This report is incomplete.

The original, printed version had missing pages. We apologize for the inconvenience.

VULCAN WELL EVALUATION SUMMARY

by: G.M. Gabert
May 1962

MBENTA RESEARCH COUNCIL LIBRARY
5th FLOOR, TERRACE FLAZA
5th FLOOR, TERRACE FLAZA
4445 CALGARY TRAIL SOUTH
FOMOTION, ALBERTA, CANADA
TOH 5R7

Vulcan Well Evaluation Summary

17 - 24 - W4

by

G.M. Gabert

May 29, 1962

MEMORANDUM

RESEARCH COUNCIL OF ALBERTA, UNIVERSITY OF ALBERTA, EDMONTON

Mr. D. H. Lennox

FROM

P. Meyboom

DATE

June 26, 1961.

Re: Water supply, Vulcan

Some comments on the letter of C. C. Parker, Whittaker & Co., dated June 9, 1961.

1. If the pump test data are plotted on semi-logarithmic paper and analyzed by means of the modified Theis non-equilibrium formula, the transmissibility of the aquifer appears to be 1020-1240 gpd/ft. which is considerably higher than the transmissibility of the Paskapoo formation within the town limits (170 gpd/ft.). The drawdown graph shows a characteristic succession of steps, each of which suggests tabilization of pumping level. Six steps of apparent stabilization can be recognized in the pump test, varying in duration from 30 minutes to 3 hours. The least apparent stabilization has obviously been interpreted as a true equilibrium between recharge and discharge, but the remainder of the drawdown graph does not justify this assumption, and consequently, the calculation of specific capacity has no validity.

The periods of apparent stabilization during the pumping test are probably not related to aquifer conditions, but rather to variations in pumping rate. According to the information that is submitted by the engineering firm, the average pumping rate is 99 gpm. However, the meter-readings indicate a pumping rate of 80 gpm. from 11.45 a.m. - 1:35 p.m. on February 1, whereas the average pumping rate from 1:35 p.m. to 11:05 p.m. of the same day amounts to 106 gpm. Judging from the drawdown graph the pumping rate of 80 gpm. is valid for 200 minutes. followed by a pumping rate of 120 gpm. per minute from 200 - 500 minutes. Pumping tests with variations in discharge exceeding 1 - 5% have no value for hydrologic interpretation as the assumptions of the mathematical model are no longer valid.

If it were to be assumed that the pumping test had some value, the safe pumping rate from this well varies between 40 and 50 gpm., which has been calculated by the conventional safe yield computation:

Q = Transmissibility x available drawdown x 70%

in which: T = 1020 gpd/ft - 1240 gpd/ft

drawdown = 120 feet.

Summarizing, it may be stated that the variations in pumping rate render it impossible to interpret correctly the results of the pumping test. If pumping test data were assumed to be reliable, the safe yield of this aquifer would be 50 gpm at the most, but probably less. The estimate submitted by the engineering firm is based on the wrong assumption that the principle of specific capacity can be applied to a non-equilibrium pumping test, and as a result their estimate of safe yield is nearly five times too high.

Contents

	rage
Introduction	1
Step - Drawdown Test Results	1
Constant - Rate Tests Results	1
Table I	2
Table II	2
Table III	5
Table IV	5
Table V	6
Water Quality	6
Conclusions and Recommendations	6
Future Prospects for a Groundwater Supply	7
Appendix A	
Appendix B	924

VULCAN WELL EVALUATION SUMMARY

Introduction

Constant-rate and step-drawdown tests were conducted on 5 wells at the Town of Vulcan, Alberta, during the period from May 8 to May 13, inclusive, to evaluate the potential long range production capacity of the wells.

A step-drawdown test was conducted on each well to establish its efficiency at various pumping rates and evaluate the well design.

A constant—rate test was performed on well #3 in order to calculate the aquifer coefficients which are necessary to estimate future pumping levels for extended periods of continuous pumping.

Step-Drawdown Test Results

The step-drawdown tests indicate that the five wells are not efficient or designed for pumping rates exceeding 7 gpm when each well is pumped separately. At pumping rates lower than 7 gpm the wells function satisfactory.

Constant-Rate Tests Results

The average transmissibility of the water bearing materials was calculated from the time-drawdown data obtained from this test. The average transmissibility determined was 246 gpd/ft., which means the aquifer yields its water slowly to a well.

Observations of drawdowns in wells number 1, 2, 4, and 5 during the constantrate and step-drawdown tests revealed that interference occurs between wells number 1, 2, 3, and 4. Well No. 5 was not influenced by the pumping of the other four wells.

Table I indicates that the predicted pumping levels in the aquifer under conditions of continuous pumping at a constant rate conform rather closely to the actual drawdowns which occur for a given pumping period.

Table I: A comparison of estimated drawdowns in the aquifer and actual drawdowns measured at the end of 24 hours of continuous pumping at a rate of 5.2 gpm.

Well No.	Status	Estimated Drawdowns	Actual Drawdowns
2	Observation	44.5'	46.0'
3	Pumping	7.5'	7.8'
4	Observation	5.1'	3.9'

During the pumping test the top of the lower aquifer was considered to be 142 feet. The maximum safe pumping rate is that rate which will not draw the water below the top of the lowest water bearing zone over an extended period of continuous pumping at a constant rate. For estimating future pumping rates 90 feet of available drawdown was considered a maximum in the calculations.

Table II: Estimate future pumping levels in the aquifer at various distances from the center of a pumping well.

Radial Distance from center of pumping well (ft.)	Continuous Constant pumping Rate (gpm)	Length of Pumping Period	Estimated Drawdowns in Aquifer (ft.)	
0.25	5.2	1 day	44.5	
10	5.2	1 day	26.6	
100	5.2	1 day	15.5	
1000	5.2	1 day	4.6	
0.25	5.2	30 days	49.5	
10	5.2	30 days	34.8	
100	5.2	30 days	23.7	
1000	5.2	30 days	12.6	
0.25	5.2	90 days	55.4	
10	5.2	90 days	37.5	
100	5.2	90 days	26.4	
1000	5.2	90 days	15.4	

Table II (cont'd)

table if (cont d)	Continuous		Estimated
Radial Distance	Continuous Constant pumping	Length of	Drawdowns in
from center of		pumping	Aquifer
pumping well	Rate	period	(ft.)
(ft.)	(gpm)		40 W
0.05	5.2	5 years	62.7
0.25	5.2	5 years	45.0
10	5.2	5 years	33.9
100	5.2	5 years	22.5
1000	J - 4	•	- Sa -
¥2 = 20	6	1 day	51.5
0.25		1 day	30.8
10	6	1 day	17.9
100	6	1 day	5.3
1000	6	3	48 48 AU
*	mi o 2 sa ²	30 days	57.1
0.25	. 6	30 days	40.3
10	6	30 days	27.3
100	6	30 days	14.6
1000	6	30 days	
		90 days	64.1
0.25	6	90 days	43.4
10	6	90 days	30.5
100	6		17.6
1000	6	90 days	2. 7 3
	4	5 years	72.5
0.25	6	5 years	52.0
10	6	5 years	39.0
100	6	5 years	26.0
1000	6	0 ,0	
	7	1 day	60.0
0.25		1 day	35.8
10	, a	1 day	20.9
100	7	1 day	6.2
1000	, .	- ,	
	a	30 days	66.5
0.25	7	30 days	47.0
10	7	30 days	31.9
100	7 7	30 days	17.0
1000	7	go days	
	**	90 days	74.6
0.25	7	90 days	50.5
10	7	90 days	35.5
100	7	90 days	20.5
1000	7	An may a	,

Table II (cont'd)

Radial Distance	Continuous		Estimated Drawdowns		
from center of	center of Constant pumping				
pumping well	Rate	pumping	Aquifer		
(ft.)	(gpm)	period	(ft.)		
0,25	· 7	5 years	84.5		
10	7	5 years	60.6		
100	7	5 years	45.6	3.5	
1000	7	5 years	30.3		
0.25	- 10	1 day	85.7		
10	10	1 day	51.2		
100	10	1 day	29.8		
1000	10	1 day	24.5		
0.25	10	30 days	95.0		
10	10	30 days	67.0		
100	10	30 days	45.6		
1000	10	30 days	24.2		
0.25	10	90 days	106.6		
10	10	90 days	72.2		
100	10	90 days	50.8		
1000	10	90 days	29.3		
0.25	10	5 years	120.6		
10	10	5 years	86.6		
100	10	5 years	65.2		
1000	10	5 years	46.6		

Table III: 24 hour interference due to the pumping of each well at various constant rates

	Radial Distance		Interference in feet of drawdown at various pumping rates				
Pumping Well No.	Well influenced by pumping	from pum well (ft.	ping	Pumping rate	5.2	6	7
1	2 3 4	414 1300 1800	•		8.7 3.6 2.2	10.1 4.2 2.5	11.7 4.9 2.9
2	1 3 4	414 930 1400			8.7 5.1 3.1	10.1 5.9 3.6	11.7 6.8 4.2
3	1 2 4	1300 930 523	•	***	3.6 5.1 7.5	4.2 5.9 8.7	4.9 6.8 10.1
4	1 2 3	1800 1400 523	•		2.2 3.1 7.5	2.5 3.6 8.7	2.9 4.2 10.1

* Estimated Distances

Table IV: 90 day interference due to the pumping of each well at various constant rates

	Well	Radial Distance		Interference in f	eet of dra oumping 1	wdown at	various
Pumping Well No.	influenced by pumping	from pum well (ft.		Pumping rate gpm	5.2	6	7
1	2 3 4	414 1300 1800	•		19.6 14.0 12.6	22.7 16.2 14.6	26.4 18.9 17.0
2	1 3 4	414 930 1400	•		19.6 15.7 13.6	22.7 18.2 15.7	26.4 23.7 18.2
3	1 2 4	1300 930 523	•	2	14.0 15.7 18.4	16.2 18.2 21.3	18.9 23.7 24.8
4	1 2 3	1800 1400 523	•	, , , , , , , , , , , , , , , , , , ,	12.6 13.6 18.4	14.6 15.7 21.3	17.0 18.2 24.8

Table V: Total interference in each well with all wells pumping at 5.2 gpm for a period of 1 day and 90 days.

(1			Total Interfere	nce
Well No	<u> </u>	Pumping Period	in feet	
1		1 day	14.5	
2		1 day	16.9	
3		1 day	16.2	0.5
4	Value 1	1 day	12.8	
1 =		90 days	46.2	
2		90 days	48.9	
· 3		90 days	48.1	
Ā	Y a	90 days	44.6	

Water Quality

The chemical quality of the water is acceptable in all the wells except well No. 5.

This water in well No. 5 is not acceptable for a public supply due to the nitrate content.

Pumping this well for several days may eliminate the nitrates or reduce their concentration to an amount not dangerous for public use.

The pumping of well No. 3 for 27 hours improved its chemical quality, particularly by reducing the sulphate concentration.

Conclusions and Recommendations

1. Continuous pumping of a well in this aquifer at 5.2 gpm for a period of 90 days causes a drawdown of 55.4 feet (Table II) in the aquifer at the well perimeter. If wells 1, 2, 3, and 4 are pumped continuously at 5.2 gpm for a 90 day period, there will be an additional drawdown of nearly 50 feet (Table 5) in each well due to interference. This gives a total drawdown in each well that exceeds the total available drawdown of 90 feet.

Therefore, wells 1, 2, 3, and 4 cannot be pumped continuously at a constant rate of 5.2 gpm for a 90 day period.

- 2. Table II indicates that if each well was separately pumped continuously a 7 gpm for a 90 day period, the drawdown in each well would be very close to the maximum drawdown available. Thus if 2, 3, or 4 wells were pumped and were influenced by one another to the extent that these 4 wells are, each well should not be pumped over 5 gpm, a maximum rate for extended periods of continuous pumping.
- 3. Well No. 5 was not influenced by the pumping of wells No. 1, 2, 3, and 4. However, for a 90 day continuous pumping period the maximum rate at which well no. 5 can be pumped is 7 gpm.

Future Prospects for a Groundwater Supply

The Town of Vulcan should be aware that the prospects for drilling high capacity wells with an acceptable water quality are not good in the vicinity of the town. The recent pumping test indicates that wells yielding water from the same aquifer will have to be spaced at least 1000 feet apart, instead of the previously suggested 500 feet, in order to ensure minimum interference. Closely spaced wells will have to be pumped at low rates and thus a well field will be required to obtain a large quantity of water over a long period of time.

Unfortunately, drillers' logs for test holes and well previously drilled at Vulcan do not give reliable information on the thickness, depth, and availability of the various water bearing formations encountered. A future test drilling program should be carefully planned and properly supervised during its initial stage to ensure that each hole is properly sampled in order to obtain a detailed log of the formations encountered. In addition, an electric log may be run on several test holes to aid in establishing the exact position of waterbearing formations encountered during drilling. A competent water well driller experienced in this type of test drilling is a necessity for such a program.

Detailed, reliable information obtained from a well planned, properly executed test drilling program may result in improved well design and completion, and a more satisfactory performance from a single well or group of wells.

G. M. Gabert Groundwater Division Research Council of Alberta May 29, 1962. Appendix A

C. C. Parker, Whillaker & Company Lid.

REPORT

On

INVESTIGATION FOR EXTENSION OF WATER SUPPLY

TOWN OF VULCAN

81

SCOPE OF WORK

The existing water supply for the Town of Vulcan, with a population of 1340 persons, comes from five or six wells located in the vicinity of the townsite. The water is pumped from the walls to an elevated storage tank (50,000 gallons) and thence, by gravity, to the distribution system.

The wells provide an aggregate flow of 65 US GPM which does not meet the present demand. Several of the larger usors, the hetel, hospital, etc., have individual supply.

The quality of the water is unsatisfactory, having a high concentration of objectionable salts, nitrates and suphates (Glauber Salts).

It has been necessary to investigate, test and analyze all the available sources of water in the district, to obtain an adequate source of potable water within the economic range of the community.

BASIC DESIGN

We established the necessary criteria for the study from sound engineering principles in accord with Health Regulations, and other basic requirements, as follows:

1. Population Trend

Vulcan is the centre of a trading area with a radius of 30 to 35 miles. It is the County seat for the County of Vulcan.

There are no large industrial plants in the area, but some expansion may come from the presence of producing gas wells and their subsidiary extraction processing.

The estimated population for 1985, based on a plotted curve for the increase of the past fifteen years, is 3500. This figure has been used for our calculations throughout this report.

2. Quantity of Water

Water demand is estimated to be in U.S. Gallens.

1961 //3	•	1905	•
	Maximum daily domand Fire demand TOTAL	707,500 gals 561,300 gals 1,348,500 gals	•

3. Storage

The reserve storage required is calculated to be 600,000 U.S.Galleus. This computation takes into account the existing 50,000 gallon clevated storage and a continuous pumping capacity of 250 gpm.

Supply line sizing has been determined, based on 250 U.S. gpm against a head of 160 feet and the 6" dia. main will suffice.

4. Quality of Water

Chamical analyses of water from the local wells, surface water sources etc., indicate that there are several problems in the provision of a potable supply. These are:

- 1. Reduction of Total Solids content.
- 2. Reduction of Sulphate content.
- 3. Reduction of Iron Manganese content.

: ـ ح.

Various methods of treatment have been studied, individually or in combination, to arrive at a satisfactory supply within the economic range for initial and operational costs.

The most efficient treatment that is within a reasonable cost range, is a combination filter and acrating plant. The filter selected is designed to remove iron and magnesium and will, in this process, combined with acration, reduce the quantity of salts to a reasonable maximum.

PHYSICAL STUDY

SOURCES OF WATER

a) Torn Vella

A complete study of the possible wells in the vicinity of the townsite was made, using information obtained lecally and from the Research Council of Alberta. The flow from wells in the area is small and it would require a large number of wells in series to most the demand.

The quality of the water obtained from the existing wells varied widely, and treatment would be necessary as mentioned.

C. C. Parkor, Whittaker & Company Lit.

b) Airport Wells

The Town of Vulcan recently acquired the use of several wells that formed the source of supply for the RCAF Station, about 4.75 miles from the townsits.

A pump test on Well #1 was made early in February last and computations from the observations, indicate that these wells will produce 160 US gpm, which, combined with the production of wells at the sirport and the town wells, and the proposed storage reservoir, will supply town needs adequately.

The quality of the water is comparable to that discussed and treatment will be required to reduce the total solids, sulphates and iron content.

c) Eurfaco Water - Erake Creek

There is a potential source of surface water in the Enake Creek drainage basin. This would have to be developed in conjunction with the P.F.R.A. who would provide the impounding reservoir.

The length of the supply line would exceed that from the Airport by 2.25 miles approximately, and treatment would be the same problem due to make in the ground unter.

The cost analysis of this preposed cumes has been sampared with the cost of the other lastificas.

The solection of a source of water hinges on the economics of the system to be proposed as there is no apparent advantage in quality of the product of either course, and sufficient water is available at either (b) or (c).

C. C. Parker, Whillaker & Company Lld.

DESIGN

SOURCE - Airport Wells - SCHEME B

1. Use - Well #1 (RCAF)
Well #2 (RCAF)

160 gpm 40 gpm

Use additional wells from townsite or airport as required. These wells should be pumped periodically to maintain quality (2 or 3 times weekly)

50 gpm 250 gpm

2. Repairs to Wells at Airport.

Well #1 - Casing is corrected and rust particles are evident in discharge. The casing should be replaced and the well sealed off at 30 feet level.

Well #2 - This well to be flushed and gravel packed to overcome turbidity now prevalent.

- 3. Pipe Line 6" diameter main to treatment plant and reserve storage. Pipe salvaged from enisting line at airport satisfactory and loss costly.
- 4. Pump to elevated storage from treatment plant and reserve.

A direct by-pass from reserve ctorage to the lystem for fire flow is feasible.

SOURCE - Saske Creek - SCHEME C

- 1. Impounding Reservoir To be built in adaptuation with or by P.F.R.A.
- 2. Intake Structure normal for lake.
- 3. Pumping from reservoir to treatment plant and reserve storage Supply line 7 miles long approximately.
- 4. Treatment etc., to distribution system as in Schemo B.

C. C. Perker, Whillaker & Company Lld.

COST ESTIMATES

В. Д	TRPORT SUPPLY	Total Cost	Cost to Town Under Winter	8 M P. C
1. P	ipe Salvege	\$35,210.91	\$23,252.07	
2. 5	upply Line	38, 194.58	26,577.74	
3. T	restment Plant & Equip	ment 33,689.00	30,320.00	
4. R	eservoir	38,146.00	34,330.00	
	Eub-Total	145,240.49	114,479.81	
1	0% Conduçencies	14,524.51	14,524.51	Net y
, T	laginsering 6%	159,765.00 9,585.00	129,004.32 9,585.00	
8	TOTAL	\$169,350.00	\$138,589.32	A CALL
d. g	nake creek projec	T		
	Total Cook Physilina	· (40	177,035.00	
Ç.e	Storage and treatm	ent	93,923.09	ia.
\$5 (25%) X1	5 8 E		\$270,959.00	

NOTE:- This does not include the cost of the importating dam or property acquisition.

EDMONTON, ALBERTA CANADA

May 16, 1962

WATER ANALYSIS REPORT CHEMICAL

Submitted by	Secretary-Treasurer	Date receivedMay	14, 1962
Address	Town of Vulcen	Date reported	
	Vulcan, Alberta	Source of SampleVul	can Well # 1
Container No.	D 1	Serial No.	7
		Lab. No. 62	- 4370
	PARTS PER MI	LLION S Litter for	om 60 to 15th
Total Solids	858	لد حقث لما	om the The
Ignition Loss	98	a (5)	55:145-15
Hardness	50	245 8	
Sulphates	245	363 5	
Chlorides	17	1.0 0	
Alkalini ty	305	11.79011 }:	E
Nature of Alkalinity	Bicarbonate of soda, lime	į.	
Nitrites	trace	6.10500 70 ; 6.47945 80 ·	
Nitrates	1.2	0.410000 Q0 0.400011 0:	-1 (2)
Iron	0.2		
Fluorine		;2.20222 A7 7.81203 A.	
REMARKS:		47.00000 43	
	Soda - 18.9 grains/gallor		luminum and hera
	plants. Water is chemic	0.67013	

C. Emerson Noble
Provincial Analys:

CEN:pl cc Resdarch Council

EDMONTON, ALBERTA CANADA

May 16, 1962

WATER ANALYSIS REPORT CHEMICAL

Submitted by	Secretary-Treasurer	Date received May 14, 1962
Address	Town of Vulcan	Date reported
	Yulcan, Alberta	Source of Sample Vulcan Well # 2
Container No.	<u>A 6</u>	Serial No.
		Lab. No. 62 - 4371
10000000	PARTS PER MILI	LION Status 60 to 150 ft
Total Solids	912	LION Status 60 to 190 ft Water car 68 4 145 to 150 ft
Ignition Loss	50	
Hardness	50	
Sulphates	312	5.5 S 3.1.2 S
Chlorides	26	26 9
Alkalinity	275	275 0 • 6
Nature of Alkalinity	Bicarbonate of soda, lime	and magnesium
Nitrites	trace	13.07005 /:
Nitrates	0,6	1 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Iron	0.3	- 6-73300 S.
Fluorine		0 • 0 4 2 0 U
		22.02665
REMARKS:	Soda - 16.7 grains/gallon.	
	plents. Water is chemical	lly suitable. 55.41346 A.
		5 · 20806 / 1
		29.67366 1.
		(+30441 4;
000	*	C. Emerson Noble Provincial Analyst

CEN:pl

c@ Research Council

EDMONTON, ALBERTA CANADA

May 16, 1962

WATER ANALYSIS REPORT CHEMICAL

Submitted by	Secretary -Treasurer	Date received May 14, 1962	
Address	Town of Vulcan	Date reported	
	Vulcan, Alberta	Source of SampleVulcan, Well #3, Sampl	
Container No.	352	Serial No. At beginning formfing	
		Lab. No. 62 - 4367	
	PARTS PER MIL	LION ()	
Total Solids	1064	LION Sletted 70 to 180 H	
		White at 80 4 145 to 150 ft	
Ignition Loss	56		
Hardness	50	5.0 5	
Sulphates	404	404	
	404	19 5	
Chlorides	19	270 5	
Alkalinity	270	18-63580 4:	
Nature of Alkalinity	Bicarbonate of soda, lime and magnesium		
Nitrites	nil	1.006ရှုပ _{ို} ့	
Nitrates	nil	10.100 3 0 30 0.535 3 0 20	
Iron	nil	5.40001	
Fluorine		0.00000	
ridorme		93.76863	
REMARKS:	¥	6.03635	
	Soda - 16.3 grains/gallon. Soda may correde Alu 62.98721 plants. Water is chemically suitable.		
	plants. Water is chemica	7.34144 - v	
		55.5755	
		0.00.00	

C. Emerson Noble
Provincial Analyst

CEN:p1

cc Research Council

EDMONTON, ALBERTA CANADA

May 16, 1962

WATER ANALYSIS REPORT CHEMICAL

Submitted by	Secretary-Treasurer	Date received	May 1	4, 1962
Address	Town of Vulcan	Date reported		
	Vulcan, Alberta	Source of Sample	Vulca	n 12311 # 3 L
Container No.	D 29	Serial No.	-24-8	miffinfin
		Lab. No	62 - 6	4372 523 fm
	PARTS PER M	MILLION		5 6 1
Total Solids	824	,		202
Ignition Loss	7 2			246
Hardness	50			11.93023 /:
Sulphates	253			10.90820 6:
Chlorides	26			1.00000 3.
Alkalinity	245			0.75000 00
Nature of Alkalinity	Bicarbonate of soda, 1	ime and magnesium		4 • 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nitrites	ni1			ų,
Nitrates	nil			0.00000
Iron	0.2		9 14	01.101.10
Fluorine				40.00000
DEMARKS.				

Soda - 14.5 grains/gallon. Water is chemically suitable.

C. Emerson Noble Provincial Analyst

CEN:pl cc Resdarch Council

EDMONTON, ALBERTA CANADA

May 16, 1962

WATER ANALYSIS REPORT CHEMICAL

Submitted by	Secretary Treasurer	Date received	May 14, 1962
Address	Town of Vulcan	Date reported	
	Vulcan, Alberta	Source of Sample	Vulcan Well # 4
Container No.	225	Serial No	
		Lab. No	62 - 4368
	PARTS PER M	ILLION 8	24.
Total Solids	930	Mittil	from 100 to 180 ft
Ignition Loss	36	الاماته ٥	JE 13016
Hardness	50		50
Sulphates	36 2		362 9
Chlorides	15		15 (240 (
Alkalinity	240		14.27300 +:
Nature of Alkalinity	Bicarbonate of soda, lin	ne and magnesium	
Nitrites	trace		13.07300 A:
			5.00000 5:
Nitrates	trace		0.40300 9.
Iron	0.2		4 • 8 0 0 6 0 0 0 7 % C • 0 0 6 0 0 0 0 0 0 .
Fluorine			0.000000
			92.99376 1:
REMARKS:			7.00023 7.
	Water is chemically suit	cable.	63.40643 /.
			2 · 2 6 2 6 3
			33.60993 A:
			0.00000 /:
	*		C. Emerson Noble Provincial Analyst

CEN:p1

EDMONTON, ALBERTA CANADA

May 16, 1962

WATER ANALYSIS REPORT CHEMICAL

Submitted by	Secretary-Treasurer	Date received	May 14, 1962
Address	Town of Vulcan	Date reported	
	Vulcan, Alberta	Source of Sample	Vulcan Well # 5
Container No.	D 43	Serial No	
		Lab. No	62 - 4369
*	PARTS PER MI	LLION ()	
Total Solids	1910	Jates J	15, 854150R.
Ignition Loss	218	التملق معد	1921
Hardness	110		110 S
Sulphates	667		64 \$
Chlorides	64		158 c 23 s
Alkalinity	135		° 22.002(5 °:
Nature of Alkalinity	Bicarbonate of sode, lim	e and magnesium	20.62265 °; 2.0√006 °;
Nitrites	trace		16.015:0 -0
Nitrates	23		1.00400 BA 2.70000 FE
Iron	0.3		1 * 64205
Fluorine			50.36300 0
REMARKS:	Soda - 24.2 grains/gallo to high nitrates.	n. Water is chemic	9 • 6 3 9 3 6 6 7 7 7 3 • 6 6 5 7 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7

C. Emerson Noble Provincial Analyst

CEN:p1

cc Research Council

Appendix B