
<td>more than 60 in.</td>
</tr>
<tr>
<td>Slope</td>
<td>less than 2%</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>less than 2%</td>
</tr>
</tbody>
</table>

1. If the floor of the lagoon is nearly impermeable material at least 2 feet thick, disregard depth to water table.

2. Disregard flooding if it is not likely to enter or damage the lagoon (low velocity and depth less than five feet).

3. Rated mainly for the floor of the lagoon.
TABLE 4. GUIDES FOR ASSESSING SOIL LIMITATIONS FOR CAMP AREAS.

This guide applies to soils to be used intensively for trailers and tents and the accompanying activities of outdoor living. It is assumed that little site preparation will be done other than shaping and levelling for campsite and parking areas. The soil should be suitable for heavy foot traffic and for limited vehicular traffic. Soil suitability for growing and maintaining vegetation is not a part of this guide, except as influenced by moisture, but is an important item to consider in the final evaluation of site.

<table>
<thead>
<tr>
<th>Item Affecting Use</th>
<th>NONE TO SLIGHT</th>
<th>MODERATE</th>
<th>SEVERE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding</td>
<td>None.</td>
<td>None during season of use.</td>
<td>Floods during season of use</td>
</tr>
<tr>
<td>Permeability</td>
<td>Very rapid to moderate.</td>
<td>Moderately slow and slow.</td>
<td>Very slow.</td>
</tr>
<tr>
<td>Slope</td>
<td>0 to 9% (AD).</td>
<td>9 to 15% (E).</td>
<td>Greater than 15% (greater than E).</td>
</tr>
<tr>
<td>Surface soil texture 2</td>
<td>SL, FSL, VFSL, L.</td>
<td>Sil, CL, SCL, SiCL, LS and sand other than loose sand.</td>
<td>Sc, SiC, C, loose sand subject to severe blowing, organic soils.</td>
</tr>
<tr>
<td>Coarse fragments on surface 3</td>
<td>0 to 20%.</td>
<td>20 to 50% .</td>
<td>Greater than 50%.</td>
</tr>
<tr>
<td>Stoniness 5 (stony)</td>
<td>Stones greater than 25' apart.</td>
<td>Stones 25 to 5' apart.</td>
<td>Stones less than 5' apart.</td>
</tr>
<tr>
<td>Rockiness 5 (rock)</td>
<td>no rock exposures.</td>
<td>Rock exposures greater than 30' apart and cover less than 25% of the area.</td>
<td>Rock exposures less than 30' apart & cover greater than 25% of the surface.</td>
</tr>
</tbody>
</table>

1. For information specific to roads and parking lots see Table 1.
2. Surface soil texture influences soil ratings as it affects foot trafficability, dust, soil permeability and erosion hazard.
3. Coarse fragments include both gravels and cobbles.
4. Some gravelly soils may be rated as slight if the content of gravel exceeds 20% by only a small margin providing (a) the gravel is embedded in the soil matrix, or (b) the fragments are less than 3/4 inch in size. See the definition for gravels in the System of Soil Classification for Canada (C.S.S.C., 1970), pp 213-214.
5. Very shallow soils are rated as having a severe soil limitation for rockiness and/or stoniness. See also definitions of rockiness and stoniness in the System of Soil Classification for Canada (C.S.S.C., 1970), pp 213-214.
TABLE 5. GUIDES FOR ASSESSING SOIL LIMITATIONS FOR PICNIC AREAS.

This guide applies to soils considered for intensive use as park-type picnic areas. It is assumed that most vehicular traffic will be confined to access roads. Soil suitability for growing and maintaining vegetation is not a part of this guide, except as influenced by moisture, but is an important item to consider in the final evaluation of site.

<table>
<thead>
<tr>
<th>Items Affecting Use</th>
<th>Degree of Soil Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetness</td>
<td>None to Slight</td>
</tr>
<tr>
<td></td>
<td>Rapidly, well and moderately well drained soils. Water table below 20" during season of use.</td>
</tr>
</tbody>
</table>

| Flooding | None during season of use. | May flood once a year for short period during season of use. | Floods more than once a year during season of use. |

| Slope | 0 to 9% (AD). | 9 to 15% (E). | Greater than 15% (greater than E). |

| Surface soil texture | SL, FSL, VFSL, L. | SiL, CL, SCL, SICL, LS, and sand other than loose sand. | SC, SiC, C, loose sand subject to severe blowing, organic soils. |

| Coarse fragments on surface | 0 to 20%. | 20 to 50% | More than 50% |

| Stoniness | Stones greater than 5' apart. | Stones 2 to 5' apart. | Stones less than 2' apart. |

| Rockiness | Rock exposures roughly 100 to 300 or more feet apart and cover less than 10% of the surface. | Rock exposures 30 to 100' apart and cover about 10 to 25% of the surface. | Rock exposures less than 30' apart and cover greater than 25% of the surface. |

1. For information specific to roads or parking lots see Table 1.

2. Surface soil texture influences soil ratings as it affects foot trafficability, dust, soil permeability and erosion hazard.

3. See also definitions for gravel, rockiness and stoniness in the System of Soil Classification for Canada (C.S.S.C., 1970), pp. 213-214. Coarse fragments include both gravels and cobbles.

4. Some gravelly soils may be rated as slight if the content of gravel exceeds 20% by only small amounts, provided (a) the gravel is embedded in the soil matrix or (b) the fragments
TABLE 6. GUIDES FOR ASSESSING SOIL LIMITATIONS FOR PLAYING FIELDS.

This guide applies to soils considered for intensive use as playing fields for organized games such as baseball or football. Soil suitability for growing and maintaining vegetation is not a direct consideration in this guide, but is an important item to consider.

<table>
<thead>
<tr>
<th>Item Affecting Use</th>
<th>Degree of Soil Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SLIGHT</td>
</tr>
<tr>
<td>Flooding</td>
<td>none during season of use</td>
</tr>
<tr>
<td>Wetness</td>
<td>rapidly to moderately well drained.</td>
</tr>
<tr>
<td>Depth to Water table</td>
<td>more than 30 inches during season of use.</td>
</tr>
<tr>
<td>Permeability</td>
<td>very rapid to moderate (20 in./hr to 0.6 in./hr)</td>
</tr>
<tr>
<td>Slope</td>
<td>0 - 2%</td>
</tr>
<tr>
<td>Surface Texture</td>
<td>SL, FSL, VFSL, L</td>
</tr>
<tr>
<td>Depth to Bedrock</td>
<td>more than 40 inches</td>
</tr>
<tr>
<td>Surface Stoniness</td>
<td>slightly stony</td>
</tr>
</tbody>
</table>
TABLE 7. SUITABILITY RATINGS OF SOILS AS SOURCES OF GRAVEL

The main purpose of these ratings is to indicate local sources of gravel. The ratings are based on the probability that soils contain sizable quantities of gravel.

<table>
<thead>
<tr>
<th>Item Affecting Use</th>
<th>Degree of Soil Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unified Soil Group</td>
<td>GOOD: GW, GP
Fair: GP-GM
Poor: GM, GP-GC, GW-GC (all other groups unsuitable)</td>
</tr>
<tr>
<td>Flood</td>
<td>none or occasional
Poorly and very poorly drained</td>
</tr>
<tr>
<td>Wetness</td>
<td>better than poorly drained
Poorly and very poorly drained</td>
</tr>
<tr>
<td>Depth of overburden</td>
<td>less than 2 feet
2 to 5 feet
more than 5 feet</td>
</tr>
</tbody>
</table>

1. See page 7 for an explanation of drainage classes.

TABLE 8. SUITABILITY RATINGS OF SOILS AS SOURCES OF ROADFILL

The ratings in this table indicate the performance of a soil after it is placed in a road embankment and also the degree of difficulty in excavating the fill material. Ratings of the material are the same as for road location (Table 3) however ratings of factors governing excavation differ.

<table>
<thead>
<tr>
<th>Item Affecting Use</th>
<th>Degree of Soil Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetness</td>
<td>Rapidly to moderately well drained
Imperfectly drained
Poorly and very poorly drained</td>
</tr>
<tr>
<td>Engineering Groups</td>
<td>GW, GP, GC, SW, SP
SM, SC
ML, CL with P.I. less than 15
CH, MH, OL, OH, Pl, and CL with P.I. more than 15</td>
</tr>
<tr>
<td>AASHO Group Index</td>
<td>0 - 4
5 - 8
greater than 8</td>
</tr>
<tr>
<td>Stoniness</td>
<td>none to moderately stony
very stony
exceedingly stony</td>
</tr>
<tr>
<td>Depth to consolidated bedrock</td>
<td>more than 6 feet
3 to 6 feet
less than 3 feet</td>
</tr>
</tbody>
</table>
| Slope | 0 - 15%
15 - 30%
more than 30% |

1. A rating of unsuited (u) is applied to land units, such as bedrock (R), where no conventional fill material is present.

2. See page 7 for an explanation of drainage classes.

3. P.I. means plasticity index.
TABLE 9. SUITABILITY RATINGS OF SOILS AS SOURCES OF TOPSOIL

Topsoil, for these ratings, refers essentially to Ah horizon material. In some cases the B, and even C horizon materials could be used for dressing disturbed land. These ratings are intended for use by engineers, landscapers, planners and others who make decisions about selecting, stockpiling and using topsoil. These ratings are based on quality of topsoil and ease of excavation. In addition to the Good, Fair, and Poor ratings described below, an Uns suited (U) rating is used.

<table>
<thead>
<tr>
<th>Item Affecting Use</th>
<th>Degree of Suitability</th>
<th>GOOD</th>
<th>FAIR</th>
<th>POOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of topsoil</td>
<td>more than 6 in.</td>
<td>3 - 6 in.</td>
<td>less than 3 in.</td>
<td></td>
</tr>
<tr>
<td>Flooding</td>
<td>none</td>
<td>may flood occasionally</td>
<td>frequently or constantly flooded</td>
<td></td>
</tr>
<tr>
<td>Wetness</td>
<td>Drainage class not determining if better than poorly drained</td>
<td>Poorly and very poorly drained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coarse fragments % by volume</td>
<td>less than 3%</td>
<td>3 - 15%</td>
<td>more than 15%</td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>less than 9%</td>
<td>9 - 15%</td>
<td>more than 15%</td>
<td></td>
</tr>
<tr>
<td>Stoniness</td>
<td>none to slightly stony</td>
<td>moderately stony</td>
<td>very to excessively stony</td>
<td></td>
</tr>
<tr>
<td>Salinity of topsoil</td>
<td>E.C. ≥ 0 - 1³</td>
<td>E.C. 1 - 3</td>
<td>E.C. more than 3</td>
<td></td>
</tr>
<tr>
<td>Permeability of upper subsoil</td>
<td>moderate</td>
<td>slow</td>
<td>very slow</td>
<td></td>
</tr>
</tbody>
</table>

1. A rating of uns suited (U) is used for soil and land units that do not have topsoil present.

2. E.C. = electrical conductivity of a saturation extract in mmhos/cm.

3. These are the limits suggested by the Alberta Soil and Feed Testing Laboratory when considering lawn growth.
The decision as to whether or not a soil will be utilized for a specific use, regardless of the soil limitation, is beyond the scope of this report.

Agricultural Capability

The soils have been rated as to their suitability as agricultural cropland. This information is required to make sound decisions on land use where soils are being lost to agricultural production.

The ratings are made using the ARDA Canada Land Inventory, Soil Capability Classification for Agriculture. These classes and subclasses are defined in the Soil Capability Classification for Agriculture. (Canada Land Inventory, 1965).

Briefly the 7 classes are:

Class 1 - Soils in this class have no significant limitations in use for crops.

Class 2 - Soils in this class have moderate limitations that restrict the range of crops or require moderate conservation practices.

Class 3 - Soils in this class have moderately severe limitations that restrict the range of crops or require special conservation practices.

Class 4 - Soils in this class have severe limitations that restrict the range of crops.

Class 5 - Soils in this class have very severe limitations that restrict their capability to producing perennial forage crops, and improvement practices are feasible.

Class 6 - Soils in this class are capable of only producing perennial forage crops and improvement practices are not feasible.

Class 7 - Soils in this class have no capability for arable culture or permanent pasture.

The subclasses are as follows:

D - the depth of the rooting zone is restricted by soil conditions other than wetness or consolidated bedrock.

F - low fertility.

I - inundation by streams or lakes.

M - low moisture-holding capacity.

N - presence of enough soluble salts to adversely affect crop growth or restrict the range of crops that can be grown.

P - stoniness.

S - used in a collective sense for one or more subclasses.

T - adverse topography.

W - excess water other than from flooding.
SECTION II
COCHRANE AREA

Location and Extent of Study Area

The area described in this report covers 16 square miles or about 10,000 acres in the vicinity of Cochrane, Alberta. Cochrane is located in sections 2 and 3, Township 26, Range 4, west of the 5th meridian and is approximately 25 miles north-west of Calgary on highway 1A.

Physiography of Area

The terrain in this area is composed of gently undulating to gently rolling uplands, level to gently undulating lowlands, strongly sloping to very steeply sloping escarpments and gullies, and level terraces and flats adjacent to the Bow River.

The material deposited on the uplands is till; on the lowlands lacustrine and on the terraces and flats alluvial. All these materials are strongly to very strongly calcareous. Consolidated bedrock outcrops occur on the steep escarpments and mixed colluvial-alluvial material often occurs along the edges of the escarpments. On the west edge of the area and north of the Bow River the lacustrine material has been deposited over the alluvial material on an upper terrace.

J. A. Allan studied the physiography of the area and made a report of it in the Soil Survey of the Rosebud and Banff Sheets (1943).

The uppermost bedrock formation is the Paskapoo Formation which is early Tertiary and late Cretaceous in age and consists chiefly of soft gray, clayey sandstones, soft shales and clays slightly indurated (Green R. 1970). The Cordilleran ice advance extended down the valleys and spread out over the ridges in the foothills belt. Boulders that were left when the ice
melted from the Cordilleran ice sheets are distributed as far east as the fifth meridian at Calgary and consist of limestone, dolomite, shale, slate and quartzitic sandstones. As the ice melted, some of the material carried by the glacier was left in place as till. The rest of the material was either sorted and deposited in glacial lakes as lacustrine material or carried by fast moving streams and deposited as glacio-fluvial material.

The area is drained by the Bow River drainage system.

The Soils

The soils of Alberta are classified into road soil zones based principally on the color of the soil surface. This color reflects the climate and vegetation of each zone. The Cochrane area is in the thin Black soil zone which is a shallow phase of the Black soil zone. The black surface Ah horizon is from 3 to 6 inches thick as compared to 6 to 12 inches in the Black soil zone. This is probably due to slightly lower precipitation and higher evapotranspiration rates. (Soil Group Map of Alberta)

The well and moderately well drained soils developed on all materials except the alluvial material are thin Black Chernozems. Humic Gleysols and their peaty phases occur in the depressions. Regosolic soils occur on the steep slopes and on the alluvial material.

Lime usually occurs at the surface except in soils developed on till where a thin B horizon occurs. The well drained soils that have developed on lacustrine material are classified as thin Rego Black and on till as thin Orthic Black.
The soils are mapped and classified according to the System of Soil Classification for Canada (C.S.S.C. 1973). Tables 12 and 13 give a brief description of the classification and horizon designations.

In the following section, generalized profile descriptions of the dominant soil in the units are presented. Sixteen soil units were mapped—four on till, two on lacustrine, one on residual, one on colluvial-alluvial and seven on alluvial material. The legend shown on the accompanying map and the soil unit descriptions indicate the classification, texture and drainage of the soils in the area. Lime content and salinity have been reported in the descriptions to be low, medium or high according to the following parameters:

Lime content
- L - low (0-1 percent)
- M - medium (1-15 percent)
- H - high (greater than 15 percent)

Salinity
- L - low (electrical conductivity 0-1 mmhos/cm)
- M - medium (1-4 mmhos/cm)
- H - high (greater than 4 mmhos/cm)

Profile descriptions are given of the dominant soil in each soil unit and unless otherwise stated the comments and limitations also refer to the dominant soil.
Soil Unit: 1-1

Soil Classification: thin Orthic Black, thin Gleyed Orthic Black 15% Orthic Humic Gleysol.

Parent Material: moderately fine to fine textured till.

Topography: gently undulating to rolling.

Drainage: well to poorly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA* texture</th>
<th>Lime content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>Black</td>
<td>3-6</td>
<td>6.5-7.0</td>
<td>soft</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Bm</td>
<td>Dark Brown</td>
<td>4-8</td>
<td>7.0-7.5</td>
<td>slightly hard</td>
<td>SiCL-SiC</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>SiCL-SiC</td>
<td>H</td>
</tr>
</tbody>
</table>

Comments:

Limitations for selected uses: moderate for road location and permanent buildings depending on slope; slight to severe for sewage lagoons depending on slope, slight to moderate for camp areas and lawns.

* See pages 5, 6, and 7 for explanation of texture symbols.

Soil Unit: 1-2

Soil Classification: thin Orthic Black, thin Gleyed Orthic Black, 15-45% Orthic Humic Gleysol.

Parent Material: moderately fine to fine textured till.

Topography: undulating to rolling.

Drainage: well to poorly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA* texture</th>
<th>Lime content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>Black</td>
<td>3-6</td>
<td>6.5-7.0</td>
<td>soft</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Bm</td>
<td>Dark Brown</td>
<td>4-8</td>
<td>7.0-7.5</td>
<td>slightly hard</td>
<td>SiCL-SiC</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>SiCL-SiC</td>
<td>H</td>
</tr>
</tbody>
</table>

Comments:

Limitations for selected uses: severe for road location; moderate to severe for permanent buildings of sewage lagoons, camp areas, lawns, picnic areas; severe for playing fields.
Soil Unit: 1-3

Soil Classification: Orthic Humic Gleysol and peaty Orthic Humic Gleysol.

Parent Material: moderately fine to fine texturized till.

Topography: depressional.

Drainage: poorly and very poorly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistency when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Om</td>
<td>Brown</td>
<td>0-6</td>
<td>5.3-6.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bg</td>
<td>Dark Brown</td>
<td>4-6</td>
<td>7.0-7.5</td>
<td>slightly hard</td>
<td>SiCL-SiC</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Ckg</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>SiCL-SiC</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments: A, B and C horizons are strongly gleyed and mottled. May have up to 6 inches of peat on the surface.

Limitations for selected uses: severe for all uses due to seasonal or permanent high water table.

Soil Unit: 1-4

Soil Classification: Orthic Regosol with some consolidated bedrock outcrop.

Parent Material: moderately fine to fine texturized till.

Topography: very steeply sloping and extremely sloping.

Drainage: rapidly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistency when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>Light Brown</td>
<td>2-4</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>L</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>SiCL-SiC</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments: Ah lighter in color due to less organic matter than in thin Orthic Black soils.

Limitations for selected uses: severe for all uses due to steep slopes.
Soil Unit: 1-5

Soil Classification: Orthic Regosol and thin Rego Black.

Parent Material: moderately fine to fine textured till.

Topography: strongly rolling to steeply-sloping.

Drainage: rapidly and well drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>Light brown</td>
<td>2-4</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>L</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>SiCL-SiC</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments: Ah lighter in color due to less organic matter than in thin Orthic Black soils.

Limitations for selected uses: severe for all uses due to steep slopes.

Soil Unit: 2-1

Soil Classification: thin Rego Black and thin Gleyed Rego Black.

Parent Material: moderately fine to fine textured lacustrine.

Topography: nearly level to rolling.

Drainage: moderately and imperfectly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahk</td>
<td>Black</td>
<td>3-6</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>SiL</td>
<td>L-M</td>
<td>L</td>
</tr>
<tr>
<td>Cl</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>SiCL-SiC</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments: profile has no B horizon. Lime may or may not be present in the A horizon.

Limitations for selected uses: slight limitations for sewage lagoons; moderate limitations for recreation; permanent buildings; fair source of topsoil.
Soil Unit: 2-2

Soil Classification: Orthic Regosol with consolidated bedrock outcrops.

Parent Material: moderate fine to fine textured lacustrine.

Topography: very steeply sloping to extremely sloping.

Drainage: rapidly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>Light brown</td>
<td>2-4</td>
<td>7.0-7.5</td>
<td>slightly hard</td>
<td>SiL</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>2-4</td>
<td>8.0-8.5</td>
<td></td>
<td>SiCL-SiC</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments: Ah lighter in color due to less organic matter than in thin Orthic Black soils.

Limitations for selected uses: severe limitations for all uses due to steep slopes.

Soil Unit: 3-1

Soil Classification: Orthic Regosol and thin Rego Black.

Parent Material: Medium textured residual.

Topography: steeply sloping.

Drainage: rapidly and well drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>Light brown</td>
<td>2-4</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>6-12</td>
<td>8.0-8.5</td>
<td></td>
<td>SiL</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>R</td>
<td>Brown</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Comments: Consolidated bedrock occurs at from 0 to 16 inches from the surface.

Limitations for selected uses: severe for all uses due to steep slopes and bedrock near surface.
Soil Unit: 4-1

Soil Classification: Orthic Regosol and thin Rego Black.

Parent Material: medium textured colluvial-alluvial.

Topography: gently undulating.

Drainage: well drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahk</td>
<td>Light brown</td>
<td>2-4</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>L</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments: Ah lighter in color than in thin Orthic Black soils due to lower organic matter content.

Limitations for selected uses: slight for most uses; severe for sewage lagoons.

Soil Unit: 5-1

Soil Classification: Orthic Regosol and Gleyed Orthic Regosol.

Parent Material: medium textured alluvial.

Topography: nearly level.

Drainage: well to imperfectly.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahk</td>
<td>Light Brown</td>
<td>3-6</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>SiL</td>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>SiL</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments: Ah lighter in color than in thin Orthic Black soils due to lower organic matter content.

Limitations for selected uses: moderate limitations for all uses; fair source of roadfill and topsoil.
Soil Unit: 5-2

Soil Classification: Rego Humic Gleysol and peaty Rego Humic Gleysol.

Parent Material: medium textured alluvial.

Topography: depressional.

Drainage: poorly and very poorly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Om</td>
<td>Brown</td>
<td>0-6</td>
<td>5.5-6.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ahgk</td>
<td>Black</td>
<td>3-6</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>S</td>
<td>L</td>
<td>L-M</td>
</tr>
<tr>
<td>Ckg</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>S</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

Comments: Profile may have up to 6 inches of peat on the surface. A and C horizons are strongly gleyed and mottled.

Limitations for selected uses: Severe for all uses due to a seasonal or permanent high water table.

Soil Unit: 5/6-1

Soil Classification: Orthic Regosol and Gleyed Orthic Regosol.

Parent Material: medium textured material over gravelly alluvial.

Topography: nearly level.

Drainage: well to imperfectly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah</td>
<td>Dark Brown</td>
<td>3-6</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>S</td>
<td>L</td>
<td>L-M</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>6-10</td>
<td>8.0-8.5</td>
<td>-</td>
<td>S</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>IIck*</td>
<td>Gray</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>G</td>
<td>H</td>
<td>-</td>
</tr>
</tbody>
</table>

Comments: A horizon lighter in color than in thin Orthic Black soils due to lower organic matter content.

Limitations for selected uses: moderate for most uses; severe for sewage lagoons.

* II indicates an underlying contrasting layer.
Soil Unit: 6-1

Soil Classification: Orthic Regosol and Gleyed Orthic Regosol.

Parent Material: very gravelly alluvial.

Topography: nearly level.

Drainage: rapidly to imperfectly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahk</td>
<td>Brown</td>
<td>3-6</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>GLS</td>
<td>L-M</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>G</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments: A horizon lighter in color than in thin Orthic Black soils due to lower organic matter content.

Limitations for selected uses: moderate for road location and permanent buildings due to potential flooding hazard; severe for most other uses; good source of roadfill.

Soil Unit: 6-2

Soil Classification: Orthic Regosol.

Parent Material: very gravelly alluvial.

Topography: very steeply sloping to extremely sloping.

Drainage: rapidly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahk</td>
<td>Brown</td>
<td>2-4</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>GLS</td>
<td>L-M</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>G</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments:

Limitations for selected uses: severe for all uses due to steep slopes; good source of gravel and roadfill.
Soil Unit: 6-3

Soil Classification: Orthic Regosol (gravel deposits).

Parent Material: very gravelly alluvial.

Topography: nearly level.

Drainage: rapidly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahk</td>
<td>Brown</td>
<td>2-4</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>GLS</td>
<td>L-M</td>
<td>L</td>
</tr>
<tr>
<td>Ck</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>G</td>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

Comments: Drainage in these areas is variable depending on depth to water table.

Limitations for selected uses: Severe for all uses due to either flooding or texture.

Soil Unit: 6-4

Soil Classification: Rego Humic Gleysol and peaty Orthic Humic Gleysol.

Parent Material: very gravelly alluvial.

Topography: depressional

Drainage: poorly and very poorly drained.

Profile description of dominant soil subgroup:

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Color</th>
<th>Thickness (inches)</th>
<th>pH</th>
<th>Consistence when dry</th>
<th>USDA texture</th>
<th>Lime content</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Om</td>
<td>Brown</td>
<td>0-8</td>
<td>5.5-6.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ahkg</td>
<td>Black</td>
<td>3-6</td>
<td>7.0-7.5</td>
<td>soft</td>
<td>GLS</td>
<td>L-M</td>
<td>1</td>
</tr>
<tr>
<td>Ckg</td>
<td>Gray</td>
<td>-</td>
<td>8.0-8.5</td>
<td>-</td>
<td>G</td>
<td>H</td>
<td>1</td>
</tr>
</tbody>
</table>

Comments: A and C horizons are strongly mottled. Profile may have up to 8 inches of peat on its surface.

Limitations for selected uses: severe for all uses due to shallow depth to water tab
Soil Survey Interpretations

Soil survey interpretations are included with this report so that soils information may be more readily used and understood.

Soil and landscape properties and hazards that will affect the probable uses of the soil are:

1) shallow depth to a seasonal or permanent water table
2) steep slopes
3) high percentage of poorly drained depressions in area
4) flooding hazard
5) thin topsoil
6) high percentage of organic matter
7) soil texture
8) shallow depth to consolidated bedrock
9) coarse fragments on surface
10) erosion hazard
11) low ability to withstand foot or vehicular traffic
12) poor vegetative rooting medium for grasses
13) potential frost action
14) shrink-swell potential
15) low bearing capacity
16) low topsoil quality
17) groundwater contamination hazard

The ten uses for which the soils have been rated in this area are:

1) road location
2) permanent buildings with basements
3) sewage lagoons
4) camp areas and lawns
5) picnic areas
6) playing fields
7) a source of gravel
8) a source of roadfill
9) a source of topsoil
10) capability for agriculture.

The limitations and suitabilities of the various mapping units for the selected uses are determined by referring to tables 1 to 9 and are shown in Table 11 with the limiting properties being indicated by number.
Limitation for Road Location

1. Shallow depth to a seasonal or permanent water table affects potential frost action and cost of construction and maintenance.
2. Soil texture affects bearing capacity and shrink-swell potential.
3. Shallow depth to consolidated bedrock affects cost of construction and maintenance and erosion hazard.
4. Steep slopes affect cost of construction and maintenance and erosion hazard.
5. High percentage of poorly drained depressions in area affects cost of construction and maintenance.
6. Flooding hazard affects cost of construction and maintenance.

Limitations for Permanent Buildings with Basements

1. Shallow depth to a seasonal or permanent water table affects potential frost action and shrink-swell potential.
2. Soil texture affects shrink-swell potential.
3. Shallow depth to consolidated bedrock affects cost of construction.
4. Steep slopes affect cost of construction and maintenance and erosion hazard.
5. Flooding hazard affect cost of construction and maintenance.

Limitations for Sewage Lagoons

1. Shallow depth to a seasonal or permanent water table affects cost of construction and maintenance.
2. Steep slopes affect cost of construction and maintenance.
3. High percentage of organic matter causes the growth of aquatic plants that are detrimental to the proper functioning of the lagoon.

4. Soil texture affects ground water contamination hazard.

5. Shallow depth to consolidated bedrock affects cost of construction and maintenance.

Limitations for Camp Area, Lawns, Picnic Areas and Playing Fields

1. Shallow depth to a seasonal or permanent water table affects the soils ability to withstand foot or vehicular traffic and vegetative rooting for grasses.

2. Steep slopes affects cost of construction and maintenance and erosion hazard.

3. Flooding hazard affects cost of construction and maintenance.

4. Soil texture affects the soils ability to withstand foot or vehicular traffic and erosion hazard.

5. Coarse fragments on surface affects cost of construction.

Suitability as a Source of Gravel

1. Shallow depth to seasonal or permanent water table affects cost of removal or excavation.

2. Flooding affects cost of removal or excavation.

3. Depth of overburden affects cost of removal or excavation.

Suitability as a Source of Roadfill

1. Soil texture affects bearing capacity and erosion hazard.
2. Shallow depth to a seasonal or permanent water table affect cost of removal or excavation.

3. Steep slopes affects cost of removal or excavation and erosion hazard.

Suitability as a Source of Topsoil

1. Thin topsoil affects the erosion hazard in the borrow area.

2. Steep slopes affects the cost of removal and the erosion hazard in the borrow area.

3. Shallow depth to a seasonal or permanent water table affects cost of removal or excavation.

4. Flooding hazard affects cost of removal or excavation.

5. Coarse fragments on surface affects the quality of the topsoil.

Capability of Agriculture

According to Bowser (1967) the Cochrane area is in a 3H agro-climatic area where the frost-free period makes it impractical to grow wheat even though the amount of precipitation is adequate. Therefore, the best soils would be classified as 3C. Other limiting factors such as adverse topography, excessive wetness, inundation by streams or lakes and low moisture-holding capacity place many of the soils in Classes 4, 5, 6 and 7 as indicated in Table 11.
<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth from Surface (inches)</th>
<th>PH</th>
<th>Elect. Cond. (mmhos/cm)</th>
<th>% Sulphate</th>
<th>% CaCO₃</th>
<th>Particle Size Analyses</th>
<th>Atterberg Limits</th>
<th>Textural Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% passing sieve</td>
<td>% smaller than</td>
<td>Liquid Limit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no. 10</td>
<td>no. 40</td>
<td>no. 200</td>
</tr>
<tr>
<td>Bm</td>
<td>4-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cca</td>
<td>8-20</td>
<td>7.6</td>
<td>0.8</td>
<td>0.00</td>
<td>42.2</td>
<td>96</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>Ck</td>
<td>20+</td>
<td>8.5</td>
<td>1.1</td>
<td>0.00</td>
<td>43.1</td>
<td>100</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>Ck1</td>
<td>6-24</td>
<td>8.3</td>
<td>0.7</td>
<td>0.00</td>
<td>36.5</td>
<td>100</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>Ck2</td>
<td>24-60</td>
<td>8.7</td>
<td>0.2</td>
<td>0.00</td>
<td>38.6</td>
<td>99</td>
<td>99</td>
<td>94</td>
</tr>
<tr>
<td>IIck</td>
<td>60+</td>
<td>8.4</td>
<td>1.5</td>
<td>0.01</td>
<td>32.2</td>
<td>100</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>Ck</td>
<td>12-48</td>
<td>8.2</td>
<td>0.5</td>
<td>0.00</td>
<td>22.8</td>
<td>100</td>
<td>100</td>
<td>94</td>
</tr>
<tr>
<td>Mapping Unit</td>
<td>Road Location</td>
<td>Permanent Buildings with Basements</td>
<td>Sewage* Lagoons</td>
<td>Camp areas and Lawns</td>
<td>Picnic areas</td>
<td>Playing Fields</td>
<td>Gravel</td>
<td>Roadfill</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>1-1/a</td>
<td>V7.15</td>
<td>V7.14</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>1-1/b</td>
<td>V7.15</td>
<td>V7.14</td>
<td>M2</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>1-1/d</td>
<td>V7.15</td>
<td>V7.14</td>
<td>M-V2</td>
<td>S</td>
<td>S</td>
<td>M2</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>1-1/e</td>
<td>V2.7,15</td>
<td>V2.7,14</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>1-2/a</td>
<td>V3.7,15</td>
<td>V7.14</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>M2</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>1-2/b</td>
<td>V2.3,7,15</td>
<td>V7.14</td>
<td>M2</td>
<td>S</td>
<td>S</td>
<td>M2</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>1-3/A</td>
<td>V1.7,13,15</td>
<td>V1.7,13,14</td>
<td>V1.6</td>
<td>V1.11,12</td>
<td>V1.11,12</td>
<td>V1.11,12</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>1-4/G</td>
<td>V2.7,8,15,10</td>
<td>V2.7,8,14</td>
<td>V2.8</td>
<td>V2.10,11</td>
<td>V2.10,11</td>
<td>V2.10,11</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>1-4/H</td>
<td>V2.7,8,15,10</td>
<td>V2.7,8,14</td>
<td>V2.8</td>
<td>V2.10,11</td>
<td>V2.10,11</td>
<td>V2.10,11</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>1-5/F</td>
<td>V2.7,15,10</td>
<td>V2.7,14</td>
<td>V2</td>
<td>V2.10,11</td>
<td>V2.10,11</td>
<td>V2.10,11</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>2-1/a</td>
<td>V7.15,14</td>
<td>V7.14</td>
<td>V2</td>
<td>M-V2</td>
<td>V2</td>
<td>M2</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>2-1/a-c</td>
<td>V7.15,14</td>
<td>V7.14</td>
<td>V2</td>
<td>M-V2</td>
<td>V2</td>
<td>M2</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>2-1/a-c</td>
<td>V7.15,14</td>
<td>V7.14</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>2-1/a-c</td>
<td>V7.15,14</td>
<td>V7.14</td>
<td>S</td>
<td>V1.6</td>
<td>V1.11,12</td>
<td>V1.11,12</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>2-1/d</td>
<td>V7.15,14</td>
<td>V7.14</td>
<td>V1.6</td>
<td>V1.11,12</td>
<td>V1.11,12</td>
<td>V1.11,12</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>2-2/C</td>
<td>V2.7,8,15,14,10</td>
<td>V2.7,8,14</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>2-2/C</td>
<td>V2.7,8,15,14,10</td>
<td>V2.7,8,14</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>2-2/C</td>
<td>V2.7,8,10,14,15</td>
<td>V2.7,8,10,14</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>3-1/F</td>
<td>V2.8</td>
<td>V2.8</td>
<td>V1.4,7,17,18</td>
<td>V1.11,12</td>
<td>V1.11,12</td>
<td>V1.11,12</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>3-1/F</td>
<td>V2.8</td>
<td>V2.8</td>
<td>V1.4,7,17,18</td>
<td>V1.11,12</td>
<td>V1.11,12</td>
<td>V1.11,12</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>5-2/A</td>
<td>M4.7,15</td>
<td>V1.4,7,13,14</td>
<td>M4.7,17</td>
<td>V1.4,7,11,12</td>
<td>V1.4,7,11,12</td>
<td>V1.4,7,11,12</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>6-1/a</td>
<td>M4.7,15</td>
<td>V1.4,7,13,14</td>
<td>M4.7,17</td>
<td>V1.4,7,11,12</td>
<td>V1.4,7,11,12</td>
<td>V1.4,7,11,12</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>6-2/G</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>6-2/G</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>V2</td>
<td>U</td>
<td>P7.15</td>
</tr>
<tr>
<td>6-3/a-c</td>
<td>V4</td>
<td>V4</td>
<td>V4</td>
<td>V4</td>
<td>V4</td>
<td>V4</td>
<td>G</td>
<td>P4</td>
</tr>
<tr>
<td>6-4/A</td>
<td>V1.4,13</td>
<td>V1.4,13</td>
<td>V4</td>
<td>V4</td>
<td>V4</td>
<td>V4</td>
<td>G</td>
<td>P4</td>
</tr>
</tbody>
</table>

- S = slight; M = moderate; V = severe; G = good; F = fair; P = poor; U = unsuited.
- *Limitations may be lessened considerably if lagoon is made of impermeable materials from another site and embankments are sufficiently high to prevent entrance of floodwater.
- **Small arabic numerals placed after a class numeral gives the approximate proportion of the class out of a total of 10.

Limiting Soil and Landscape Properties and Hazards

1. Shallow depth to a seasonal or permanent water table
2. Steep slopes
3. High percentage of poorly drained depressions in area
4. Flooding hazard
5. Thin topsoil
6. High percentage of organic matter
7. Soil texture
8. Shallow depth to consolidated bedrock
9. Coarse fragments on surface
10. Erosion hazard
11. Low ability to withstand foot or vehicular traffic
12. Poor vegetative rooting medium for grasses
13. Potential frost action
14. Shrink-swell potential
15. Low bearing capacity
16. Low top soil quality
17. Groundwater contamination hazard
18. Deep overburden
GLOSSARY

This is included to define terms commonly used in the report; it is not a comprehensive soil glossary.

aeolian (eolian) deposit - material deposited by wind, includes both loess and dune sand.

aggregate - a group of soil particles cohering so as to behave mechanically as a unit.

alluvial deposit - material deposited by moving water.

aspect - orientation of the land surface with respect to compass direction.

Atterberg limits - see plastic limit, liquid limit.

available plant nutrients - that portion of any element or compound in the soil that can be readily absorbed and assimilated by growing plants.

cation - an ion carrying a positive charge of electricity. The common soil cations are calcium, magnesium, sodium, potassium and hydrogen.

cation-exchange capacity (C.E.C.) - a measure of the total amount of exchangeable cations that can be held by the soil. It is expressed in terms of milliequivalents/100 grams of soil.

course fragments - rock or mineral particles greater than 2 mm in diameter.

colluvium - a heterogeneous mixture of material that has been deposited mainly by gravitational action.

creep - slow mass movement of soil material down rather steep slopes primarily under the influence of gravity, but aided by saturation with water and alternate freezing and thawing.

edaphic - (i) of or pertaining to the soil, (ii) resulting from, or influenced by, factors inherent in the soil or other substrate rather than by climatic factors.

eluviation - the removal of soil material in suspension or in solution from a layer or layers of the soil.

erosion - the wearing away of the land surface by running water, wind, or other erosive agents. It includes both normal and accelerated soil erosion. The latter is brought about by changes in the natural cover or ground conditions and includes those due to human activity.
field capacity - the percentage of water remaining in a soil after having been saturated and after free drainage has practically ceased.

glacio-fluvial deposits - material moved by glaciers and subsequently deposited by streams flowing from the melting ice.

gley - gleying is a reduction process that takes place in soils that are saturated with water for long periods of time. The horizon of most intense reduction is characterized by a gray, commonly mottled appearance, which on drying shows numerous rusty brown iron stains or streaks. Those horizons in which gleying is intense are designated with the subscript g.

groundwater - that portion of the total precipitation which at any particular time is either passing through or standing in the soil and the underlying strata and is free to move under the influence of gravity.

horizon - a layer in the soil profile approximately parallel to the land surface with more or less well-defined characteristics that have been produced through the operation of soil forming processes. Soil horizons may be organic or mineral.

illuviation - the process of deposition of soil material removed from one horizon to another in the soil, usually from an upper to a lower horizon in the soil profile. Illuviated compounds include silicate clay, iron and aluminum hydrous oxides and organic matter.

infiltration - the downward entry of water into the soil.

lacustrine deposit - material deposited in lake water and later exposed either by a lowering of the water or by uplift of the land.

liquid limit (upper plastic limit) - the water content at which a pat of soil, cut by a groove of standard dimensions, will flow together for a distance of 12 mm under the impact of 25 blows in a standard liquid limit apparatus.

lithic - a soil subgroup modifier that indicates a bedrock contact within 50 cm (20 in.) of the soil surface.

morphology, soil - the makeup of the soil, including the texture, structure, consistence, colour, and other physical, mineralogical and biological properties of the various horizons of the soil profile.

mottles - spots or blotches of different color or shades of color interspersed with the dominant color. Mottling in soils usually indicates poor aeration and drainage.
organic matter - the decomposition residues of plant material derived from:
(i) plant materials deposited on the surface of the soil, and (ii) roots
that decay beneath the surface of the soil.

parent material - unconsolidated mineral material or peat from which the soil
profile develops.

peat - unconsolidated soil material consisting largely of undecomposed to partially
decomposed organic matter accumulated under conditions of excessive moisture.

ped - a unit of soil structure such as a prism, block or granule formed by natural
processes (in contrast to a clad which is formed artificially).

pedology - those aspects of soil science involving the constitution, distribution,
genesis and classification of soils.

percolation, soil water - the downward movement of water through soil. Especially
the downward flow of water in saturated or nearly saturated soil at hydraulic
gradients of the order of 1.0 or less.

permeability - the ease with which gases, liquids, or plant roots penetrate or pass
through a bulk mass of soil or a layer of soil. Since different horizons of soil
vary in permeability, the particular horizon under question should be designated.

pH - a notation used to designate the relative acidity or alkalinity of soils and other
materials. A pH of 7.0 indicates neutrality, higher values indicate alkalinity,
and lower values acidity.

phase, soil - a subdivision of a taxonomic class based on soil characteristics or
combinations thereof which are considered to be potentially significant at
man's use or management of the land.

plastic limit - water content at which a soil will just begin to crumble when rolled
into a thread approximately 3 mm in diameter.

plasticity index - the numerical difference between the liquid and the plastic limit.

profile - a vertical section of the soil throughout all its horizons and extending into
the parent material.

relief - the elevations or inequalities of the land surface when considered collectively.
Minor configurations are referred to as "microrelief".

residual material - unconsolidated and partly weathered mineral material accumulated
by disintegration of consolidated rock in place.
saline soil - a soil containing enough soluble salts in such quantities that they interfere with the growth of most crop plants.

seepage (groundwater) - the emergence of water from the soil over an extensive area in contrast to a spring where it emerges from a local spot.

soil consistency - (i) the resistance of a soil material to deformation or rupture. (ii) the degree of cohesion or adhesion of the soil mass. Terms used for describing consistency at various soil moisture conditions are:
 wet soil - non-plastic, slightly plastic, plastic, very plastic.
 moist soil - loose, friable, firm, very firm, extremely firm.
 dry soil - loose, soft, hard, very hard, extremely hard.

soil structure - the combination or arrangement of primary soil particles into secondary particles, units or peds, e.g. prismatic, columnar, blocky, platy.

soil unit - a defined aggregate of soil bodies occurring together in an individual and characteristic pattern over the land surface.

solum (plural-sola) - the part of the soil profile that is above the parent material and in which the processes of soil formation are active. It comprises the A and B horizons.

texture (soil) - the relative proportions of the various sized soil separates in a soil as described by the textural class names.

till - unstratified glacial drift deposited directly by ice and consisting of non-sorted clay, silt, sand, and boulders.

watertable - the upper limit of the part of the soil or underlying rock material that is wholly saturated with water.
<table>
<thead>
<tr>
<th>ORDER</th>
<th>GREAT GROUP</th>
<th>DISTINGUISHING CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Brown</td>
<td>Light Brown Ah horizon</td>
</tr>
<tr>
<td></td>
<td>Dark Brown</td>
<td>Dark Brown Ah horizon</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>Black Ah horizon</td>
</tr>
<tr>
<td></td>
<td>Dark Gray</td>
<td>Have L-H surface horizons typical of forest vegetation</td>
</tr>
<tr>
<td>2.</td>
<td>Solonetz</td>
<td>Ah horizon — Bnt horizon</td>
</tr>
<tr>
<td></td>
<td>Solodized Solonetz</td>
<td>Ah — Ae — Bnt</td>
</tr>
<tr>
<td></td>
<td>Solod</td>
<td>Ah — Ae — AB — Bnt</td>
</tr>
<tr>
<td>3.</td>
<td>Gray Brown Luvisol</td>
<td>(L-H) — Ah — Ae — Bt; Mull-like Ah horizon</td>
</tr>
<tr>
<td></td>
<td>Gray Luvisol</td>
<td>L-H — (Ah) — Ae — Bt</td>
</tr>
<tr>
<td>4.</td>
<td>Humic Podzol</td>
<td>Bh > 4" which contains > 1% O.C.</td>
</tr>
<tr>
<td></td>
<td>Ferro-Humic Podzol</td>
<td>Bhf > 4" which contains > 5% O.C.</td>
</tr>
<tr>
<td></td>
<td>Humo-Ferric Podzol</td>
<td>Bf > 2" which contains < 5% O.C.</td>
</tr>
<tr>
<td></td>
<td>Ah > 2", Bm > 2"; pH > 5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah < 2", Bm > 2"; pH > 5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah > 2", Bm > 2"; pH < 5.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ah < 2", Bm > 2"; pH < 5.5</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Melanic Brunisol</td>
<td>Ah > 2", Bm > 2"; pH > 5.5</td>
</tr>
<tr>
<td></td>
<td>Eutric Brunisol</td>
<td>Ah < 2", Bm > 2"; pH > 5.5</td>
</tr>
<tr>
<td></td>
<td>Sombric Brunisol</td>
<td>Ah > 2", Bm > 2"; pH < 5.5</td>
</tr>
<tr>
<td></td>
<td>Dystric Brunisol</td>
<td>Ah < 2", Bm > 2"; pH < 5.5</td>
</tr>
<tr>
<td>6.</td>
<td>Regosol</td>
<td>(L-H) — Ah — C; no B horizon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Humic Gleysol</td>
<td>Ah > 3", Bm > 3"; pH > 5.5</td>
</tr>
<tr>
<td></td>
<td>Gleysol</td>
<td>Ah < 3", Bm < 3"; pH < 5.5</td>
</tr>
<tr>
<td></td>
<td>Luvic Gleysol</td>
<td>Have Aeg and Btg horizons</td>
</tr>
<tr>
<td>8.</td>
<td>Fibrisol</td>
<td>Large amount of well preserved fiber</td>
</tr>
<tr>
<td></td>
<td>Mesisol</td>
<td>Partially decomposed fiber</td>
</tr>
<tr>
<td></td>
<td>Humisol</td>
<td>Well decomposed fiber (Black)</td>
</tr>
<tr>
<td></td>
<td>Folisol</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 13. DEFINITION OF SOIL HORIZON SYMBOLS (after C.S.S.C., 1973)

Organic Layers

Organic layers are found at the surface of some mineral soils, and may occur at any depth beneath the surface in buried soils, or overlying geologic deposits. They contain more than 17% organic carbon by weight. Two groups of these layers are recognized.

O - This is an organic layer developed mainly from mosses, rushes, and woody materials.

Of - The fibric layer is the least decomposed of all the organic soil materials. It has large amounts of well-preserved fibre that are readily identifiable as to botanical origin.

Om - The mesic layer is the intermediate stage of decomposition with intermediate amounts of fibre, bulk density and water-holding capacity. The material is partly altered both physically and biochemically. A mesic layer is one that fails to meet the requirements of fibric or of humic.

Oh - The humic layer is the most highly decomposed of the organic soil materials. It has the least amount of fibre, the highest bulk density, and the lowest saturated water-holding capacity. It is very stable and changes very little physically or chemically with time unless it is drained.

L-F-H - These organic layers develop primarily from leaves, twigs, woody materials, and a minor component of mosses.

L - This is an organic layer characterized by an accumulation of organic matter in which the original structures are easily discernible.

F - This is an organic layer characterized by an accumulation of partly decomposed organic matter. The original structures in part are difficult to recognize. The layer may be partly comminuted by soil fauna, as in moder\(^1\), or it may be partly decomposed mat permeated by fungal hyphae, as in mor\(^1\).

H - This is an organic layer characterized by an accumulation of decomposed organic matter in which the original structures are indiscernible. This material differs from the F layer by its greater humification chiefly through the action of organisms. This layer is a zoogenous humus form consisting mainly of spherical or cylindrical droppings of microarthropods. It is frequently internixed with mineral grains, especially near the junction with a mineral layer.

Master Mineral Horizons and Layers

Mineral horizons are those that contain less organic matter than that specified for organic layers.

A - This is a mineral horizon or horizons formed at or near the surface in the zone of removal of materials in solution and suspension, or of maximum in situ accumulation of organic matter, or both. Included are:
(TABLE 13 - cont.)

(1) horizons in which organic matter has accumulated as a result of biological activity (Ah);
(2) horizons that have been eluviated of clay, iron, aluminum, or organic matter, or all of these (Ae).

B - This is a mineral horizon or horizons characterized by one or more of the following:
(1) an enrichment in silicate clay (Bt).
(2) an alteration by hydrolysis, reduction, or oxidation to give a change in color or structure from horizons above or below (Bm and Bg).
(3) a prismatic or columnar structure that exhibits pronounced coatings or stainings and significant amounts of Na (Bn).

C - This is a mineral horizon or horizons comparatively unaffected by the pedogenic processes operative in A and B, excepting the process of gleying or the accumulation of carbonates and soluble salts.

R - This is consolidated bedrock that is too hard to break with the hands or dig with a spade when moist, and that does not meet the requirements of a C horizon. The boundary between the R layer and any overlying unconsolidated material is called a lithic contact.

Lowercase Suffixes

b - A buried soil horizon.

e - A horizon characterized by the removal of clay, iron, aluminum, or organic matter alone, or in combination. When dry, it is higher in color value by 1 or more units than an underlying B horizon. It is used with A (Ae, Ahe).

g - A horizon characterized by gray colors, or prominent mottling, or both, indicative of permanent or periodic intense reduction. Chromas of the matrix are generally 1 or less.

h - A horizon enriched with organic matter. When used with A it must show one Munsell unit of value darker than the horizon below, or have 0.5% more organic matter than the IC. It contains less than 17% organic carbon by weight.

k - Denotes the presence of carbonate as indicated by visible effervescence when dilute HCl is added.

m - A horizon slightly altered by hydrolysis, oxidation, or solution, or all three, to give a change in color or structure, or both.

n - A horizon in which the ratio of exchangeable Ca to exchangeable Na is 10 or less. When used with B it must also have the following properties: prismatic or columnar structure, dark coatings on ped surfaces, and hard to very hard consistence when dry.
(TABLE 13 - cont.)

s - A horizon with salts which may be detected as crystals or veins, as surface crusts, by distressed crop growth or by presence of salt-tolerant plants. It is most commonly used with C and k.

t - A horizon enriched with silicate clay. It is used with B (Bt, Btg).
ACKNOWLEDGEMENTS

Mr. Z. Widtman drafted the final soils map and Mr. L. Knapik compiles section 1 of the report. Mr. J. Beres determined the physical properties and Messrs. W. McKeen and A. Schwarzer the chemical properties of the soils. Mrs. Cecile Lirette edited and typed the report. Field assistance was given by Messrs. M. Nock and G. Cormin. Special acknowledgement is given to the many property owners whose cooperation allowed soil investigations to be conducted on their land.

REFERENCES

Canada Land Inventory. 1965. Soil Capability Classification for Agriculture. CIL Report No. 2., Dept. of Forestry, Canada.

