This report is incomplete.
The original, printed version had missing pages. We apologize for the inconvenience.

VULCAN WELL EVALUATION SUMMARY
by: G.M. Gabert
May 1962

Vulcan Well Evaluation Summary

17-24-W4
by

G.M. Gabert

May 29, 1962

Re: Water supply, Vulcan

Some comments on the letter of C. C. Parker, Whittaker \& Co., dated June 9, 1961.

1. If the pump.test data are plotted on semi-logarithmic paper and analyzed by means of the modified Theis non-equilibrium formula, the transmissibility of the aquifer appears to be $1020-1240 \mathrm{gpd} / \mathrm{ft}$. which is considerably higher than the transmissibility of the Paskapoo formation within the town limits ($170 \mathrm{gpd} / \mathrm{ft}$.). The drawdown graph shows a characteristic succession of steps, each of which suggestsstabilization of pumping level. Six steps of apparent stabilization can be recognized in the pump test, varying in duration from 30 minutes to 3 hours. The least apparent stabilization has obviously been interpreted as a true equilibrium between recharge and discharge, but the remainder of the drawdown graph does not justify this assumption, and consequently, the calculation of specific capacity has no validity.

The periods of apparent stabilization during the pumping test are probably not related to aquifer conditions, but rather to variations in pumping rate. According to the information that is submitted by the engineering firm, the average pumping rate is 99 gpm . However, the meter-readings indicate a pumping rate of 80 gpm . from $11.45 \mathrm{a} . \mathrm{m}$. - 1:35 p.m. on February 1 , whereas the average pumping rate from $1: 35 \mathrm{p} . \mathrm{m}$. to 11:05 p.m. of the same day amounts to 106 gpm . Judging from the drawdown graph the pumping rate of 80 gpm . is valid for 200 minutes. followed by a pumping rate of 120 gpm . per minute from 200-500 minutes. Pumping tests with variations in discharge exceeding $1-5 \%$ have no value for hydrologic interpretation as the assumptions of the mathematical model are no longer valid.

If it were to be assumed that the pumping test had some value, the safe pumping rate from this well varies between 40 and 50 gpm ., which has been calculated by the conventional safe yield computation:

$$
\mathrm{Q}=\frac{\text { Transmissibility } \times \text { available drawdown }}{2110} \times 70 \%
$$

in which: $\mathrm{T}=1020 \mathrm{gpd} / \mathrm{ft}-1240 \mathrm{gpd} / \mathrm{ft}$

$$
\text { drawdown }=120 \text { feet. }
$$

Summarizing, it may be stated that the variations in pumping rate render it impossible to interpret correctly the results of the pumping test. If pumping test data were assumed to be reliable, the safe yield of this aquifer would be 50 gpm at the most, but probably less. The estimate submitted by the engineering firm is based on the wrong assumption that the principle of specific capacity can be ppplied to a non-equilibrium pumping test, and as a result their estimate of safe yield is nearly five times too high.

Contents

Page
Introduction 1
Step - Drawdown Test Results 1
Constant - Rate Tests Results 1
Table I 2
Table II 2
Table III 5
Table IV 5
Table V 6
Water Quality 6
Conclusions and Recommendations 6
Future Prospects for a Groundwater Supply 7
Appendix A
Appendix B

VULCAN WELL EVALUATION SUMMARY

Introduction

Constant-rate and step-drawdown tests were conducted on 5 wells at the Town of Vulcan, Alberta, during the period from May 8 to May 13, inclusive, to evaluate the potential long range production capacity of the wells.

A step-drawdown test was conducted on each well to establish its efficiency at varlous pumping rates and evaluate the well design.

A constant-rate test was performed on well \#3 in order to calculate the aquifer coefficients which are necessary to estimate future pumping levels for extended periods of continuous pumping.

Step-Drawdown Test Results

The step-drawdown tests indicate that the five wells are not efficient or designed for pumping rates exceeding 7 gpm when each well is pumped separately. At pumping rates lower than 7 gpm the wells function satisfactory.

Constant-Rate Tests Results

The average transmissibility of the water bearing materials was calculated from the time-drawdown data obtained from this test. The average transmissibility determined was $246 \mathrm{gpd} / \mathrm{ft}$. , which means the aquifer yields its water slowly to a well.

Observations of drawdowns in wells number 1,2,4, and 5 during the constant ${ }^{-}$ rate and step-drawdown tests revealed that interference occurs between wells number 1,2 , 3, and 4. Well No. 5 was not influenced by the pumping of the other four wells.

Table I indicates that the predicted pumping levels in the aquifer under conditions of continuous pumping at a constant rate conform rather closely to the actual drawdowns which occur for a given pumping period.

Table 1: A comparison of estimated drawdowns in the aquifer and actual drawdowns measured at the end of 24 hours of continuous pumping at a rate of 5.2 gpm .

		Status	Estimated Drawdowns
2	Observation	Actual	
3	\cdot	44.5°	Drawdowns
4	Pumping	7.5°	46.0^{\prime}

During the pumping test the top of the lower aquifer was considered to be 142 feet. The maximum safe pumping rate is that rate which will not draw the water below the top of the lowest water bearing zone over an extencied period of continuous pumping at a constant rate. For estimating future pumping rates 90 feet of available drawdown was considered a maximum in the calculations.

Table II: Estimate future pumping levels in the aquifer at various distances from the center of a pumping well.

Radial Distance from center of pumping well (ft.)	Continuous Constant pumping Rate (gpm)	Length of Pumping Period	Estimated Drawdowns in Aquifer (ft.)
0.25	5.2		
10	5.2	1 day	44.5
100	5.2	1 day	26.6
1000	5.2	1 day	15.5
		1 day	4.6
0.25	5.2	30 days	49.5
10	5.2	30 days	34.8
100	5.2	30 days	23.7
1000	5.2	30 days	12.6
0.25	5.2	90 days	55.4
10	5.2	90 days	37.5
100	5.2	90 days	26.4
1000	5.2	90 days	15.4

Table II (cont'd)

Radial Distance from center of pumping well (ft.)	Continuous Constant pumping Rate (gpm)	Length of pumping period	Estimated Drawdowns in Aquifer (ft.)
		5 years	62.7
0.25	5.2	5 years	45.0
10	5.2	5 years	33.9
100	5.2	5 years	22.5
1000	5.2		
		1 day	51.5
0.25	6	1 day	30.8
10	6	1 day	17.9
100	6	1 day	5.3
1000	6		
	6	30 days	57.1
0.25	6	30 days	40.3
10	6	30 days	27.3
100	6	30 days	14.6
1000	6		
		90 days	64.1
0.25	6	90 days	43.4
10	6	90 days	30.5
100 1000	6	90 days	17.6
0.25	6	5 years	72.5
10	6	5 years	32.0
100	6	5 years	26.0
1000	6	5 yeara	
		1 day	60.0
0.25	7	1 day	35.8
10	7	1 day	20.9
100	7	1 day	6.2
1000	7		
		30 days	66.5
0.25	7	30 days	47.0
10	7	30 days	31.9
100 1000	7	30 days	17.0
	-		74.6
0.25	7	90 days	50.5
10	7	90 days	35.5
100	7	90 days	20.5
1000	7	90 days	

-4-

Table II (cont'd)

Radial Distance from center of pumping well (ft.)	Continuous Constant pumping Rate (gpm)	Length of pumping period	Estimated Drawdowns in Aquifer (ft.)
0.25	7	5 years	84.5
10	7	5 years	60.6
100	7	5 years	45.6
1000	7	5 years	30.3
0.25	10	1 day	85.7
10	10	1 day	51.2
100	10	1 day	- 29.8
1000	10	1 day	24.5
0.25	10	30 days	95.0
10	10	30 days	67.0
100	10	30 days	45.6
1000	10	30 days	24.2
0.25	10	90 days	106.6
10	10	90 days	72.2
100	10	90 days	50.8
1000	10	90 days	29.3
0.25	10	5 years	120.6
10	10	5 years	86.6
100	10	5 years	65.2
1000	10	5 years	46.6

Table 1II: 24 hour interference due to the pumping of each well at various constant rates

* Estimated Distances

Table IV: 90 day interference due to the pumping of each well at various constant rates

Pumping Well No.	Well influenced by pumping	RadialDistancefrom pumpingwell (ft.)	Interference in feet of drawdown at various pumping rates		
			$\begin{gathered} \text { Pumping rate } \\ \text { gpm } \end{gathered}$	6	7
1			19.6	22.7	26.4
	2	414	19.6	16.2	18.9
	3	1300	14.0 12.6	14.6	17.0
	4	1800			
2			19.6	22.7	26.4
	1	414	15.7	18.2	23.7
	3	930	13.6	15.7	18.2
		1400 *	13.6	15.7	
3			14.0	16.2	18.9
	1	1300 *	15.7	18.2	23.7
	2	930	18.4	21.3	24.8
	4	523	18.4	21.3	
4		1800	12.6	14.6 .	17.0
	$\frac{1}{2}$	1800	13.6	15.7	18.2
	3	523	18.4	21.3	24.8

Table V: Total interference in each well with all wells pumping at 5.2 gpm for a period of 1 day and 90 days.

Well No.	Pumping Period	Total Interference in feet
1	1 day	14.5
2	1 day	16.9
3	1 day	16.2
4	1 day	12.8
1	90 days	46.2
2	90 days	48.9
3	90 days	48.1
4	90 days	44.6

Water Quality

The chemical quality of the water is acceptable in all the wells except well No. 5. This water in well No. 5 is not acceptable for a public supply due to the nitrate content. Pumping this well for several days may eliminate the nitrates or reduce their concentration to an amount not dangerous for public use.

The pumping of well No. 3 for 27 hours improved its chemical quality, particularly by reducing the sulphate concentration.

Conclusions and Recommendations

1. Continuous pumping of a well in this aquifer at 5.2 gpm for a period of 90 days causes a drawdown of 55.4 feet (Table II) in the aquifer at the well perimeter. If wells 1 , 2, 3, and 4 are pumped continuously at 5.2 gpm for a 90 day period, there will be an additional drawdown of nearly 50 feet (Table 5) in each well due to interference. This gives a total drawdown in each well that exceeds the total available drawdown of 90 feet.

Therefore, wells 1, 2, 3, and 4 cannot be pumped continuously at a constant rate of 5.2 gpm for a 90 day period.
2. Table II indicates that if each well was separately pumped continuously ax ghm for a 90 day period, the drawdown in each well would be rery close to the maximum drawdown avallable. Thus if 2,3 , or 4 wells were pumped and were influenced by one aracher to the extent that these 4 wells are, each well should not be pumped over 5 gpm , a maxmum rate for extended periods of continuous pumping.
3. Well No. 5 was not influenced by the pumping of wells No. 1, 2, 3, and 4. However, for a 90 day continuous pumping period the maximum rate at which well no. 5 can be pumped is 7 gpm .

Future Prospects for a Groundwater Supply

The Town of Vulcan should be aware that the prospects for drilling high capacity wells with an acceptable water quality are not good in the vicinity of the town. The recent pumping test indicates that wells yielding water from the same aquifer will have to be spaced at least 1000 feet apart, instead of the previously suggested 500 feet, in order to ensure minimum interference. Closely spaced wells will have to be pumped at low rates and thus a well field will be required to obtain a large quantity of water over a long period of time.

Unfortunately, drillers' logs for test holes and well previously drilled at Vulcan do not give reliable information on the thickness, depth, and availability of the various water bearing formations encountered. A future test drilling program should be carefully planned and properly supervised during its initial stage to ensure that each hole is properly sampled in order to obtain a detailed \log of the formations encountered. In addition, an electric log may be run on several test holes to aid in establishing the exact position of waterbearing formations encountered during drilling. A competent water well driller experienced in this type of test drilling is a necessity for such a program.

Detailed, reliable information obtained from a well planned, properly executed test drilling program may result in improved well design and completion, and a more satisfactory performance from a single well or group of wells.
G. M. Gabert

Groundwater Division
Research Council of Alberta
May 29, 1962.

Appendix A

REPORT

00

INVESTIGATION FOR EXTENSION OF WATER SUPPLY

> TOWN OF VULCAN

GCOPEOF WORK

The exiatrig vater supply for the Town of Vulean, with a populaticy of 1340 persons, comes from five or oir wells locatcd tiz the vicinity of the townaite. The weter is pumped from tho wille to an slevated storage tank (50,000 gellons) and thenco, by esavity, to the diotrisudam gyatorn.

The yadis provida an aggregato hou of 65 US GFM ratch dose not meot he present demand. Soveral of the lergear *ம்org, tho betcl, Docpital, etc., havo individual eupply.

Tho qualdry of tho ucter is unsatiafoctory, haviag a berch comicarration of cojectioncblo valto, nitratces and nijbatos (Gloubor Salte).

If has beca necoseary to investigate, tent ind menlyzo all tho arailatlo asurees of water in the detrict, in civats an cdoquate cousto of posabla vater whth foro counemic rage of tia cermindty.

C.C. SParker, Whillatier \& Company, ibid

BASIC DESIGN

We established the necessary criteria for the study from sound engineering principles in accord with Health Regulations, and other basic requirements, an follows : -

1. Population Trend

Vulcan is the centre of a trading area with a radius of 30 to 35 miles. It is the County scat for the County of Vulcan.

There are no large industrial plants in the ares, but some expansion may come from the presence of producing gas wells and their subsidiary extraction. processing.

The eotimated population for 1985, based on a plotted curve for the increase of the path inion years, ia 3500. This Eure has bern used for our celculaione throughout this report.

2. Quantity of Water

Water demand is estimated to be in U.S. Gallons.

3. Storing

Tho reserve storage required is calculated to bo 600,000 U.S.Gailoue. That computation takes into account the exdeting 50,000 gallon elevated storage and a contumous pumping capacity of 250 mm .

Supply line stang has bean determined, bact on 250 U.S. Rpm against a head of 160 feet and the $6^{\prime \prime}$ dis. main will sufic.

4. Quality of Wator

Chamical analyses of water from the local wells, surface water sources etc., indicate that there are scveral problems in the proviaion of a potable exupply. Theas are:-

1. Reducacin of Total Solida coztent.
2. Reduction of Sulphate coatent.
3. Reduction of Iron Manganese content. $z-2$

Verious motheds of troatment have been atudiod, indivicually or in combination, to arrivo at a catiosectory supply within the economic range for initicl and operational cost日.

Thomoot efficiont trestment thet is within a reacomable cost zaneco, is a cembtination fillor and aroatina plask. The furs echocisd is dosignod to remove iron axd magroolvin and inll, in this process, ccanbined with acration, reiluce tho quantity of ealte to a reacomable 똑mun.

BEYGICAL STUDY

EOURCES OF VATER
c) 52 ac 118

A coneleto stuiy of tie poraible wells in the vicinity of the tomeite was mado, vilag information cbtained
 fow from wells in the area is staall ond it mould reguire a large number of wello in geries to racet tu domany.

The quality of the water obtalatif frem the eaditiag wella varical ricely, and treatraent mould to ececenexty as racricioned.

b) Aisport Wellis

The Town of Vulcan recoctly acquired the use of sevoral wells that formed the scurce of supply foz the RCAF Etation, about 4.75 milles from tho towngito.
 la at and comprations frem the observations, imileats that these walle will produce 160 US mpm , which, combired with the production of welle at the afrwort and the cown wolle, and the proposed atorage reøorvols; will aupgly town needa aedequataly.

The qualisy of tse water is comparable to that \&iciusted and treatrieat will be acguired to reduen the toral

c) Eurico Fator - Exalio Creek

Thére is a potentiol source of sursicestriog in tes

 provice tw izapouding yessivile.

 perar.

 avediniso et citces (th) ox (c).

DESIGN

SOURCE - Airport Well - SCHEASE B

Use additional wells from towngite or airfort as required. These wells should be pumped periodically to. maintain quality (2 or 3 times weekly)
2. Repairs to Welle at Alrgort.
 evident in dicchares. Tho cacing should bs repleced and the well aealed off at 30 frot level.

Well n - This rell to be flumed nad gravel pecked to overcome turbidity now prevalcut.
3. Pipe Line - $6^{\prime \prime}$ diameter main to treatracns nyuts and reserve storago. Pipe calvaged isoa cuicting lins at airport saticfactory and 1.03 costly.
 reserve.

A risect by-pies from roservo chande to tho yeteri for fira now ls andble.

COUMCE-Sake Creek - SCHEMLE C

1. Enpowading Regervoir - To bo buit in céjuabion with or ty P. F.R.A.
2. Litake Structure - normal for lnloo.
3. Pumping from reserveir to treaticet plat and roncrve storage - Supply Hec 7 miles long aryscitanteig.

COST ESTIMATES

B. ARRPORT SUPPLY

1. Pipe Salvege

Tctal Cost.
Cost to Town Undar Winter Worke
2. Supply Line

38, 194. 58
3. Treatincrit Plant \& Equiproaxt $33,689,00$
4. Resaryoir
$\frac{33,146.00}{143,240.49}$

Co SAASE CREDREMOTECT

 dara or property ecgiantica.

EDMONTON. ALBERTA

May 16, 1962

WATER ANALYSIS REPORT

CHEMICAL

	Secretary-Thas.unex:	Date received .-.) May 14, 1962
Address .-.	Town of Vulcrn	
	Fulcan, Alberta	Source of Sample - Vuncan Hellill 1
Container No.	$\square_{1} 1$	
		Lab. No. .-W 62-4370
	PARTS PER MILL	ION Slitits frou en ton
Total Solids	858	
Ignition Loss	98	\therefore 55:i4.5-15
Hardness	50	$\therefore \therefore \therefore$
Sulphates	245	$3: 5$
Chlorides	17	i $\because \cdot 7: \because \because$
Alkalinity	305	$\cdots 1$
Nature of Alkalinity	Bicarbonate of soda, lime	1.corio j:
Nitrites	trace	
Nitrates	1.2	
Iron	0.2	
Fluorine		こ.
REMARKS:		i?
	Sola - 18.9 grains/gallon. plants. Water is chemical	
	,	c. Emerson Noble Piovincial Analys:
	```CEN:pl cc Resdarch Gomail```	

## WATER ANALYSIS REPORT <br> CHEMICAL



# EDMONTON, ALBERTA 

## WATER ANALYSIS REPORT <br> CHEMICAL



EDMONTON. ALBERTA
CANADA

Kay 16, 1962

## WATER ANALYSIS REPORT CHEMICAL



REMARKS:

Scda-14.5 grains/galion. Water is chmically suitable.

CES: p1
co Resdarch Council

EDMONTON．ALBERTA Provincial Analygt

Hay 16， 1962

## WATER ANALYSIS REPORT <br> CHEMICAL

Submitted by－－－＞		
Address		Date reported
	Yulcan，Alherta ${ }_{\text {a }}$	
Container No．	$225 \times{ }^{-}$	Serial No．
		Lab．No．－ $62-4.358$
PARTS PER MILLION		
Total Solids	930	Nintied from 100 tel 80 ft
Ignition Loss	36	，
Hardness	50	E
Sulphates	362	E®？
Chlorides	15	$\bigcirc$
Alkalinity		ご
Alkalinity	240	14・ごごに
Nature of Alkalinity	Bicarbonate of soda，lime and	and magnesium
Nitrites	trace	i．firso
		¢－dくこし
Nitrates	trace	くッこご，
Iron	0.2	
		く．うこのここ
Fluorine		
REMARKS：	Water is chenically suitable．	ここ・こうこアく
		？．こにこここ $\therefore$ ，
		かe．ひこ．4こ0くこ：
		こ．ことことこ
		ここ・ここうここ ！
	－	C．Enerson Noble （Próvincial Analyst

CEN：pl

May 16, 1962

## WATER ANALYSIS REPORT CHEMICAL



## Appendix B

