Miles 1 0 1 Yards 1000 0 1000 2000 Metres 1000 0 1000 2000 3000 CONTOUR INTERVAL 25 FEET North American Datum 1927 Transverse Mercator Projection Elevations in Feet above Mean Sea Level ÉQUIDISTANCE DES COURBES 25 PIEDS Projection transverse de Mercator Élévations en pieds au-dessus du niveau moyen de la mer Système de référence géodésique nord-américain, 1927 **GENERAL COMMENTS** ## DEPOSIT CHARACTERISTICS | Deposit
Number | Material
Description | Rese
(1000
Gravel | 0 m³) | Additional Comments | Gravel | Fexture
(%)
 Sand | Fines | (%)
Wear | Overburden
Thickness
(m) | Deposit
Thickness
(m) | Deposit
Area
(ha) | Deposit Genesis | Additional Comments | |-------------------|-------------------------|-------------------------|--------|---|--------|--------------------------|------------|----------------|--------------------------------|-----------------------------|-------------------------|--------------------------------|---| | 1 | Cłean sand | 3,000 | 24,000 | Proportion of gravel to sand may vary. | 12 | 85 | 3 | į | - | 1.5 | 1,890 | Outwash | High water table. | | 2 | Clean gravelly sand | 500 | 1,400 | Reserve data based on one pit. | 26 | 73 | 1 | ÷. | 1.0 | 3.0 | 65 | Fluvial-terrace | At the pit the deposit becomes sandier with depth. | | 3 | Clean sandy
gravel | 3,500 | 2,300 | -
- | 60 | 39 | 1 | • | 1.0 | 3.0 | 200 | Fluvial-terrace | Texture may vary over deposit. | | 4 | Clean gravelly sand | 300 | 870 | Proportion of gravel to sand may vary over deposit. | - | - | - | - | 2.0 | 3.0 | 40 | Fluvial-terrace | Deleterious ironstone and sandstone present. | | 5 | Clean sandy
gravel | 460 | 430 | Deposit continuous with deposit 8, NTS 83H/11. | 51 | 48 | 1 | - | 2.0 | 3.0 | 30 | Fluvial-terrace | Texture may vary over deposit. | | 6 | Clean sand | - | 900 | Deposit continuous with deposit 13, NTS 83H/11. | - | - | - | = | 0 | 1.5 | 150 | Eolian | Dunes. | | 7 | Clean sand | - | 710 | Thin veneer of sand less than 1 m thick in places. | - | - | - | - | 0.5 | 1.0 | 1,780 | Glaciofluvial-
outwash | Deposit occasionally contains fine gravels up to 20%. | | 8 | Clean sandy
gravel | 1,800 | 1,400 | - | 57 | 42 | 1 | - | 1.0 | 3.0 | 110 | Fluvial-terrace | Texture may vary over deposit.
Coal fragments present. | | 9 | Clean sand | 1,700 | 5,600 | * | 23 | 76 | 1 | - | 0.5 | 2.0 | 370 | Outwash | High water table. | | 10 | Sand(?) | z- | - | Reserves not estimated. | := | æ | | 3 | 0.5 | - | 7,550 | Glaciofluvial-
pitted delta | Variable texture, fine sand and silt to clay and till. | | 11 | Clean sand | - | 6,900 | | - | 98 | 2 | - | 0.5 | 1.5 | 470 | Outwash | Mainly fine sand. | | 12 | Clean sand | - | 30,000 | - | 10 | 88 | 2 | - | 0.5 | 3.0 | 1,130 | Outwash | Mainly fine sand. | | 13 | Clean to dirty sand | - | 5700 | Two deposits. | s= | - | - | - | 0.5 | 1.5 | 510 | Outwash | Mainly fine sand. | | 14 | Clean sand | - | 4,000 | Two deposits. | - | 97 | 3 | - | 0.5 | 1.0 | 410 | Outwash | In places up to 10% fine gravel. | | 15 | Sand and gravel | ,- | - | Reserve data not calculated. | 1- | 1- | - | - | - | :es
<u>=</u> : | 40 | Fluvial-terrace | Probably similar to deposits 2, 3, 4, and 8. | | 16 | Clean sand | - | 2,000 | - | - | - | - | , - | 0.5 | 1.0 | 2,240 | Outwash | Fine to medium sand. Patches of gravel occur on hummocks. | | 17 | Clean sand | - | 600 | Overlies bedrock. | | 98 | 2 | - | 0.5 | 1.0 | 60 | Outwash | Little data available. | | 18 | Clean sand | -: | 550 | - | | 1- | - | E 4 | | 1.0+ | 58 | Outwash | High water table. Little data available. | | 19 | Clean sand | - | 730 | - | | - | | (- | - | 1.0+ | 70 | Outwash | No data available. | | 20 | Clean sand | - | 24,400 | - | 3 | 95 | 2 | - | 0 | 2.0 | 1,390 | Outwash | Up to 20% gravel in places. | | 21 | Clean gravelly sand | 430 | 690 | Aggregate used for road base. | 37 | 60 | 3 | - | 0,5 | 1.5 | 77 | Outwash | High water table. | | 22 | Clean gravelly sand | 520 | 930 | Veneer (0.3-1.5 m) over till. May | 35 | 62 | 3 | , - | 0.5 | 1.0 | 150 | Outwash | Clasts to 15 cm; dirty in places. | | 23 | Sand and gravel | - | - | Deposit is similar to deposit 22. | - | | - <i>j</i> | - | - | - | 32 | Outwash | No information available. | | 24 | Sand and gravel | - | - | Probably similar to deposits 2, 3, 4 and 8. | - | - | | = | - | ¥ . | 85 | Fluvial-terraces | No information available. | | 25 | Clean sand | - | 82,000 | Nine deposits. | | * | * | * | 0 | 1.5 | 16,600 | Eolian | Fine sand; high water tablę | Deposit Number — Granular deposits shown on this map may have commercial possibilities. That assumption followed from two criteria used in the mapping process: study of the area considered only granular deposits greater than one metre thick, and covering an area more than one hectare; and it only considered deposits where the mineral-aggregate thickness was greater than the overburden thickness. Although the scale of mapping did not permit investigation of all small deposits, many small deposits containing existing pits are indicated. Material Description — Sand and gravel has a variety of applications, such as concrete for construction, asphalt concrete, subbase and base course aggregate for roads, gravel and sand for road surfaces, and pit run for fill. Gradation, rock hardness, and binding characteristics, are some of the specific qualities that are considered in aggregate towards determining its end use. This map indicates these, and other, geological qualities of the sand and gravel within each deposit, but does not indicate their potential uses. The terms used in the table are defined in the figure below. Reserves — The method of calculating in cubic metres the aggregate reserves of deposits took four basic steps. First, the area, in hectares, of each deposit was determined using aerial photographs. Second, geological interpretation, sometimes supported by subsurface information, was assumed in determining the geometry of each deposit, to estimate an overall, average deposit thickness in metres. Third, geological study and limited sample analyses determined the texture (gradation) of sediments in the deposit, and an overall average percentage of gravel and sand. Finally, the volume was calculated as follows: reserve gravel (m³) = area (ha) × thickness (m) × 10,000 × % gravel; the same formula was used for sand. **Texture** — The texture of the sediment refers to the percentage of particles of various sizes. For mineral aggregate, the most important fractions are the gravel and sand. The actual dimensions of the clasts and particles in these fractions are given in the figure. The values given for a particular deposit were determined from a field estimate, or from laboratory analysis, of one or more samples from that deposit. Where more than one sample is taken the tabulated number is the mean value. Wear — The resistance of gravel-size clasts to wear or abrasion can be measured in a laboratory test (ASTM-C131, Los Angeles Abrasion Testing). The amount of material that breaks down into smaller sizes is measured and related to the original sample weight in terms of percent wear. The higher the percentage wear the more susceptible the gravel is to breakdown under stress. Gravel with a percentage wear of less than 40 is considered very resistant. Overburden Thickness — The thickness of non-economic material, or overburden, covering a deposit, sometimes is a limiting factor in the exploitation of an aggregate deposit. The tabulated values given are approximate overburden thicknesses as determined from geological investigations and subsurface testing. - 3 Deposit number Assumed boundary - Active or inactive pit Alberta Geological Survey test hole - ▲ Sand or gravel exposure - Buried sand or Gravel deposit Deposit Area — Deposits in this study were delineated by interpretation of aerial photographs and the contacts should be considered approximate. Information is precise only where test holes, or geological sections, are indicated. Deposit Genesis — The genesis, or formation, of deposits is vital to the understanding of the gradational nature, extent and geometry of the deposit. This understanding forms the basis for extrapolation from a limited number of known points (test holes, pits, sections) and permits an Alberta Geological Survey This is a sand and gravel resource map prepared by the Alberta Geological Survey as part of a series at a scale of 1:50,000. The series represents an ongoing aggregate inventory of Alberta which provides data for general land-use planning, land management or aggregate exploration. Please note that the delineation of deposits and calculation of reserves are approximations only. > Geology and compilation by J.C. Fox, 1979 and 1981. Additional information from L.A. Bayrock, 1972. AGGREGATE RESOURCES REDWATER 83H/14 © Canada Copyrights Reserved 1973 loose surface, dry weather and de gravier, temps sec et unclassified streets...... hors classe..... hors classe..... trail or portage...... sentier ou portage..... cart track...... de terre...... de terre...... FOR COMPLETE REFERENCE SEE REVERSE SIDE POUR UNE LISTE COMPLÈTE DES SIGNES, VOIR AU VERSO